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SUMMARY
In air pollution epidemiology, there is a growing interest in estimating the health effects of coarse par-
ticulate matter (PM) with aerodynamic diameter between 2.5 anghi0Coarse PM concentrations can
exhibit considerable spatial heterogeneity because the particles travel shorter distances and do not re-
main suspended in the atmosphere for an extended period of time. In this paper, we develop a modeling
approach for estimating the short-term effects of air pollution in time series analysis when the ambient
concentrations vary spatially within the study region. Specifically, our approach quantifies the error in
the exposure variable by characterizing, on any given day, the disagreement in ambient concentrations
measured across monitoring stations. This is accomplished by viewing monitor-level measurements as
error-prone repeated measurements of the unobserved population average exposure. Inference is carried
out in a Bayesian framework to fully account for uncertainty in the estimation of model parameters.
Finally, by using different exposure indicators, we investigate the sensitivity of the association between
coarse PM and daily hospital admissions based on a recent national multisite time series analysis. Among
Medicare enrollees from 59 US counties between the period 1999 and 2005, we find a consistent positive
association between coarse PM and same-day admission for cardiovascular diseases.

Keywords Air pollution; Coarse particulate matter; Exposure measurement error; Multisite time series analysis.

1. INTRODUCTION

Ambient particulate matter (PM) is a mixture of solid and liquid particles regulated by the Environmental
Protection Agency (EPA) as one of the 6 criteria air pollutants. Under the Clean Air Act, EPA is respon-
sible for establishing national standards for these pollutants to protect public health and the environment
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(Bachmann2007). PM can be characterized into the fine and coarse size fractions that represent distinct
pollutant mixtures of different sources and properti&igon and Suh1997). Particle size is an important
attribute because it governs the particle’s behaviors in the atmosphere and deposition in the respiratory
system. Ambient coarse PM is most often released directly as a primary pollutant through mechanical
processes such as dust suspension or physical attrition involving grinding and crushing. Mineral residue
resulting from combustion burn out (fly ash) also contributes to the coarse fraction. Biogenic compounds
including bacterial endotoxin, pollen, and other animal/plant debris may also be present.

Protecting public health from coarse PM has endured considerable controversy in the regulatory con-
text. EPA's current National Ambient Air Quality Standards (NAAQS) use ambientgRidncentration
(PM with aerodynamic diametefl0 um) as the pollutant measure to protect public health from coarse
PM. Most studies also routinely use Rdto quantify health risks and have consistently found that in-
creased concentrations of ambient (outdoor);P&te associated with increased risks of various adverse
health outcomesRope and Dockery2006. However, there exists persistent criticism in interpreting the
health effects of coarse PM since PjMontains both the coarse and fine fraction.

Recent studies of coarse PM have increasingly focused on exposure to inhalable coarse particles
(PM1o-2.5) of size between 2.5 and 1m aerodynamic diameter. While toxicological evidence sup-
ports the potential health effects of coarse PM, current epidemiological evidence is limited and mixed
(Brunekreef and Forsberg005. Most time series analysis of ambient P> 5 concentrations and short-
term mortality showed nonstatistically significant associations except in arid regions such as Mexico City
(Castillejosand others 2000 and Phoenix USNlar and others 2004). Results from both the Harvard
Six Cities Study Dockeryand others1993 and the American Cancer Society cohdtbpeand others
2002 also found no association between long-term exposure to coarse particles and mortality. However,
studies have reported statistically significant short-term effects of ambiepg BN on hospital admis-
sions Pengand others2008 and mortality Zanobetti and Schwart2009. Particularly, a multisite time
series analysis conducted Byngand others(2008 found that on average across the 108 US counties,
ambient PMo-2.5 concentration was associated with emergency admissions for cardiovascular diseases,
but this association lost statistical significance when adjusted lysPM

In a time series design, the health outcome is only available as daily total number of adverse health
events in a community, such as a county, a city or a large metropolitan area. Unbiased risk estimates
require the exposure measure to coincide with the true average exposure experienced by all at-risk indi-
viduals in the communityZegerand others2003 Shepparg2005. When the ambient pollutant concen-
tration is spatially smooth, current practice of averaging measurements from outdoor monitors provides
a reasonable surrogate measure for the population exposure due to outdoor sources. However, coarse PM
concentrations often exhibit higher spatial heterogeneity compared 1o, Bhd PMo. Therefore, aver-
aging PM-2 5 values from the fixed-location monitors placed in the same community may not capture
the true population exposure. Moreover because there is no national monitoring networki;fonBM
community-level daily PMp_» 5 concentrations are calculated based on the limited network of collocated
monitor pairs where both P and P\ 5 are measured at the same location.

One of the main objectives of this paper is to develop a statistical modeling approach and computa-
tionally efficient estimation procedures for estimating the health effects of air pollution accounting for
exposure measurement error (ME) in multisite time series analyses. We are concerned with the error that
results from assigning an incorrect exposure measure to the study population living in an area when (1)
pollution concentrations are available from a small number of monitors placed within the community;
and (2) the pollution concentrations are highly variable within the community. To incorporate exposure
ME in risk estimates, we view monitor-level PM values as error-prone repeated measurements of the true
community-level average exposure. Our approach estimates exposure ME by quantifying, on any given
day, the disagreement in PM values measured across the monitoring stations located within the same
community. Specifically, we develop ME models for a bivariate vector of exposure variables in order
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to estimate the effect of PM_» 5 adjusted by PM . Joint modeling also addresses the bias where the
effect of one pollutant measured with more error is transferred to another pollutant measured with less
error Zidekand others1996. Finally, we calculate different measures of county-level ambient daily ex-
posure to PMp_2.5 and investigate the sensitivity of the national average effect ofgPj% on hospital
admissions estimated Pengand otherg2008.

The exposure ME encountered in the analysis ofi2Ms is related to the statistical problem known
as spatial misalignmenGptway and Youngl999. Spatial variation in ambient concentrations and ex-
posure ME caused by spatial misalignment have been addressed in several studies on the long-term health
effects of air pollution Zhuand others2003 Gyparisand others2009. However, few have examined its
effects specifically in time series analysis. Through simulation stuBiespparcand otherg2005 find
minor effect attenuation when the ambient concentration varies spaRalfy and Bel(2010 calculate
county-level exposure by first interpolating BMchemical constituents concentration via spatial model-
ing. The authors show that the resulting county-specific short-term health effects are greater in magnitude
and have larger standard errors compared to estimates that do not consider spatial variation in pollution
concentration. To our knowledge, no study has investigated the effects of exposure ME in the analysis of
PM10_2.5 and health.

Our ME approach estimates daily county-level M s exposure accounting for spatial hetero-
geneity without explicitly characterizing the spatial gradient. While this approach provides computa-
tional advantages, a space—time model for;pP&hd PM 5 offers an alternative approach for obtaining
PMjo-2.5 exposure measure. However, this increases model complexity significantly when considering
daily PMig_2.5 concentrations nationally over a long study period. The ability to characterizg BM
spatial variation is also limited by the sparse network of collocategdoRivid PN 5 monitors.

The remainder of this paper is organized as follows. Seidlescribes the data sets, the model-
ing framework and the estimation procedures. In Seclowe calculate different measures of daily
county-level ambient exposure to R§l2 5 and investigate the sensitivity of the national average effect
of PM1g_2.5 on hospital admissions. Sectidrdescribes a simulation study that examines the impact of
PMi0-2.5 exposure ME and the performance of our proposed method. Finally, discussion and future work
appear in Sectioh.

2. METHODS
2.1 Data

Daily average concentrations of Ry, s and PM 5 data for the period 1999-2005 were obtained from
the EPA's National Air Pollution Monitoring Network in the air quality system (AQS). Without a national
monitoring network for PMg_2 5, the EPA calculates PM-2.5 values indirectly by subtracting PM
from PMyp measurements at monitors that are physically located at the same place (collocated monitor
pairs). We considered PM measurements from all AQS monitors and RM. s measurements from
collocated PM.5s and PM monitor pairs. We restricted our analysis to the 59 US counties with (1) a
population greater than 200 000 based on the 2000 census; (2) at least 2 pairs of collocatethdM
PMz.5 monitors; and (3) at least 210 daily RM 2.5 measurements over the study period. Locations of
the counties in our study are shown in Figdre

Time series of daily emergency hospital admissions for cardiovascular and respiratory diseases were
assembled for Medicare enrollees aged 65 years or above within each cBangatd others 20089.
Records were extracted from the National Claim History Files for the period between 1999 and 2005.
Based on the International Classification of Diseases, Ninth Revision disease classification, we considered
primary diagnosis of admissions due to 2 aggregated causes: (1) cardiovascular disease admissions and
(2) respiratory disease admissions.
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Fig. 1. 59 US counties with population greater than 200 000, at least 2 pairs of collocajg@Rd/PM 5 monitors,
and at least 210 daily PM_» 5 measurements over the period 1999-2005 (Honolulu, HI and Anchorage, AL not
shown).

2.2 Trimmed mean exposure indicator

For countyc on dayt, let Wftj and chtj denote the PNb_2.5 and PM 5 levels at monitorj, where
j = 1,...,J3%and J! is the total number of Plls monitors in countyc. For some PMs monitors,
a collocated PNy monitor is present and bofotj and chtj are observed. Otherwise, onWZCtj is
observed, and we trewft- as missing. In our study, there were 220 collocated Blsind PM ¢ monitor
pairs and an additional 173 P monitors that did not have collocated Rjnonitors.

Under the assumption that Ry, 5 and PM 5 concentrations are spatially homogeneous across each
county, the standard daily county-level Pi> 5 exposure ){(ft) and PM 5 exposure xgt) measures are
obtained by averaging all available measurements across monitors on a particulaceyghd others
2000. Specifically, the 10% trimmed mean (TM) is used to exclude extreme monitor-level values that
may be invalid. In this algorithm, no PM measurements are excluded in computing the mean on days
with less than 3 monitor-level PM measurements and only the maximum and minimum measurements are
excluded on days between 3 and 9 PM measurements.

2.3 ME model

To illustrate the impact of a spatially heterogeneous pollutant in time series studies of air pollution and
health and the importance of defining appropriate population exposure indicators, first consider the fol-
lowing example adopted fro@egerand otherg2003 andSheppard2005. Denote byX;; the exposure
to a pollutant due to outdoor sources for an individuah dayt. For each individual in the study, we
assume that the binary health outcome follows a Bernoulli distribution with probabgitgxp(s Xit),
wherelg represents a baseline risk common across individuals an@exgpresents the multiplicative
change in risk associated with a unit increas&in

Let N; denote the number of at-risk individuals in a community oniand letY; denote the number
of hospital admissions on day t in the population that resides in the community. If the occurrence of
outcome is independent across individuals, the community-level outcome count has mean equal to

Nt

=0 ) exp(BXit). (2.1)

i=1
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Since the short-term relative risk of air pollution is typically very small, followdegerand others
(2003, a linear approximation to the exponential term2nl gives

Nt

log(ut) = log(ZoNy) + ﬁ(|:Z(Xit - Xt)i| /Nt) + B Xy =log(Zo N) + B Xt,

i=1

where X; is the average exposure of all at-risk individuals. Under these assumptions, the relative risk
obtained by regressing aggregated outcofmen aggregated exposubg via log-linear regression is
equivalent to the personal rigk Therefore X; represents the “desired but unobserved” exposure indicator
in time series analysis.

Let X{ be a surrogate exposure indicator calculated, for example, by averaging measurements from
some fixed-location monitoring sites within the community. We can rew2itg &s

Nt

ut = ioZeXp(ﬂ(Xit — Xp) + (Xe = X{) + BXE). (2.2)
i—1

Applying a similar linear approximation gives
log(ut) = 10g(ZoNt) + B(Xt — X{) + BX{ . (2.3)

Hence, we wish to have the exposure indicator calculated from monitoring data to coincide with the true
average exposureX( = X{).

For coarse PM, ME can occur when the sparsg®Ms monitoring network does not fully capture
the spatial variation in PMy_> 5 concentrations. Here, it is also important to account for the spatial distri-
bution of the at-risk population since individuals can be exposed to different levels of ambiggtd3vi
The standard approach of defining community-level exposure by averaging monitor measurements can
over- or underestimate the true average exposure. This bias can also vary temporally because the set of
PMi0-2.5 measurements used to calculate average exposure often varies between days due to missing data
or different monitoring schedules.

In the ME modeling approach, we view PM measurements from different monitors on the same day
within the same county as error-prone repeated measurements of the unobserved population exposure.
Let X§ = (Xft, th) denote the unobserved county-level exposure to ambieapBM and PM 5 expe-
rienced by the at-risk population. Under the classical additive ME mdgilef, 1987, we assume for

j=1,...,3°
WE. X¢ Py ColoS
WE = [ f’} ~ Normal([ f }zc - [ ! ’ zlcz , (2.4)
W, XS peosas oy

where the 2 ME variancessrf’C andazz’c) capture same-day between-monitor variability for 8M s
and PM.s. Parametep® captures the correlation between MEs, which is assumed to be constant across
days and monitors within the same county. A positpfeindicates that daily monitor-level PM_> 5
and PM 5 measurement pairs tend to deviate from the true exposures in the same direction. Note that
at some monitoring locations and on some days, (W% is observed andlVy;; is treated as missing.
Through Bayesian inference described in Secfidhwe simultaneously address the ME problem and the
imputation of missing monitor-level PM_» s measurements.

Additionally, we assume

logX{ = [log X§;, log X5,]" ~ Normal [Zf#§, ZEn§]', 5 ), (2.5)



642 H. H. GCHANG AND OTHERS

whereZ¢ denotes a covariate vector that includes indicators for month, indicators for day of the week,
and calendar dates. Parametgfsand ;5 denote the corresponding vectors of regression coefficients.
The logarithmic transformation accounts for the strictly positive and right-skewed PM concentration mea-
surements. The diagonal elements3ff represent the residual variance for log-PM exposure and its
off-diagonal element captures the correlation between daily county-leveh BM and PM 5 exposure

for county c. Note that we choose to modwg in (2.4) without the log-transformation to allow for
negative values of observed RM> s concentrations. AlsoXf is then interpreted as an average of the
observed monitoring data. AIternativeW,tCj can be modeled on the log-scale where a multiplicative ME

is assumed.

However, the error specification ir2.) assumes that errors between the observed monitor-level
PMjo-2.5 concentrations and the true county-level exposure are distributed identically with the same
error variance across monitors. For a spatially heterogeneous PM, true county-level exposure represents
a population-weighted average exposure. Hence, measurements taken at monitors located in less popu-
lated areas, relative to the total population of the county, may tend to deviate more from the true average
exposure experienced by everyone in the county.

We also consider a ME model with heteroskedastic errors between monitors where the ME variance
is weighted inversely to the population living around the monitor. Rgtlenote the population of city
in countyc. Following notations from (2.4), we now assume

1
(W, WS, 1 ~ Normal([XE X5 %5 ). 26)
J

whereozjC = PS/ > B¢ if monitor j is in city k*. For counties where PM is measured in multiple cities,
ajc approximates the proportion of at-risk population in countiyat are exposed to the PM concentration
measured at monitoy. City population data were retrieved from the Site Descriptive Data database of
EPA's AQS. Under this ME model, monitors in less populated areas contribute less to the estimation of
county-level exposure. We refer to the above model as the population-weighted WME approach.

Finally, we assign the following priors for the model parameters:{land 5 each follows a mul-
tivariate Normal distribution with dispersed variances; %) follows Inv—Wisr(owﬁf,;—l, vy), Where

v, = 3 and ig is the estimated covariance ij — Wtc; and (3) x5 follows Inv—Wish(vx i%_l, 0x),

wherevy = 3 and 3¢ is the estimated residual covariance from regressing(fogn z¢. Following
Gelman(2006, we also consider assigning a Uniform[0, 100] on the standard deviations (SDs) and a
Uniform[—1,1] on the correlation for eithex or X¢, or both. The differences in posterior inference for

selected counties with small numbers of days or monitors were negligible.

2.4 Health model

We model the expected number of admissi&¥,°) using Poisson regression:
log E(Yy) = log N{ + A5 + BTX5, + B5X5 + w°C, (2.7)

whereN¢ is the size of the population at risk. Followipminici and otherg2006), confounders@)

include seasonal trends, weather effects, and age-group effects that are modeled via natural cubic splines
with degrees of freedom. Specifically, we include: (1) calendar tintgé = 8 per year), (2) current-day
temperatur€d = 6) and average temperature for the previous 3 ddys 6); (3) current-day dew-point
temperaturéd = 3) and average dew-point temperature for the previous 3 @hys 3); (4) age-group
intercept (64—74 vs. 75 and above) and its interaction with a smooth function of calendad timk ger

year); and (5) day of the week.
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2.5 Risk estimation

For the standard time series analysis without ME modeling, county-level expo3{fjearé obtained
using the 10% TM algorithm described in Sectf. Relative risks estimates are obtained by fitting the
health model via maximum quasi-likelihood separately for each county.

Due to the complex health model and the large data set, we describe a 2-stage approach that involves
2 separate Markov chain Monte Carlo (MCMC) implementations to estimate relative risks with ME mod-
eling. In the first stage, posterior samples of M s and PM 5 time series X€) given the observed
monitor-level data\(v®) are obtained by sampling from the following posterior predictive distribution:

Stage 1: KS|W°, Z¢] / [WEIXE, BS][XE|Z¢, 6S]7 (BS, 6S)d6S ds, (2.8)

where W€|X®, 8] represents the “measurement model” given Byl with parameterd§ = (=¢) and
[X€|Z¢, 65] represents the “exposure model” given By5) with parameter§, = (45, 15, =5). Here, the
posterior distribution oX® does not depend on the health model. Stage 1 computation is carried out by
using JAGS version 1.0.®{ummer 2003.

At the second stage, we obtain posterior sampleX&f §€|W¢, Z°, Y¢] by using [X°|W¢, Z°] from
Stage 1 as the prior distribution ¥f. Given health dat&® for countyc, we assume

Stage 2: K¢, BYIWE, Z°, Y©] o [YC|XC, BC, wOI[XC WS, Z 7 (B, y©)dy°, (2.9)

where [Y¢|X¢, B¢, w®] corresponds to the “health model” fror@.{). To decrease computational burden,
we treaty © as nuisance parameters and carry out a profile sampler approach desctibediul others
(2005. Specifically, we carry out block Metroplis—Hastings updates betv#feand X¢, where the ac-
ceptance probabilities are calculated using the profile likelihood. Sincedathd 8¢ are updated by the
health datar®, we refer to this estimation approach as the “Bayesian” approach. This approach also pro-
vides samples of{¢|W°€, Z¢, Y€], the posterior distribution of the average PM exposure incorporating the
health information. Details of the estimation procedure and an example of validating the 2-stage Bayesian
approach are provided in Section 1 of the supplementary material availdilestdtisticsonline.

We also estimate the county-specific relative rigks where we replacX® in the health model by
the marginal posterior meaB[X°®|W°¢, Z°] from stage 1. This plug-in method resembles a regression
calibration where the unobservable exposure is replaced by its best linear prediction conditional on the
covariates measured without err@f) and the observed error-prone measuremedésroll and others
2006. While this method is computationally simple, it does not fully reflect the uncertainty in the exposure
measure when estimatiff. Also, unlike the Bayesian approach, there is no feedback between the health
observations and the exposure estimates. However, since the acute health effects of PM are typically small
(relative risk of less than 2% per 1@/m? increase in PM), the information in the health model is possibly
negligible in determining the posterior distribution of the true county-level PM exposure.

We pool county-specific relative risi®" = (5, #5) defined in 2.7) by assuming8® ~ N(u, Zp).
Here, the parameter of interegt, is interpreted as the pooled (nhational) RMb s and PM 5 effects and
X captures the heterogeneity in relative risks between counties. Denote the estimated county-specific
relative risks by[?C and the corresponding covariance matrix \89 estimated either with or without
exposure ME modeling as described in Secttoh For the Bayesian approach with ME modeling, we
define[?C andV¢as the posterior mean and posterior covariance from the second-stage MCMC. Assuming

BC ~ N(B°, \70), 1 and Xy are estimated using the 2-level Normal independent sampling estimation
algorithm ofEverson and Morri$2000).
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3. RESULTS

Across counties, the median number of Pdvmonitors in a county was 5; the first quartile (@5th
percentile) was 4; and the third quantile3(Q¥5th percentile) was 8. Similarly, the median number

of PM2.5 and PMg collocated monitor pairs was 3 {Q= 2 and @ = 5). Therefore, by restrict-

ing our analysis to collocated monitor pairs, the standard TM exposure fapBM was calculated

based on a considerably smaller number of monitors compared tg; P Figure 2, correlation of

daily PM measurements at any pair of monitors in the same county is plotted versus the distance be-
tween the monitors. There was considerable larger spatial variability in PN measurements compared

to PMy.s.

Our study included approximately 5 million Medicare enrollees between the period 1999 and 2005.
There were about 2.6 million admissions for cardiovascular diseases and 1.0 million admissions for res-
piratory diseases. Across counties, the median daily admission for cardiovascular diseases was 18.7 per
100000 people ( = 15.8 and @ = 21.4) and the median for respiratory diseases was 7.4 per 100 000
people (Q = 6.3and @ = 8.8).

We considered 5 exposure measures of daily county-average PMlevel. For example, Figurg
shows the marginal posterior distributions of Vb 5 exposure on July 17, 2000 in Harris County, TX.

The 4 posterior distributions were obtained under different ME modeling and estimation approaches:
(1) constant ME variances across monitors without using the health data ¥\, £Z]); (2) constant

ME variances across monitors using the health data (MBV Z, Y]); (3) population-WME variances
across monitors without using the health data (WMEWY, Z]); and (4) population-WME variances
across monitors using the health data (WME|W, Z, Y]). For (2) and (4), the relative risks associated

with cardiovascular admissions were simultaneously estimated witiy Bld exposure. Also, a vertical

line is placed at the 10% TM estimate. The differences in exposure estimates reflect which monitor-level
observations were used. On this particular day, there were 4 observations @f22Moncentration; 3
observations 18, 61, and 20 were from Houston and one observation 12 was from Deer Park. The TM
PMj0-2.5 measure excluded 12 and 61 in computing the average; the ME measure considered all values

(1) PMyg_25 (2) PMz 5
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Fig. 2. Correlations of monitor-level daily PM time series calculated between pairs 9§ BMPM; g_» 5 monitoring
locations in the same county and plotted versus the distance between monitor pair. Fgrid\used all available
monitors without restricting to those with a collocated fyvhonitor.
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Fig. 3. Posterior distributions of the average exposure to outdogpPM; concentration on July 17, 2000 in Harris
County, TX. The vertical line is placed at the 10% TM estimate. The solid and dotted lines represent 4 different
PM;0_2 5 posterior distributions obtained from ME modeling.

Table 1. Quantiles of county-specific SD of Bland PMyo—> 5 time series using either TM, ME model-
ing with constant error variance (ME), or monitor-specific weighted error variance (WME). The median
(25th quantile and75th quantile) of the SD acro€s9 counties aregiven

™ ME WME

PMy 5 (1 g/ md) 7.6 (6.1, 9.0) 7.1(5.8,8.7) 7.3 (5.9, 8.6)
PM1o_25 (1 g/ m3) 7.9(6.2,12.2) 6.0 (4.4,10.3) 7.0 (ABL.7)

equally; and the WME measure down weighted the measurement from Deer Park which has a considerably
smaller population than Houston.

We calculated the SD of county-level B and PMg_» 5 levels across days and Taldlgives the
median, Q, and @ across 59 counties for different exposure measures. First, daily variation of county-
average PNb_» 5 levels derived from ME and WME were lower compared to TM and this decrease
was less significant for P%. PM daily variation decreases when ME is considered because the model
assumes that the observed PM concentrations are more noisy than the true exposure. Specifically, a large
decrease in time series SD reflects greater disagreement between same-day monitor-level measurements.
Moreover, for both PMp_».5 and PM 5, the decrease in daily variation was more significant for the ME
measures compared to the WME measures. If PM levels vary across cities of different population sizes,
county-average exposure is determined mainly by measurements in cities with large populations. Since
the true exposure represents a population-weighted average exposure, the WME approach can result in
smaller ME because disagreement between PM measurements in cities with small populations and the
true exposure is down-weighted.

Table 2 gives some pairwise correlations betweenigM s and PM 5 exposure measures obtained
using either TM or WME across counties. Comparing rows 1 and 2, higher correlations are observed
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Table 2. Quantiles of correlations between different measures of county-level daijy BMand PM 5
exposures across9 counties. Exposure measures for Pdland PMp_2.5 are derived using either TM
or WMEmodeling

Correlation between Minimum 25% 50% 75% Maximum

Q) PMio—25 1™ » PM1g_25 wmE 0.50 0.89 0.92 0.95 1.00
2) PMo.5 ™, PMo 5 WivE 0.72 0.94 0.97 0.99 1.00
3) PMz5 T™M, PM1o-25 T™m —-0.20 0.05 0.12 0.23 0.59
(4) PMp 5 wme, PM1o—2.5 wMmE -0.15 0.05 0.18 0.32 0.59
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Fig. 4. County-specific ME SDof*® ands2'° in (2.4) for PMyg_25 (black) and PM 5 (gray) plotted versus log
county land area (cubic kilometer) for 59 counties. Each bullet denotes the posterior mean and the vertical line
indicates the 95% posterior interval.

between different Phs measures compared to R, 5. This is expected since PM level is less het-
erogeneous spatially and the ME approach results in less calibration when the between-monitor agreement
is strong. Comparing rows 3 and 4, we find that derivingi2M 5 and PM 5 exposures via ME modeling
increases the correlation between the 2 pollutants slightly. We also found very high correlation between
the average exposure measures derived from the 2 ME models (ME vs. WME) fgr Pdvand PM 5,

having minimum correlation of 0.82 and 0.87, respectively, in the 59 counties (not shown in table).

The ME varianceSqflz’c andoy in (2.4) quantify the variability across monitors of the PM values.
Figure4 plots the posterior mean and 95% intervals for the ME SD versus log-transformed county land
area (square kilometer). We found greater between-monitor variation fggBMl (black) measurements
compared to PMs (gray) measurements, even though the 2 pollutants had similar average concentration
over the study period. The median ME SD across counties fofgPM is 5.6 ( = 44and Q =
8.8) and for PMs5is 2.3 (Q = 1.7and Q = 3.2). In Figure4, it also appears that larger counties
were associated with greater between-monitor variation in PM measurements. We also found evidence
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Fig. 5. Upper panels: scatter plot of county-specific standardized health effect estimateq@fzgl\/ﬁE/SE(ﬁ‘f),
comparing 2 approaches: (1) including ME modeling with monitor-specific weighted error variance (WME) versus (2)
using TM as PMg_2 5 exposure. Lower panels: scatter plot of county-specific standardized health-effect estimates
for PM1o_2.5, BE/SE (ﬁf), using exposure derived from WME comparing Bayesian risk estimation versus regression
calibration.

of a weak positive association between £and PMg_».5 measurement errors at collocated monitors
for some counties. The posterior meangbfacross 59 counties have a median of 0.10 (mir-0.23,
Q1 = —-01,@ = 0.4, max=0.6) ..

The 2 upper panels in FiguBsplot the county-specific standardized coefficieﬁgs,SE (ﬁ‘f) to exam-
ine the strength and direction of the health effect ofigM 5 on cardiovascular and respiratory admissions
estimated using different exposure measures. Comparing estimates derived from standard TM exposure
and WME with the Bayesian risk estimation, we did not observe large changes in the health effects’ di-
rection. However, there is attenuation for Ia@fe/SE(,é’f) possibly due to increased uncertainty in risk
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Fig. 6. Percent increase in emergency hospital admissions rates for cardiovascular and respiratory diseases per 10
ug/m3 increase in same-day particulate matter concentration. Exposure measures fpaiMPM oo 5 are derived

using either TM, ME modeling with constant error variance across monitors (ME) or monitor-specific weighted error
variance (WME).

estimates when MEs are accounted for. From the 2 bottom panels in Egwes show that in our ap-
plication, standard error (SE@E/SE(ﬂAf) for cardiovascular and respiratory admissions are very similar
between those derived from regression calibration and those estimated through the Bayesian approach.
For the Poisson health model, regression calibration will result in some bias in the relative risk estimates;
however in the analysis of P2 5, the uncertainty in exposure appears to dominate.

Figure6 gives the pooled estimates of percent increase in cardiovascular and respiratory disease ad-
missions per 1Qug/m® increase in same-day particulate matter concentration. Exposure measures for
PMy.s and PMg_2.5 were derived using either TM, ME, or WME, and we considered both regression
calibration and Bayesian risk estimations. The origirahgand others(2008 estimates based on 108
counties using TM exposure are also shown. We found consistent positive effectsiigroRNMnd PN 5
with different exposure measures and estimation procedures. For cardiovascular admissions, effects of
PMgz. s remain statistically significant under different scenarios. The posterior intervals are wider under
ME modeling compared to using the standard TM exposure. Also, when ME modeling are used, the con-
fidence intervals are wider for Bayesian risk estimations compared to regression calibration and the bias
associated with regression calibration appears negligible.

4. SMULATION STUDY

This section describes a simulation study that examines the impact ef PMexposure ME and the per-
formance of our proposed method using data from Clark County, NV. Clark County containg82M
monitoring locations from 5 cities with population ranging from about 200 to half a million. On each day
t, we do not observe the complete vector of monitor-level measuremMMests(x;1, X2, . . . , Xtg)'. ACross
the 1337 days with at least one P42 5 measurement, the average number of measurements per day was
4.3.

We generated 100 replicate data sets of the complete monitor-levgl P¥ivalues as follows. We
assumedX; ~ Normal(BZ;, £), whereZ; is the p x 1 vector of covariates from (2.5). Paramefer
is an 8x p matrix of monitor-specific regression coefficients and paramgtés the 8x 8 residual
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Table 3. Simulation study results: median bias, aver&@$&o confidence interval (C.I.) width, and root

mean squared error for PM—2 5 relative risk in Clark County, Nevada. At-risk population is allocated

to each monitor either equally (Scenarid or proportional to the city population that the monitor is in

(Scenario2). Exposure measures considered include: TM or ME modeling without (ME) or with (WME)
heteroskedastieariances

Scenario 1 Scenari®
True ™ ME True ™ WME
Bias (x 104) —0.02 -0.39 -0.18 -0.01 -0.33 -0.16
C.I. width (x 104) 1.62 3.11 3.93 1.94 3.04 3.03

covariance matrix. These parameters were estimated from the observed data and the between-monitor
correlation ranges from 0.3 to 0.8. Given the observed W5 concentrations, missing concentrations

were imputed using the corresponding conditional mean and covariance. We used the complete PM data
set to generate hospital admissions. However, in constructing the TM exposure measures and in carrying
out ME modeling, we followed the observed missing data structure and ignored the imputged,BM
concentrations.

We set the total number of at-risk individuals to be 43410. We considered 2 exposure scenarios by
allocating the population to each monitor either (1) equally or (2) proportional to the city population that
the monitor is in. Finally, for each simulated R4, 5 data set, we generated daily total admission with
a baseline risk of 1.& 10~* and a relative risk of 0.5% per 10 unit increase {8M s concentration
following the Poisson model in (2.7) without additional confounders. Relative risk fofoPAM was
then estimated using the TM, ME, or WME exposure measures. Here, we only considered the estimation
approach without using the health d&iA | W, Z]) due to computational limitation.

Table 3 gives the median bias and average 95% confidence interval length for the relative risk esti-
mates. With the TM exposure measures, we found that attenuation occurs in both scenarios and our ME
approaches (ME and WME) reduce this bias. ME modeling increases the confidence interval width when
the same number of individuals are exposed to different concentrations (scenario 1). In this case, our
method effectively propagates the uncertainty in population exposure when between-monitor disagree-
ment is present. However, when the number of at-risk individuals varies acrogs £4vtoncentrations
(scenario 2), the WME exposures does not result in wider confidence intervals. This is likely due to recov-
ering some exposure variability that is oversmoothed by simply averaging monitor-level concentrations.

5. DISCUSSION

EPA does not regulate Pyl » 5 directly but continues to use Piylas a surrogate to protect public health.
In the most recent 2006 NAAQS revision for particulate matter, a 24-hoPp standard was proposed
but ultimately not accepted due to insufficient evidence linking short-termpPM exposure and adverse
health outcomesHnvironmental Protection Agenc2006. Time series analysis plays an important role
in providing epidemiological evidence for the acute health effects of PM and in establishing regulatory
standardsGreenbaunand others 2001). Its popularity is due to the ability to utilize public databases
to estimate the relatively small acute effects with large study populations. However, recent interest in
quantifying the health effects of PML 5 raises statistical questions regarding the time series design
when the pollutant concentration varies spatially.

In this paper, we address the challenge of exposure ME due to spatial misalignment through ME
modeling. The goal is to obtain risk estimates that reflect the uncertainty ig_BM exposure in a time
series study. This differs from the past work that has focused predominantly on errors due to either (1)
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the discrepancy between ambient levels measured outdoors versus total personal eRposimiei@nd
others 2000 or (2) the ecological bias that results from using aggregated outcome and exposure to infer
individual-level risk Sheppargd2005 Sheppardind others2005.

Computing average community-level exposure with monitor-specific weights is a common practice
in time series analysis. The TM approach represents a simple way to remove extreme values observed
on a particularly day; however, this may oversmooth a spatially varying exposure when the number of
measurements per day is small. A similar approach taketabpbetti and Schwar{2009 first removes
monitors that are not well correlated with others in the same region to avoid measurements that are due
to local pollution sources not reflective of the overall population exposure. However, this approach does
not address the scenario when all monitors are poorly correlated with each other. In contrast, our ME
method is a parametric approach that provides average exposure estimates and accounts for the same-
day between-monitor variability using all available data. Moreover, by allowing error variances to be
inversely proportional to the population living around each monitor, we automatically specify monitor-
specific weights in computing average exposure.

While this paper is motivated by the analysis of R\b s and health, we note that the analysis of
PMz.s chemical constituents shares similar challenges in exposure ME. For example, the metal con-
stituents in PM s can exhibit high spatial heterogeneity and the minor components are often measured
with high instrumental ME. One limitation of the proposed approach is that we need to restrict our anal-
ysis to counties with at least 2 pairs of collocated monitors. Future work will borrow information across
counties by building regression models for the ME variances to predict the extent of exposure ME for
counties that only have a single R)2 5 measurement each day. Our model also assumes the MEs to be
independent between days and does not model the temporal correlation between pollutant concentrations.
This is because PM_».5 measurements are typically only available every sixth day. But at some loca-
tions where daily measurements of iP5 are available, additional modeling of these temporal trends
should be explored.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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