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SUMMARY

In air pollution epidemiology, there is a growing interest in estimating the health effects of coarse par-
ticulate matter (PM) with aerodynamic diameter between 2.5 and 10μm. Coarse PM concentrations can
exhibit considerable spatial heterogeneity because the particles travel shorter distances and do not re-
main suspended in the atmosphere for an extended period of time. In this paper, we develop a modeling
approach for estimating the short-term effects of air pollution in time series analysis when the ambient
concentrations vary spatially within the study region. Specifically, our approach quantifies the error in
the exposure variable by characterizing, on any given day, the disagreement in ambient concentrations
measured across monitoring stations. This is accomplished by viewing monitor-level measurements as
error-prone repeated measurements of the unobserved population average exposure. Inference is carried
out in a Bayesian framework to fully account for uncertainty in the estimation of model parameters.
Finally, by using different exposure indicators, we investigate the sensitivity of the association between
coarse PM and daily hospital admissions based on a recent national multisite time series analysis. Among
Medicare enrollees from 59 US counties between the period 1999 and 2005, we find a consistent positive
association between coarse PM and same-day admission for cardiovascular diseases.
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1. INTRODUCTION

Ambient particulate matter (PM) is a mixture of solid and liquid particles regulated by the Environmental
Protection Agency (EPA) as one of the 6 criteria air pollutants. Under the Clean Air Act, EPA is respon-
sible for establishing national standards for these pollutants to protect public health and the environment
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(Bachmann, 2007). PM can be characterized into the fine and coarse size fractions that represent distinct
pollutant mixtures of different sources and properties (Wilson and Suh, 1997). Particle size is an important
attribute because it governs the particle’s behaviors in the atmosphere and deposition in the respiratory
system. Ambient coarse PM is most often released directly as a primary pollutant through mechanical
processes such as dust suspension or physical attrition involving grinding and crushing. Mineral residue
resulting from combustion burn out (fly ash) also contributes to the coarse fraction. Biogenic compounds
including bacterial endotoxin, pollen, and other animal/plant debris may also be present.

Protecting public health from coarse PM has endured considerable controversy in the regulatory con-
text. EPA’s current National Ambient Air Quality Standards (NAAQS) use ambient PM10 concentration
(PM with aerodynamic diameter<10 μm) as the pollutant measure to protect public health from coarse
PM. Most studies also routinely use PM10 to quantify health risks and have consistently found that in-
creased concentrations of ambient (outdoor) PM10 are associated with increased risks of various adverse
health outcomes (Pope and Dockery, 2006). However, there exists persistent criticism in interpreting the
health effects of coarse PM since PM10 contains both the coarse and fine fraction.

Recent studies of coarse PM have increasingly focused on exposure to inhalable coarse particles
(PM10−2.5) of size between 2.5 and 10μm aerodynamic diameter. While toxicological evidence sup-
ports the potential health effects of coarse PM, current epidemiological evidence is limited and mixed
(Brunekreef and Forsberg, 2005). Most time series analysis of ambient PM10−2.5 concentrations and short-
term mortality showed nonstatistically significant associations except in arid regions such as Mexico City
(Castillejosand others, 2000) and Phoenix US (Mar and others, 2004). Results from both the Harvard
Six Cities Study (Dockeryand others, 1993) and the American Cancer Society cohort (Popeand others,
2002) also found no association between long-term exposure to coarse particles and mortality. However,
studies have reported statistically significant short-term effects of ambient PM10−2.5 on hospital admis-
sions (Pengand others, 2008) and mortality (Zanobetti and Schwartz, 2009). Particularly, a multisite time
series analysis conducted byPengand others(2008) found that on average across the 108 US counties,
ambient PM10−2.5 concentration was associated with emergency admissions for cardiovascular diseases,
but this association lost statistical significance when adjusted by PM2.5.

In a time series design, the health outcome is only available as daily total number of adverse health
events in a community, such as a county, a city or a large metropolitan area. Unbiased risk estimates
require the exposure measure to coincide with the true average exposure experienced by all at-risk indi-
viduals in the community (Zegerand others, 2003; Sheppard, 2005). When the ambient pollutant concen-
tration is spatially smooth, current practice of averaging measurements from outdoor monitors provides
a reasonable surrogate measure for the population exposure due to outdoor sources. However, coarse PM
concentrations often exhibit higher spatial heterogeneity compared to PM2.5 and PM10. Therefore, aver-
aging PM10−2.5 values from the fixed-location monitors placed in the same community may not capture
the true population exposure. Moreover because there is no national monitoring network for PM10−2.5,
community-level daily PM10−2.5 concentrations are calculated based on the limited network of collocated
monitor pairs where both PM10 and PM2.5 are measured at the same location.

One of the main objectives of this paper is to develop a statistical modeling approach and computa-
tionally efficient estimation procedures for estimating the health effects of air pollution accounting for
exposure measurement error (ME) in multisite time series analyses. We are concerned with the error that
results from assigning an incorrect exposure measure to the study population living in an area when (1)
pollution concentrations are available from a small number of monitors placed within the community;
and (2) the pollution concentrations are highly variable within the community. To incorporate exposure
ME in risk estimates, we view monitor-level PM values as error-prone repeated measurements of the true
community-level average exposure. Our approach estimates exposure ME by quantifying, on any given
day, the disagreement in PM values measured across the monitoring stations located within the same
community. Specifically, we develop ME models for a bivariate vector of exposure variables in order
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to estimate the effect of PM10−2.5 adjusted by PM2.5. Joint modeling also addresses the bias where the
effect of one pollutant measured with more error is transferred to another pollutant measured with less
error (Zidekand others, 1996). Finally, we calculate different measures of county-level ambient daily ex-
posure to PM10−2.5 and investigate the sensitivity of the national average effect of PM10−2.5 on hospital
admissions estimated inPengand others(2008).

The exposure ME encountered in the analysis of PM10−2.5 is related to the statistical problem known
as spatial misalignment (Gotway and Young, 1999). Spatial variation in ambient concentrations and ex-
posure ME caused by spatial misalignment have been addressed in several studies on the long-term health
effects of air pollution (Zhuand others, 2003; Gyparisand others, 2009). However, few have examined its
effects specifically in time series analysis. Through simulation studies,Sheppardand others(2005) find
minor effect attenuation when the ambient concentration varies spatially.Peng and Bell(2010) calculate
county-level exposure by first interpolating PM2.5 chemical constituents concentration via spatial model-
ing. The authors show that the resulting county-specific short-term health effects are greater in magnitude
and have larger standard errors compared to estimates that do not consider spatial variation in pollution
concentration. To our knowledge, no study has investigated the effects of exposure ME in the analysis of
PM10−2.5 and health.

Our ME approach estimates daily county-level PM10−2.5 exposure accounting for spatial hetero-
geneity without explicitly characterizing the spatial gradient. While this approach provides computa-
tional advantages, a space–time model for PM10 and PM2.5 offers an alternative approach for obtaining
PM10−2.5 exposure measure. However, this increases model complexity significantly when considering
daily PM10−2.5 concentrations nationally over a long study period. The ability to characterize PM10−2.5
spatial variation is also limited by the sparse network of collocated PM10 and PM2.5 monitors.

The remainder of this paper is organized as follows. Section2 describes the data sets, the model-
ing framework and the estimation procedures. In Section3, we calculate different measures of daily
county-level ambient exposure to PM10−2.5 and investigate the sensitivity of the national average effect
of PM10−2.5 on hospital admissions. Section4 describes a simulation study that examines the impact of
PM10−2.5 exposure ME and the performance of our proposed method. Finally, discussion and future work
appear in Section5.

2. METHODS

2.1 Data

Daily average concentrations of PM10−2.5 and PM2.5 data for the period 1999–2005 were obtained from
the EPA’s National Air Pollution Monitoring Network in the air quality system (AQS). Without a national
monitoring network for PM10−2.5, the EPA calculates PM10−2.5 values indirectly by subtracting PM2.5
from PM10 measurements at monitors that are physically located at the same place (collocated monitor
pairs). We considered PM2.5 measurements from all AQS monitors and PM10−2.5 measurements from
collocated PM2.5 and PM10 monitor pairs. We restricted our analysis to the 59 US counties with (1) a
population greater than 200 000 based on the 2000 census; (2) at least 2 pairs of collocated PM10 and
PM2.5 monitors; and (3) at least 210 daily PM10−2.5 measurements over the study period. Locations of
the counties in our study are shown in Figure1.

Time series of daily emergency hospital admissions for cardiovascular and respiratory diseases were
assembled for Medicare enrollees aged 65 years or above within each county (Pengand others, 2008).
Records were extracted from the National Claim History Files for the period between 1999 and 2005.
Based on the International Classification of Diseases, Ninth Revision disease classification, we considered
primary diagnosis of admissions due to 2 aggregated causes: (1) cardiovascular disease admissions and
(2) respiratory disease admissions.



640 H. H. CHANG AND OTHERS

Fig. 1. 59 US counties with population greater than 200 000, at least 2 pairs of collocated PM10 and PM2.5 monitors,
and at least 210 daily PM10−2.5 measurements over the period 1999–2005 (Honolulu, HI and Anchorage, AL not
shown).

2.2 Trimmed mean exposure indicator

For countyc on day t , let Wc
1t j and Wc

2t j denote the PM10−2.5 and PM2.5 levels at monitorj , where
j = 1, . . . , Jc and Jt is the total number of PM2.5 monitors in countyc. For some PM2.5 monitors,
a collocated PM10 monitor is present and bothWc

1t j and Wc
2t j are observed. Otherwise, onlyWc

2t j is
observed, and we treatWc

1t j as missing. In our study, there were 220 collocated PM2.5 and PM10 monitor
pairs and an additional 173 PM2.5 monitors that did not have collocated PM10 monitors.

Under the assumption that PM10−2.5 and PM2.5 concentrations are spatially homogeneous across each
county, the standard daily county-level PM10−2.5 exposure (Xc

1t ) and PM2.5 exposure (Xc
2t ) measures are

obtained by averaging all available measurements across monitors on a particular day (Sametand others,
2000). Specifically, the 10% trimmed mean (TM) is used to exclude extreme monitor-level values that
may be invalid. In this algorithm, no PM measurements are excluded in computing the mean on days
with less than 3 monitor-level PM measurements and only the maximum and minimum measurements are
excluded on days between 3 and 9 PM measurements.

2.3 ME model

To illustrate the impact of a spatially heterogeneous pollutant in time series studies of air pollution and
health and the importance of defining appropriate population exposure indicators, first consider the fol-
lowing example adopted fromZegerand others(2003) andSheppard(2005). Denote byXit the exposure
to a pollutant due to outdoor sources for an individuali on dayt . For each individual in the study, we
assume that the binary health outcome follows a Bernoulli distribution with probabilityλ0 exp(βXit ),
whereλ0 represents a baseline risk common across individuals and exp(β) represents the multiplicative
change in risk associated with a unit increase inXit .

Let Nt denote the number of at-risk individuals in a community on dayt , and letYt denote the number
of hospital admissions on day t in the population that resides in the community. If the occurrence of
outcome is independent across individuals, the community-level outcome count has mean equal to

μt = λ0

Nt∑

i =1

exp(βXit ). (2.1)
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Since the short-term relative risk of air pollution is typically very small, followingZegerand others
(2003), a linear approximation to the exponential term in (2.1) gives

log(μt ) ' log(λ0Nt )+ β

([ Nt∑

i =1

(Xit − Xt )

]

/Nt

)

+ βXt = log(λ0 Nt )+ β Xt ,

where Xt is the average exposure of all at-risk individuals. Under these assumptions, the relative risk
obtained by regressing aggregated outcomeYt on aggregated exposureXt via log-linear regression is
equivalent to the personal riskβ. Therefore,Xt represents the “desired but unobserved” exposure indicator
in time series analysis.

Let X∗
t be a surrogate exposure indicator calculated, for example, by averaging measurements from

some fixed-location monitoring sites within the community. We can rewrite (2.1) as

μt = λ0

Nt∑

i =1

exp(β(Xit − Xt )+ β(Xt − X∗
t )+ βX∗

t ). (2.2)

Applying a similar linear approximation gives

log(μt ) ' log(λ0Nt )+ β(Xt − X∗
t )+ βX∗

t . (2.3)

Hence, we wish to have the exposure indicator calculated from monitoring data to coincide with the true
average exposure (Xt = X∗

t ).
For coarse PM, ME can occur when the sparse PM10−2.5 monitoring network does not fully capture

the spatial variation in PM10−2.5 concentrations. Here, it is also important to account for the spatial distri-
bution of the at-risk population since individuals can be exposed to different levels of ambient PM10−2.5.
The standard approach of defining community-level exposure by averaging monitor measurements can
over- or underestimate the true average exposure. This bias can also vary temporally because the set of
PM10−2.5 measurements used to calculate average exposure often varies between days due to missing data
or different monitoring schedules.

In the ME modeling approach, we view PM measurements from different monitors on the same day
within the same county as error-prone repeated measurements of the unobserved population exposure.
Let Xc

t = (Xc
1t , Xc

2t ) denote the unobserved county-level exposure to ambient PM10−2.5 and PM2.5 expe-
rienced by the at-risk population. Under the classical additive ME model (Fuller, 1987), we assume for
j = 1, . . . , Jc,

Wc
t j =

[
Wc

1t j

Wc
2t j

]

∼ Normal

([
Xc

1t

Xc
2t

]

, 6c
w =

[
σ 2,c

1 ρcσ c
1σ

c
2

ρcσ c
1σ

c
2 σ 2,c

2

])

, (2.4)

where the 2 ME variances (σ 2,c
1 andσ 2,c

2 ) capture same-day between-monitor variability for PM10−2.5
and PM2.5. Parameterρc captures the correlation between MEs, which is assumed to be constant across
days and monitors within the same county. A positiveρc indicates that daily monitor-level PM10−2.5
and PM2.5 measurement pairs tend to deviate from the true exposures in the same direction. Note that
at some monitoring locations and on some days, onlyWc

2t j is observed andWc
1t j is treated as missing.

Through Bayesian inference described in Section2.5, we simultaneously address the ME problem and the
imputation of missing monitor-level PM10−2.5 measurements.

Additionally, we assume

logXc
t = [log Xc

1t , log Xc
2t ]

′ ∼ Normal( [Zc
t η

c
1,Z

c
t η

c
2]′, 6c

x ), (2.5)
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whereZc
t denotes a covariate vector that includes indicators for month, indicators for day of the week,

and calendar dates. Parametersηc
1 andηc

2 denote the corresponding vectors of regression coefficients.
The logarithmic transformation accounts for the strictly positive and right-skewed PM concentration mea-
surements. The diagonal elements of6c

x represent the residual variance for log-PM exposure and its
off-diagonal element captures the correlation between daily county-level PM10−2.5 and PM2.5 exposure
for county c. Note that we choose to modelWc

t j in (2.4) without the log-transformation to allow for
negative values of observed PM10−2.5 concentrations. Also,Xc

t is then interpreted as an average of the
observed monitoring data. Alternatively,Wc

t j can be modeled on the log-scale where a multiplicative ME
is assumed.

However, the error specification in (2.4) assumes that errors between the observed monitor-level
PM10−2.5 concentrations and the true county-level exposure are distributed identically with the same
error variance across monitors. For a spatially heterogeneous PM, true county-level exposure represents
a population-weighted average exposure. Hence, measurements taken at monitors located in less popu-
lated areas, relative to the total population of the county, may tend to deviate more from the true average
exposure experienced by everyone in the county.

We also consider a ME model with heteroskedastic errors between monitors where the ME variance
is weighted inversely to the population living around the monitor. LetPc

k denote the population of cityk
in countyc. Following notations from (2.4), we now assume

[Wc
1t j ,W

c
2t j ]

′ ∼ Normal

(
[Xc

1t Xc
12]

′,
1

αc
j
6c
w

)
, (2.6)

whereαc
j = Pc

k∗/
∑

k Pc
k if monitor j is in city k∗. For counties where PM is measured in multiple cities,

αc
j approximates the proportion of at-risk population in countyc that are exposed to the PM concentration

measured at monitorj . City population data were retrieved from the Site Descriptive Data database of
EPA’s AQS. Under this ME model, monitors in less populated areas contribute less to the estimation of
county-level exposure. We refer to the above model as the population-weighted WME approach.

Finally, we assign the following priors for the model parameters: (1)ηc
1 andηc

2 each follows a mul-
tivariate Normal distribution with dispersed variances; (2)6c

w follows Inv–Wish(vw6̂c,−1
w , vw), where

vw = 3 and6̂c
w is the estimated covariance ofWc

t j − W
c
t ; and (3)6c

x follows Inv–Wish(vx6̂
c,−1
x , vx),

wherevx = 3 and6̂c
x is the estimated residual covariance from regressing logXc

t on Zc
t . Following

Gelman(2006), we also consider assigning a Uniform[0, 100] on the standard deviations (SDs) and a
Uniform[−1,1] on the correlation for either6c

w or6c
x, or both. The differences in posterior inference for

selected counties with small numbers of days or monitors were negligible.

2.4 Health model

We model the expected number of admissionsE(Yc
t ) using Poisson regression:

log E(Yc
t ) = log Nc

t + βc
0 + βc

1Xc
1t + βc

2Xc
2t + ψψψcCc

t , (2.7)

whereNc
t is the size of the population at risk. FollowingDominici and others(2006), confounders (Cc

t )
include seasonal trends, weather effects, and age-group effects that are modeled via natural cubic splines
with degrees of freedomd. Specifically, we include: (1) calendar time(d = 8 per year), (2) current-day
temperature(d = 6) and average temperature for the previous 3 days(d = 6); (3) current-day dew-point
temperature(d = 3) and average dew-point temperature for the previous 3 days(d = 3); (4) age-group
intercept (64–74 vs. 75 and above) and its interaction with a smooth function of calendar time (d = 1 per
year); and (5) day of the week.
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2.5 Risk estimation

For the standard time series analysis without ME modeling, county-level exposures (Xc
t ) are obtained

using the 10% TM algorithm described in Section2.2. Relative risks estimates are obtained by fitting the
health model via maximum quasi-likelihood separately for each county.

Due to the complex health model and the large data set, we describe a 2-stage approach that involves
2 separate Markov chain Monte Carlo (MCMC) implementations to estimate relative risks with ME mod-
eling. In the first stage, posterior samples of PM10−2.5 and PM2.5 time series (Xc) given the observed
monitor-level data (Wc) are obtained by sampling from the following posterior predictive distribution:

Stage 1: [Xc|Wc,Zc] ∝
∫

[Wc|Xc, θθθc
1][Xc|Zc, θθθc

2]π(θθθc
1, θθθ

c
2)dθθθ

c
1 dθθθc

2, (2.8)

where [Wc|Xc, θθθc
1] represents the “measurement model” given by (2.4) with parametersθθθc

1 = (6c
w) and

[Xc|Zc, θθθc
2] represents the “exposure model” given by (2.5) with parametersθθθ2 = (ηc

1, η
c
2, 6

c
x). Here, the

posterior distribution ofXc does not depend on the health model. Stage 1 computation is carried out by
using JAGS version 1.0.3 (Plummer, 2003).

At the second stage, we obtain posterior samples of [Xc, βββc|Wc,Zc,Yc] by using [Xc|Wc,Zc] from
Stage 1 as the prior distribution ofXc. Given health dataYc for countyc, we assume

Stage 2: [Xc, βββc|Wc,Zc,Yc] ∝ [Yc|Xc, βββc, ψψψc][Xc|Wc,Zc]π(βββc, ψψψc)dψψψc, (2.9)

where [Yc|Xc, βββc, ψψψc] corresponds to the “health model” from (2.7). To decrease computational burden,
we treatψψψc as nuisance parameters and carry out a profile sampler approach described inLeeand others
(2005). Specifically, we carry out block Metroplis–Hastings updates betweenβββc andXc, where the ac-
ceptance probabilities are calculated using the profile likelihood. Since bothXc andβββc are updated by the
health dataYc, we refer to this estimation approach as the “Bayesian” approach. This approach also pro-
vides samples of [Xc|Wc,Zc,Yc], the posterior distribution of the average PM exposure incorporating the
health information. Details of the estimation procedure and an example of validating the 2-stage Bayesian
approach are provided in Section 1 of the supplementary material available atBiostatisticsonline.

We also estimate the county-specific relative risksβββc, where we replaceXc in the health model by
the marginal posterior meanE[Xc|Wc,Zc] from stage 1. This plug-in method resembles a regression
calibration where the unobservable exposure is replaced by its best linear prediction conditional on the
covariates measured without error (Zc

t ) and the observed error-prone measurements (Carroll and others,
2006). While this method is computationally simple, it does not fully reflect the uncertainty in the exposure
measure when estimatingβββc. Also, unlike the Bayesian approach, there is no feedback between the health
observations and the exposure estimates. However, since the acute health effects of PM are typically small
(relative risk of less than 2% per 10μg/m3 increase in PM), the information in the health model is possibly
negligible in determining the posterior distribution of the true county-level PM exposure.

We pool county-specific relative risksβββc = (βc
1, β

c
2) defined in (2.7) by assumingβββc ∼ N(μμμ,6β).

Here, the parameter of interest,μμμ, is interpreted as the pooled (national) PM10−2.5 and PM2.5 effects and
6β captures the heterogeneity in relative risks between counties. Denote the estimated county-specific

relative risks byβ̂ββ
c

and the corresponding covariance matrix byV̂c estimated either with or without
exposure ME modeling as described in Section2.5. For the Bayesian approach with ME modeling, we
defineβ̂ββ

c
andV̂c as the posterior mean and posterior covariance from the second-stage MCMC. Assuming

β̂ββ
c

∼ N(βββc, V̂c), μμμ and6β are estimated using the 2-level Normal independent sampling estimation
algorithm ofEverson and Morris(2000).
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3. RESULTS

Across counties, the median number of PM2.5 monitors in a county was 5; the first quartile (Q1, 25th
percentile) was 4; and the third quantile (Q3, 75th percentile) was 8. Similarly, the median number
of PM2.5 and PM10 collocated monitor pairs was 3 (Q1 = 2 and Q3 = 5). Therefore, by restrict-
ing our analysis to collocated monitor pairs, the standard TM exposure for PM10−2.5 was calculated
based on a considerably smaller number of monitors compared to PM2.5. In Figure 2, correlation of
daily PM measurements at any pair of monitors in the same county is plotted versus the distance be-
tween the monitors. There was considerable larger spatial variability in PM10−2.5 measurements compared
to PM2.5.

Our study included approximately 5 million Medicare enrollees between the period 1999 and 2005.
There were about 2.6 million admissions for cardiovascular diseases and 1.0 million admissions for res-
piratory diseases. Across counties, the median daily admission for cardiovascular diseases was 18.7 per
100 000 people (Q1 = 15.8 and Q3 = 21.4) and the median for respiratory diseases was 7.4 per 100 000
people (Q1 = 6.3 and Q3 = 8.8).

We considered 5 exposure measures of daily county-average PM10−2.5 level. For example, Figure3
shows the marginal posterior distributions of PM10−2.5 exposure on July 17, 2000 in Harris County, TX.
The 4 posterior distributions were obtained under different ME modeling and estimation approaches:
(1) constant ME variances across monitors without using the health data (ME, [X|W,Z]); (2) constant
ME variances across monitors using the health data (ME, [X|W,Z,Y]); (3) population-WME variances
across monitors without using the health data (WME, [X|W,Z]); and (4) population-WME variances
across monitors using the health data (WME, [X|W,Z,Y]). For (2) and (4), the relative risks associated
with cardiovascular admissions were simultaneously estimated with PM10−2.5 exposure. Also, a vertical
line is placed at the 10% TM estimate. The differences in exposure estimates reflect which monitor-level
observations were used. On this particular day, there were 4 observations of PM10−2.5 concentration: 3
observations 18, 61, and 20 were from Houston and one observation 12 was from Deer Park. The TM
PM10−2.5 measure excluded 12 and 61 in computing the average; the ME measure considered all values

Fig. 2. Correlations of monitor-level daily PM time series calculated between pairs of PM2.5 or PM10−2.5 monitoring
locations in the same county and plotted versus the distance between monitor pair. For PM2.5, we used all available
monitors without restricting to those with a collocated PM10 monitor.
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Fig. 3. Posterior distributions of the average exposure to outdoor PM10−2.5 concentration on July 17, 2000 in Harris
County, TX. The vertical line is placed at the 10% TM estimate. The solid and dotted lines represent 4 different
PM10−2.5 posterior distributions obtained from ME modeling.

Table 1. Quantiles of county-specific SD of PM2.5 and PM10−2.5 time series using either TM, ME model-
ing with constant error variance (ME), or monitor-specific weighted error variance (WME). The median

(25th quantile and75th quantile) of the SD across59counties aregiven

TM ME WME

PM2.5 (μ g/ m3) 7.6 (6.1, 9.0) 7.1 (5.8, 8.7) 7.3 (5.9, 8.6)
PM10−2.5 (μ g/ m3) 7.9 (6.2, 12.2) 6.0 (4.4, 10.3) 7.0 (4.8,11.7)

equally; and the WME measure down weighted the measurement from Deer Park which has a considerably
smaller population than Houston.

We calculated the SD of county-level PM2.5 and PM10−2.5 levels across days and Table1 gives the
median, Q1, and Q3 across 59 counties for different exposure measures. First, daily variation of county-
average PM10−2.5 levels derived from ME and WME were lower compared to TM and this decrease
was less significant for PM2.5. PM daily variation decreases when ME is considered because the model
assumes that the observed PM concentrations are more noisy than the true exposure. Specifically, a large
decrease in time series SD reflects greater disagreement between same-day monitor-level measurements.
Moreover, for both PM10−2.5 and PM2.5, the decrease in daily variation was more significant for the ME
measures compared to the WME measures. If PM levels vary across cities of different population sizes,
county-average exposure is determined mainly by measurements in cities with large populations. Since
the true exposure represents a population-weighted average exposure, the WME approach can result in
smaller ME because disagreement between PM measurements in cities with small populations and the
true exposure is down-weighted.

Table2 gives some pairwise correlations between PM10−2.5 and PM2.5 exposure measures obtained
using either TM or WME across counties. Comparing rows 1 and 2, higher correlations are observed
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Table 2. Quantiles of correlations between different measures of county-level daily PM10−2.5 and PM2.5
exposures across59 counties. Exposure measures for PM2.5 and PM10−2.5 are derived using either TM

or WMEmodeling

Correlation between Minimum 25% 50% 75% Maximum

(1) PM10−2.5,TM , PM10−2.5,WME 0.50 0.89 0.92 0.95 1.00
(2) PM2.5,TM, PM2.5,WME 0.72 0.94 0.97 0.99 1.00
(3) PM2.5,TM, PM10−2.5,TM −0.20 0.05 0.12 0.23 0.59
(4) PM2.5,WME, PM10−2.5,WME −0.15 0.05 0.18 0.32 0.59

Fig. 4. County-specific ME SD (σ2,c
1 andσ2,c

2 in (2.4) for PM10−2.5 (black) and PM2.5 (gray) plotted versus log
county land area (cubic kilometer) for 59 counties. Each bullet denotes the posterior mean and the vertical line
indicates the 95% posterior interval.

between different PM2.5 measures compared to PM10−2.5. This is expected since PM2.5 level is less het-
erogeneous spatially and the ME approach results in less calibration when the between-monitor agreement
is strong. Comparing rows 3 and 4, we find that deriving PM10−2.5 and PM2.5 exposures via ME modeling
increases the correlation between the 2 pollutants slightly. We also found very high correlation between
the average exposure measures derived from the 2 ME models (ME vs. WME) for PM10−2.5 and PM2.5,
having minimum correlation of 0.82 and 0.87, respectively, in the 59 counties (not shown in table).

The ME variances,σ 2,c
1 andσ c

2 in (2.4) quantify the variability across monitors of the PM values.
Figure4 plots the posterior mean and 95% intervals for the ME SD versus log-transformed county land
area (square kilometer). We found greater between-monitor variation for PM10−2.5 (black) measurements
compared to PM2.5 (gray) measurements, even though the 2 pollutants had similar average concentration
over the study period. The median ME SD across counties for PM10−2.5 is 5.6 (Q1 = 4.4 and Q3 =
8.8) and for PM2.5 is 2.3 (Q1 = 1.7 and Q3 = 3.2). In Figure4, it also appears that larger counties
were associated with greater between-monitor variation in PM measurements. We also found evidence
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Fig. 5. Upper panels: scatter plot of county-specific standardized health effect estimates for PM10−2.5, β̂c
1/SE(β̂c

1),
comparing 2 approaches: (1) including ME modeling with monitor-specific weighted error variance (WME) versus (2)
using TM as PM10−2.5 exposure. Lower panels: scatter plot of county-specific standardized health-effect estimates
for PM10−2.5, β̂c

1/SE(β̂c
1), using exposure derived from WME comparing Bayesian risk estimation versus regression

calibration.

of a weak positive association between PM2.5 and PM10−2.5 measurement errors at collocated monitors
for some counties. The posterior means ofρc across 59 counties have a median of 0.10 (min= −0.23,
Q1 = −0.1, Q3 = 0.4, max= 0.6) .

The 2 upper panels in Figure5 plot the county-specific standardized coefficients,β̂c
1/SE(β̂c

1) to exam-
ine the strength and direction of the health effect of PM10−2.5 on cardiovascular and respiratory admissions
estimated using different exposure measures. Comparing estimates derived from standard TM exposure
and WME with the Bayesian risk estimation, we did not observe large changes in the health effects’ di-
rection. However, there is attenuation for largeβ̂c

1/SE(β̂c
1) possibly due to increased uncertainty in risk
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Fig. 6. Percent increase in emergency hospital admissions rates for cardiovascular and respiratory diseases per 10

μg/m3 increase in same-day particulate matter concentration. Exposure measures for PM2.5 and PM10−2.5 are derived
using either TM, ME modeling with constant error variance across monitors (ME) or monitor-specific weighted error
variance (WME).

estimates when MEs are accounted for. From the 2 bottom panels in Figure5, we show that in our ap-
plication, standard error (SE),̂βc

1/SE(β̂c
1) for cardiovascular and respiratory admissions are very similar

between those derived from regression calibration and those estimated through the Bayesian approach.
For the Poisson health model, regression calibration will result in some bias in the relative risk estimates;
however in the analysis of PM10−2.5, the uncertainty in exposure appears to dominate.

Figure6 gives the pooled estimates of percent increase in cardiovascular and respiratory disease ad-
missions per 10μg/m3 increase in same-day particulate matter concentration. Exposure measures for
PM2.5 and PM10−2.5 were derived using either TM, ME, or WME, and we considered both regression
calibration and Bayesian risk estimations. The originalPengand others(2008) estimates based on 108
counties using TM exposure are also shown. We found consistent positive effects for PM10−2.5 and PM2.5
with different exposure measures and estimation procedures. For cardiovascular admissions, effects of
PM2.5 remain statistically significant under different scenarios. The posterior intervals are wider under
ME modeling compared to using the standard TM exposure. Also, when ME modeling are used, the con-
fidence intervals are wider for Bayesian risk estimations compared to regression calibration and the bias
associated with regression calibration appears negligible.

4. SIMULATION STUDY

This section describes a simulation study that examines the impact of PM10−2.5 exposure ME and the per-
formance of our proposed method using data from Clark County, NV. Clark County contains 8 PM10−2.5
monitoring locations from 5 cities with population ranging from about 200 to half a million. On each day
t , we do not observe the complete vector of monitor-level measurementsXt = (xt1, xt2, . . . , xt8)

′. Across
the 1337 days with at least one PM10−2.5 measurement, the average number of measurements per day was
4.3.

We generated 100 replicate data sets of the complete monitor-level PM10−2.5 values as follows. We
assumedXt ∼ Normal(B̂Zt , 6̂), whereZt is the p × 1 vector of covariates from (2.5). ParameterB̂
is an 8× p matrix of monitor-specific regression coefficients and parameter6̂ is the 8× 8 residual
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Table 3. Simulation study results: median bias, average95% confidence interval (C.I.) width, and root
mean squared error for PM10−2.5 relative risk in Clark County, Nevada. At-risk population is allocated
to each monitor either equally (Scenario1) or proportional to the city population that the monitor is in
(Scenario2). Exposure measures considered include: TM or ME modeling without (ME) or with (WME)

heteroskedasticvariances

Scenario 1 Scenario2

True TM ME True TM WME

Bias (×104) − 0.02 −0.39 −0.18 −0.01 −0.33 −0.16
C.I. width (×104) 1.62 3.11 3.93 1.94 3.04 3.03

covariance matrix. These parameters were estimated from the observed data and the between-monitor
correlation ranges from 0.3 to 0.8. Given the observed PM10−2.5 concentrations, missing concentrations
were imputed using the corresponding conditional mean and covariance. We used the complete PM data
set to generate hospital admissions. However, in constructing the TM exposure measures and in carrying
out ME modeling, we followed the observed missing data structure and ignored the imputed PM10−2.5
concentrations.

We set the total number of at-risk individuals to be 43 410. We considered 2 exposure scenarios by
allocating the population to each monitor either (1) equally or (2) proportional to the city population that
the monitor is in. Finally, for each simulated PM10−2.5 data set, we generated daily total admission with
a baseline risk of 1.8× 10−4 and a relative risk of 0.5% per 10 unit increase PM10−2.5 concentration
following the Poisson model in (2.7) without additional confounders. Relative risk for PM10−2.5 was
then estimated using the TM, ME, or WME exposure measures. Here, we only considered the estimation
approach without using the health data([X | W,Z]) due to computational limitation.

Table3 gives the median bias and average 95% confidence interval length for the relative risk esti-
mates. With the TM exposure measures, we found that attenuation occurs in both scenarios and our ME
approaches (ME and WME) reduce this bias. ME modeling increases the confidence interval width when
the same number of individuals are exposed to different concentrations (scenario 1). In this case, our
method effectively propagates the uncertainty in population exposure when between-monitor disagree-
ment is present. However, when the number of at-risk individuals varies across PM10−2.5 concentrations
(scenario 2), the WME exposures does not result in wider confidence intervals. This is likely due to recov-
ering some exposure variability that is oversmoothed by simply averaging monitor-level concentrations.

5. DISCUSSION

EPA does not regulate PM10−2.5 directly but continues to use PM10 as a surrogate to protect public health.
In the most recent 2006 NAAQS revision for particulate matter, a 24-h PM10−2.5 standard was proposed
but ultimately not accepted due to insufficient evidence linking short-term PM10−2.5 exposure and adverse
health outcomes (Environmental Protection Agency, 2006). Time series analysis plays an important role
in providing epidemiological evidence for the acute health effects of PM and in establishing regulatory
standards (Greenbaumand others, 2001). Its popularity is due to the ability to utilize public databases
to estimate the relatively small acute effects with large study populations. However, recent interest in
quantifying the health effects of PM10−2.5 raises statistical questions regarding the time series design
when the pollutant concentration varies spatially.

In this paper, we address the challenge of exposure ME due to spatial misalignment through ME
modeling. The goal is to obtain risk estimates that reflect the uncertainty in PM10−2.5 exposure in a time
series study. This differs from the past work that has focused predominantly on errors due to either (1)
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the discrepancy between ambient levels measured outdoors versus total personal exposure (Dominici and
others, 2000) or (2) the ecological bias that results from using aggregated outcome and exposure to infer
individual-level risk (Sheppard, 2005; Sheppardand others, 2005).

Computing average community-level exposure with monitor-specific weights is a common practice
in time series analysis. The TM approach represents a simple way to remove extreme values observed
on a particularly day; however, this may oversmooth a spatially varying exposure when the number of
measurements per day is small. A similar approach taken byZanobetti and Schwartz(2009) first removes
monitors that are not well correlated with others in the same region to avoid measurements that are due
to local pollution sources not reflective of the overall population exposure. However, this approach does
not address the scenario when all monitors are poorly correlated with each other. In contrast, our ME
method is a parametric approach that provides average exposure estimates and accounts for the same-
day between-monitor variability using all available data. Moreover, by allowing error variances to be
inversely proportional to the population living around each monitor, we automatically specify monitor-
specific weights in computing average exposure.

While this paper is motivated by the analysis of PM10−2.5 and health, we note that the analysis of
PM2.5 chemical constituents shares similar challenges in exposure ME. For example, the metal con-
stituents in PM2.5 can exhibit high spatial heterogeneity and the minor components are often measured
with high instrumental ME. One limitation of the proposed approach is that we need to restrict our anal-
ysis to counties with at least 2 pairs of collocated monitors. Future work will borrow information across
counties by building regression models for the ME variances to predict the extent of exposure ME for
counties that only have a single PM10−2.5 measurement each day. Our model also assumes the MEs to be
independent between days and does not model the temporal correlation between pollutant concentrations.
This is because PM10−2.5 measurements are typically only available every sixth day. But at some loca-
tions where daily measurements of PM10−2.5 are available, additional modeling of these temporal trends
should be explored.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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