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ABSTRACT Some sequential procedures are considered for
selecting the binomial population with largest success probability
or for selecting the multinomial outcome with highest cell prob-
ability. Procedures with and without sequential elimination of in-
ferior populations are evaluated with respect to the expected prob-
ability of the population selected.

1.
We have k ' 2 coins. Coin i has probability pi ofheads on each
toss. We are allowed to toss the k coins any number of times,
the same for each coin. After n tosses of the set of coins we ob-
serve that coin i has come up heads Xi(n) times. In order to select
a coin with a high p value, we choose in advance some positive
integer r and define the stopping times

Ni= first n _ r such that Xi(n) -Xj. + r
for everyj : i,

and [1]
N = min{N1, ..., Nd.

IfN = Ni = n, we stop with n, tosses of the set of coins and
select coin i. That is, we terminate sampling as soon as one coin
has produced at least r more heads than any of the others.

Let Pi = Prob[select coin i] = P[N = Nj] for this procedure,
and let A = piPi = expected p value of the coin selected.
THEOREM 1. Let the notation be such that Pi P2-

' Pk. Then

p (PD ) for i <j, where qi = 1 -pi,

and equality holds for k = 2. This implies that
P1-P2- -- -Pk

and that

P,::- (pl/ql)r
k

E (pi/qi)

[2]

and ,k pk(Pqkor
(pi/qi)r

1

with equality for k = 2.
A proof of this theorem is presented in Section 2.
By ignoring the "overshoots" Xi(n) - X(n) - r on the event

[N = Ni = n] we obtain the following approximations:

(pJqi) e P[4-pi- k It [4

1

and
k

A ~>p P ~-A.
1

[5]

(These approximations are equalities for k = 2, by Theorem 1.)
The next theorem shows that A is always an underestimate

ofA. We state a somewhat more general result and prove it in
Section 2.
THEOREM 2. Let {P1, ..., Pad and {P1, ..., P'd be any two

sets ofpositive numbers satisfying XPj = EPi = 1, P1 _ P2 -

. Pk, and

i _pi for all i < j.

Let a, _. ak be any constants. Then
k k

,EajPj -_i E ai-Pi
1 1

Taking Pi as in [4], Theorems I and 2 imply the following
inequalities:

k

A _ > PiP

expected selected odds =
k k k

Ea (pi/qi)Pi:'-, E (pilqi)" / E (pilqi)'
1 1 1

Prob[select a coin from among the b best coins]
b b

=>,P.> pi, (b= 1, .., k).
1 1

[6a]

[6b]

[6c]

Monte Carlo simulations lend credence to the conjecture that
Theorem I and the inequalities 6 thatfollowfrom it remain true
even ifthe selection procedure is modified by dropping any coin
j from the contest as soon as

max {Xi(n)} xj'~n + r

The italicized statement is proved in Section 2 for the very spe-
cial case r = 1. A rigorous proofin the general case is not known
to us at present.

For example, if (a) denotes the original procedure and (b)
denotes the modified one, and if k = r = 3 with Pi = 0.6, P2
= p3 = 0.5, then in 10,000 runs we obtained the results in Table
1.
The modified rule substantially reduces the average total

number of tosses as well as the average total number of tails
("failures") without much reduction in the average p selected.
Further simulations show that a modified procedure can ac-
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Table 1. Selecting the best of three coins with Pi = 0.6,
P2 =P3 = 0.5

Monte Carlo estimate
Operating for procedure: Pi in [4]

characteristic (a) (b) A in [5]
P1 0.683 0.653 0.628
P2 0.158 0.176 0.186
P3 0.158 0.170 0.186
A 0.568 0.565 0.563
Average total number of:

Tosses per run 66.1 50.3
Tails per run 30.8 23.3.

tually dominate an unmodified procedure in the sense that for
given P1, . . ., Pk there exist integers r' > r such-that procedure
(b) with r' has smaller expected total number of tosses and
smaller expected total number of.tails than procedure (a) with
r, whereas the expected p selected is larger with procedure
(b) than with procedure (a).

In the case of a multinomial distribution with cell probabil-
ities Pli' ...=>Pk corresponding to k possible outcomes, with
k = 1, let = number oftimes outcome i occurs during

the first n trials. The same procedure [1]'can be used to select

the following formula approximates E[N] under procedure (a):

E[N] =[Pl(pq/rr)' + [P1 (pq/,) + 2rp( - 1)(3P 1)]1/2]2-1))- 'X

[8]

where P1 is the lower bound of [3] for. P1,

/[1 1

(pllql ] IL

2

Oq)]

A heuristic derivation of [8] is given in Section 2. In the example
cited above, [8] produces E[N] = 21.46, leading to an expected
total number of tosses = 3E[N] = 64.38.

In the multinomial case for k = 2, [7] becomes

(P ) for Pi >
I1_oP1+ P2rE[N] =-

,.2 forp,=P

[7']

For k = 3 with p1 = 0/(6+ 2), P2 = p3 = 1/(6+ 2), (6> 1),
[8] becomes

"/[*O + 2)1"2 +I' 2/[*o + 2)] + [2r)3\ - 1)(9 - 1)](+ 2)1I22E[N] - pi/Lr6+2]/ +i 2(-1)(0+2)

a cell with high p value. The corresponding Theorem 1' states
that

Pi.-jIpi j/(ipj)r for i<j,

where P1 = 1/(1 + 20-6 is the lower bound of [3'] for P1.

[2'] 2.

with equality for k = 2, and similarly for [3] - [5], where
pi/qj is replaced by Pi. In particular, the first formula of [3]
becomes <

UP Pi
1=k

EPir
1

which improves for k > 2 on an inequality of Alam (1)
k

P1 ' 1 - X {ir/(l + 6OM} where Oi = PiPi
2

Corresponding to. [5] we have the approximation
k r+1i / r

A( P~r+ ) ir

[3']

[5']

Formula 5.' is an exact equality for r = 1 and any k _ 2 and also
for k = 2 and any r 1. Theorems 1' and 2 show that the right-
hand side of [5'] is a lower bound for A for any k > 2 and r >
1.

Approximate formulas for the expected total number oftosses
and total number of tails for k coins using procedures (a).and
(b), or for the expected number.oftrials in the multinomial case,
are hard to come by for k > 2. For the case of k = 2 coins, the
expected number of tosses per coin is known (2) to be

r
r ((p1/q,)r P / 2)

P - P2 '\(P1/qlr + (P2/q2 )r

2p(l p)
for p, = P2 = P

[7]

For the special cases k = 3, pi = OP, P2 = p3 = p with 6> 1,

Proof of Theorem 1. Fix i < j, and let p = (p,1 , Pk) with
Pi ._-Pk. Let-a denote any particular sequence of out-
comes and, to simplify notation, write Xi = Xi(n)(a) for the num-
ber of heads with coin i after n tosses. Let

k

(a)= H X(1 - p )n-x'
1

be the probability function of the sequence a. Let p(ij) denote
the same p vector, but with pi and pj interchanged. Now,

Pp[N = Nj] = E> E p(n) (a),
n=1 [N=Nj=nI

where the second summation is over all sequences a such that
N = Nj = n. Hence, since

p (a) -(pjqi,
fP( )(fl) (a) -

we have
00 / Xi-Xj

PP[N = Nj] = a, E f~ip(y)
(n (a)

n=l [N=Nj=n] pI P1

- (pjqj) -

Pp(i) [N = No] [9]

/pj/qi\ -r
- '\pJIxqJ) PR[N = Nil.

The inequality follows because X _ Xi + r on the event [N
=N = n], with equality ifk =2. Tie final equality in .[9] follows
by symmetry; the two probabilities P [N = Ni] and Pp(ij) [N =
Nj] differ only in how we label the coins, whereas the stopping
rule is invariant under permutations ofthe labels.. This estab-
lishes [2]. The first inequality in [3] .follows from
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PI = 1 E j 1 P
(

p q)k k/PE~jjj
2 2

with a similar proof for Pk.
A similar proof holds for Theorem 1', withft(n) (a) = fl

PXt(n)(a)
Proof of Theorem 2. Let ei = Pi - Pi for i = 1,. k. Then

'I ei = 0.
The vector (e,. ek) possesses the property that if ej ' 0

for some j then ei 0 for all i < j. For,

ei _ P Pi)P P ) Pi Pi
e, Pj - p- Pj_

=P-P P-P P.
Thus there is an integer m (1 ' m ' k - 1) such that ej _ 0 for
i ' m and ei _ for i > m. Given a, '... . _ ak we have
k m

E aje, =ya
1 1

aje, - I aileil
m+l

m k k

a_a ei - am+l, E eil > am E ei = .

1 m+1 1

This concludes the proof.
Next we prove that Theorem 1 holds for the modified pro-

cedure (b) for any k > 2 in the special case r = 1.
THEOREM 1B. Let r = 1 in procedure (b) with Pi - ..

-Pk. Then

(i) pi ~> for i <j, andPj=pjj
(ii) Pi is an increasingfunction of pi.
Proof(by induction on k): For k = 2, (i) is an equality, while

(ii) states that wJ/(wi + wj) increases in wi, where wi = pjqi.
Assume the theorem is true for k - m - 1, and suppose there
are k = m coins to start.

Let T denote the toss on which the first elimination occurs,
and define for i 1, . .., k

5i = ,i(7 = f1 if coin i is not eliminated at n = T
8, tO otherwise.

The joint probability function for 8 = (81, ., 8k) is

HPiq-
P[8] =i

1 - H Pi - H1 qi
i i

=(Po q )P/[ riq (Hi joi )
which is increasing in pi.
Now fix i < j and write

P[N = Nj] = E P[N = Ni16] P[8]
sj=l
fns=o

[12]

where the summation is over all 8 with 8i = 1 and 11H = 0.
For 8i = At = 1 we have

P[N = NV 8] >'P[N = NjI8]w.

by the inductive hypothesis (i), since the remainder of the con-
test (n > T) is equivalent to a new contest with k < m coins.
For Si = 1, A8 =O

P[N = Ni18] ' P[N = Nj18(ij)]
by inductive hypothesis (ii), where 8(ij) denotes (81, ..., Si=
0 ..., Aj = 1, ...,Ik). This is because the remainder of the
contest given 8 differs from the remainder of the contest given
8(ij) only by the substitution of coin j for coin i. Hence by [11']

P[N = N.] = i P[N = NjI8] P[8] = 'P[N = Nj]

which establishes (i).
For (ii) we note that, in [12], P[N = NIS1, .8,Si = 1,.

Sk] is increasing in pi by the inductive hypothesis (ii), and this
together with [11"] completes the proof.

To obtain [8] we proceed as follows. By Wald's lemma,

E[X(N)- X2(N)] = (P1-p2) E[N].

Also, suppressing the superscript of Xi

E[X1 - X2] = E[X1- X2 X1 > X2 X3] P[X1 > X2 _ X3]

+ E[X1 - X2 X1 > X3 > X2] P[X1 > X3 > X2]

+ E[X1 - X2 N = N3] P[N = N3]

+ E[X1 - X2 X2 > X1 X3] P[X2 > X1 X3]
[10]

for 8 such that at least one component of8 is 1 and at least one
component is 0. We assert two things about P[8]. From [10],
P[81, ..., i = 1, ..., Si =0, 8,k]
P[81, ., Si =O...., S = 1, ..., a;

= W' foranyi $j.
Wj

Moreover,
P[81.. , i = 1, . 8k] is increasing in pi,

since

P[81. , Si= 1, ..., a;

= Pi HPfJpqj (1 - pi p qiHq)
joi joi joi

[11']

[11"]

+ E[X1- X2IX2 >X3>Xl]P[X2>X3>Xl]
= r(P[N = N1]-P[N = N2])

+ E[X3-X2 Xl > X3 > X2] P[X1 > X3 > X2]

+E[X1-X2IN= N3]P[N = N3]
+ E[X1- X3IX2>X3>Xl]P[X2>X3>Xl1

[13]

As a first approximation we ignore the final two summands in
[13]. In the special case P2 = P3 = P.

P[X1 > X3 > X2] = 2P[N = N1]2

and

P[N = N2] = I(1 - P[N = N1]),
2

yielding
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E[N]
r(3P[N = N1]- 1) + E[X3-X2 > X3 > X2] P[N = N1]

2(p, - P2)
To evaluate E[X3(N) - X2(N) X1()>> X > X2(N)], note that
for a fixed sample size n, X3(n) - X2(n) is distributed approxi-
mately normally with zero mean and variance 2npq, so that if
p[Xj(n) > X3(n) > X2(n)] is near 1,

EX3(n)-X2(n) Xl(n) > X3(n) > X2(n)] - E[X3(n)- X2(n) X3(n)

>X2u(n)]s 2(npq/]i)n/2
We heuristically replace n by E[N], and solve for E[N] in the
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resulting quadratic equation
r(3P[N = N1]- 1) + 2(pq/ir)12 P[N = N1] \/?NK

E[N] - 2(p, - P2)

which leads to [8]. We expect the approximations and the final
heuristic step to be justified asymptotically as r -> oo. Similar
reasoning leads to [8']. The accuracy of [8] and [8'] remains to
be investigated.
We are greatly indebted to Dr. Ronald F. Peierls for helpful sug-

gestions and for carrying out all our Monte Carlo simulations.
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