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Abstract
One of the basic tenets of comprehensive two-dimensional chromatography is that the total peak
capacity is simply the product of the first and second dimension peak capacities. As formulated the
total peak capacity does not depend on the relative values of the individual dimensions but only on
the product of the two. This concept is tested here for the experimentally realistic situation
wherein the first dimension separation is undersampled. We first propose that a relationship exists
between the number of observed peaks in a two-dimensional separation and the effective peak
capacity. We then show here for a range of reasonable total peak capacities (500 to 4000) and
various contributions of peak capacity in each dimension (10 to 150) that the number of observed
peaks is only slightly dependent on the relative contributions over a reasonable and realistic range
in sampling times (equal to the first dimension peak standard deviation, multiplied by 0.2 to 16).
Most of this work was carried out under the assumption of totally uncorrelated retention times. For
uncorrelated separations the small deviations from the product rule are due to the “edge effect” of
statistical overlap theory and a recently introduced factor that corrects for the broadening of first
dimension peaks by undersampling them. They predict that relatively more peaks will be observed
when the ratio of the first to the second dimension peak capacity is much less than unity.
Additional complications are observed when first and second dimension retention times show
some correlation but again the effects are small. In both cases deviations from the product rule are
measured by the relative standard deviations of the number of observed peaks, which are typically
10 or less. Thus although the basic tenet of two-dimensional chromatography is not exact when
the first dimension is undersampled, the deviations from the product rule are sufficiently small as
to be unimportant in practical work. Our results show that practitioners have a high degree of
flexibility in designing and optimizing experimental comprehensive two-dimensional separations.

Introduction
One of the basic tenets of comprehensive two-dimensional chromatography (hereafter
c-2DC) is that the total peak capacity (nc,2D) is the product of the peak capacities of the first
(1nc) and second (2nc) dimensions [1]
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(1)

We refer to Eq. 1 as the product rule. As posed the equation suggests that one should get the
same total peak capacity and thus observe the same number of peaks (see below), regardless
of how the total peak capacity is distributed between the two dimensions. The question is: is
this ideal equation applicable under real chromatographic conditions? This work addresses
the issue of whether the number of peaks observed in c-2DC depends on how the total peak
capacity is partitioned between the first and second dimensions.

Almost a decade after its first report, Guiochon and coworkers provided detailed
physicochemical descriptions of total peak capacity largely consistent with the product rule
[2,3]. Giddings then suggested that a two-dimensional (2D) chromatogram be thought of as
a rectangular bed that is occupied by a grid where each ‘bin’ in the grid represents a unit of
total peak capacity [4]. This is an intuitive and convenient concept, completely consistent
with Eq. 1. Subsequent theoretical work by Davis and coworkers showed that 1) the
rectangular grid model underestimates the true total peak capacity, because peaks can fall
anywhere in the bed and not just at ‘bin’ centers [5,6], and 2) the edge effect, which is
influenced by the ratio of the first and second dimension peak capacities, significantly
increases the probability of observing peaks near the edges and corners of the bed [7,8]. The
reason why edges and corners show more observed peaks and less peak overlap is that
unlike the central regions of the grid there is no possibility of overlap from peaks whose
retentions lie outside the periphery as such peaks simply don't exist. These studies also apply
to all comprehensive 2D separations (hereafter c-2D separations, of which c-2DC is just one
type) and suggest that the way in which such separations are carried out might well affect
the separation performance, as measured by any of a number of common metrics perhaps
most importantly the number of observed peaks.

To be clear, suppose our goal is to generate a total peak capacity of 1600. We are concerned
that seriously different results (e.g. numbers of observed peaks) might be obtained if
conditions are chosen that produce a square bed (1nc = 40, 2nc = 40) compared to those that
produce a very asymmetric bed (1nc = 160, 2nc = 10). Experimentalists familiar with the
difficulties and constraints associated with c-2DC recognize that some combinations of 1nc
and 2nc are much easier to achieve than others, in terms of total time, and that some
combinations are currently inaccessible due to limitations of existing instrumentation.

Another reason exists to compare metrics for symmetric and asymmetric beds in c-2DC.
Generally the mechanics of peak processing in the first and second dimensions are very
different. The resultant data matrix typically is composed of tens to hundreds of first
dimension times at which samples are taken, each sample being associated with hundreds to
thousands of second dimension concentrations (or signals) and times. For each first
dimension sampling time, the integration (sum) of its associated second dimension
separation represents a mass balance on the first dimension sampling. This data matrix is
very asymmetric in the first and second dimensions. It is not clear that the product rule,
which does not distinguish between the first and second dimensions, connects the
asymmetric data matrix to usual metrics of interest. Thus far only for the case of completely
randomly distributed peaks has the very highly developed statistical overlap theory (SOT)
[5-8] allowed the derivation of an exact mathematical relationship between the average
number of observed peaks and the total peak capacity. We propose here that for each type of
distribution of peak coordinates (strong correlation, weak correlation, or no correlation; see
Figure 1), a relationship exists between the average number of observed peaks and the total
peak capacity. Some researchers have taken this proposal to its logical extreme, suggesting
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that a practical peak capacity should be defined relative to the fraction of total peak-capacity
‘bins’ that are occupied, with no regard for the surrounding empty space [9]. Figure 2
illustrates a slightly relaxed version of this concept (using experimental retention times from
LC × LC data in ref 10) where the fraction of the 2D separation bed that is utilized is defined
by the fraction of bins contained by the solid line relative to the total number of bins. For
non-random peak distributions, the relationship between the number of observed peaks and
the total peak capacity depends on the type of distribution of peaks, with different types of
distributions having different relationships. Unlike the case of random distributions which
can be treated by the equations of SOT these relationships generally are unknown. However,
we believe that such relationships must exist and this is the basis on which we infer that the
number of observed peaks, for a particular peak distribution, tells us something about the
total peak capacity, although only in an indirect way.

A brief summary of the prior work that has led us to this study is useful. One of the chief
complications and limitations of c-2DC is that the undersampling of its first dimension and
subsequent reconstruction of the 2D chromatogram from the sampled data causes serious
broadening of the reconstructed peaks and concomitantly a loss of total peak capacity. The
sampling-induced broadening was investigated first by Murphy et al. [11] and Seeley [12].
The standard deviation of the resulting reconstructed first dimension peak can be expressed
as the product of the standard deviation of the peak before sampling (1σ) and a
dimensionless peak broadening factor which depends mainly on the sampling rate but also
other factors defined below (here and throughout, we use the notation of Schoenmakers et
al. [13] to describe the attributes of 2D separations, with superscripts identifying the relevant
dimension (e.g., 1σ, 1nc, and 2nc)). Since the peak capacity of a one-dimensional gradient
chromatogram (i.e., solvent in LC or temperature in GC) is inversely proportional to the
average peak standard deviation, Horie et al. [14] defined the effective peak capacity of a
c-2D separation as the total peak capacity expressed by Eq. 1, divided by the average value
of this broadening factor at a given sampling rate.

In a recent study of the problem of sampling-induced broadening, we proposed a more
accurate metric based on results derived from a random distribution of peak coordinates. We
took the effective peak capacity of a c-2D separation which involved an undersampled first
dimension separation to be the total peak capacity of the same ideally sampled 2D
separation, which had been degraded by broadening the first dimension peaks by that factor
which produces the same number of observed peaks in both separations [15]. This metric is
the logical result of the proposition that the average number of observed peaks and the total
peak capacity are related. It also bases the effective peak capacity on the most practically
important metric of a c-2D separation namely the number of observed peaks. We believe it
to be the more realistic “correction” to the total peak capacity as it includes the effect of
multiple peak overlaps in both dimensions and is based not just on the behavior of a single
first dimension peak as was the basis for all earlier correction factors [11,12,14]. We used
2D SOT to determine the average standard deviation of sampled first dimension Gaussian
peaks, < β > 1σ, that satisfied this metric. We found that > β >, our correction factor, is well
approximated by the empirical equation

(2)

over the range, 0.2 ≤ ts / 1σ ≤ 16, where ts is the time between sampling points in the first
dimension. This peak broadening factor is numerically close to that predicted by Murphy et
al. [11] and Seeley [12] at fast sampling rates but is larger at slow sampling rates.
Henceforth we will use the terminology of Seeley and refer to the term ts/1σ as the
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dimensionless sampling period [12]. A small value of ts/1σ corresponds to a fast sampling
rate. Eq. 2 also was shown to be similar to the average peak broadening factor obtained by
randomly sampling a first dimension Gaussian peak and representing the sampled profiles
by continuous wireframe-like distributions, in which the sampled average concentrations are
connected by lines. A large number of computer simulations confirmed that Eq. 2 satisfies
the proposed metric. A few of these simulations were made in which the peak capacities of
the two dimensions were reversed, with the number of observed peaks remaining virtually
the same. Recently, Blumberg et al. proposed an independent theory, leading to a result
identical in form to Eq. 2 but with the empirical coefficient, 0.21, replaced by 1/4 [16].

On combining Eqs. 1 and 2, we obtain the effective peak capacity nc,2D of a c-2D separation
[15]

(3)

The replacement of < β > in Eq. 3 by the average peak broadening factor of Murphy et al.
[11] and Seeley [12] produces the effective peak capacity of Horie et al. [14].

In light of Eq. 3, the idea that the average number of observed peaks and the total peak
capacity are related must be modified by replacing the total peak capacity with the effective
peak capacity (nc,2D). Because the effective peak capacity depends on both the product rule
and the dimensionless sampling period we think it is essential to ask: do different values
of 1nc and 2nc having the same product and associated with the same dimensionless
sampling period generate the same number of observed peaks in a c-2D separation having a
specific type of peak distribution (as illustrated in Figure 1)? Perhaps more important than a
general answer to this question is the question: does the product rule work under conditions
of practical 2D chromatography so that as practitioners we can use it to guide the
optimization of a 2D separation? We answer these questions by counting the observed peaks
in simulated c-2D separations, in which various but realistic combinations of peak capacities
were chosen to satisfy Eq. 1. The simulation algorithm is essentially identical to that of our
previous study [15]. The simulations studied here were based on both random peak
coordinates and on data taken from separations of real mixtures. The advantage of using
simulations in this study is that many c-2D separations can be investigated, some of which
may be difficult (or currently even impossible) to realize experimentally.

The results of this study should not be misinterpreted, since the total peak capacity of a 2D
chromatogram actually changes as the dimensionless sampling period is varied. The
practical, not theoretical, details of how chromatographic total peak capacities should be
optimized is very dependent on the interaction of the dimensionless sampling period with
the first dimension peak capacity and is the subject of work which will be presented
elsewhere. However, we point out here that at a fixed first dimension gradient time, the
effective 2D peak capacity initially increases as ts is increased from zero, passes through a
maximum and then decreases as ts becomes larger. This results from two facts: first, as ts is
increased from very small values the peak capacity of the second dimension increases and
then approaches an asymptote; second, as ts increases above a certain time the
undersampling of the first dimension becomes more and more serious, leading to a decrease
in the effective peak capacity of the first dimension. Since these variations complicate an
evaluation of the product rule, they are not included in this study.
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Theory
Terminology and assumptions

We use the same terminology as in our previous paper [15]. Sampling is defined as the
acquisition of aliquots of first dimension effluent. The sampling time (ts) is the interval over
which the first dimension effluent is collected. The sampling device is the reservoir that
collects and transfers effluent between dimensions. The duty cycle is the fraction of the
sampling time during which sample is collected [12]. The word “peak” describes the
concentration profile of a single mixture constituent in either one or two dimensions; thus
the numbers of peaks in the separation and mixture constituents are the same. The words
“observed peak” describe the concentration profile that is detected in the reconstructed 2D
separation and has a single maximum. Observed peaks can be due to the presence of one or
more mixture constituents. Finally, an “ideally sampled” 2D separation is a hypothetical
c-2D separation in which sampling is so rapid (e.g., 40 or more samples per first dimension
peak) that sampling-induced broadening can be neglected.

We also made five assumptions [15], which apply here. First, peaks are Gaussian in both
dimensions. Second, all peaks in a given dimension have the same width (standard
deviation) but peaks in the two dimensions usually have (very) different widths. Third, the
sampling device behaves ideally and instantaneously transfers focused sample to the second
dimension. Fourth, sampling has no effect on the second dimension standard deviation.
Finally, the sampling device has a 100% duty cycle.

2D statistical overlap theory (SOT)
The average number of observed peaks (p) in a c-2D separation containing randomly
distributed peaks can be predicted from 2D SOT [15]. The basis of 2D SOT is discussed in
detail elsewhere [5-8]. Geometrically, peak overlap is modeled in two dimensions by the
overlap of ellipses representing the peak contours. The ellipses are randomly distributed in a
plane but their major axes are oriented in the same direction. The major and minor axes are
proportional to the standard deviations 1σ (or < β > 1σ) and 2σ of peaks in the corresponding
c-2D separation, and to the average minimum resolution between the two nearest-neighbor
peaks in two observed peaks. This resolution varies with the amount of overlap. The total
number of isolated ellipses and groups of overlapping ellipses is the cluster number. The
cluster number varies among members of a large ensemble of planes and ellipses, which
differ only in the coordinates of the ellipse centers. The average cluster number equals the
average number of observed peak maximums, p, in the corresponding ensemble of 2D
separations.

Definition of peak capacity
In a 2D separation with the time spans 1D and 2D in the first and second dimensions, the
peak capacities 1nc and 2nc are [17]

(4a)

(4b)

where 1Rs and 2Rs are the resolutions of adjacent peak pairs in the first and second
dimensions that are sufficient for separation. The values of 1Rs and 2Rs depend on the goals
of the separation but are usually taken as unity.
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Eq. 4 is not appropriate, when the standard deviations of peaks vary in the separation. In
such cases, the method of Lan and Jorgenson based on the additivity of reciprocal peak
widths can be used to more accurately calculate the peak capacity [18].

Procedures
Simulation of comprehensive and ideally sampled 2D separations

The computational details of the algorithm used to simulate c-2D separations were given in
our previous paper [15]. For this study, peak coordinates were assigned to the central 64% of
a reduced 2D space of unit length and width (i.e., 1D = 2D = 0.8) to avoid loss of peak
maximums near boundaries. The number of randomly distributed constituents, m, was 100,
250, 400, or 550. Correlated separations were modeled using 95 to 598 retention times of
observed peaks taken from experimental c-2D chromatograms [10,19], which were scaled to
fit in the reduced 2D space. First dimension Gaussian peaks were computed with
exponentially random heights, for which the probability of any peak height lying between h
and h + dh equaled exp(–h/H) dh/H, with the average peak height H equal to one (this
produced more small peak heights than large ones). The first dimension standard deviations
were calculated from the peak capacity using Eq. 4a, with unit resolution. The average peak
concentrations at different dimensionless sampling periods were determined. To speed up
the computations, these average concentrations were evaluated by interpolating values of the
error function evaluated for arguments spaced by 0.001 and not by numerical integration as
before [15]. Exponentially random peak heights were used because they have some
empirical basis [20-23]. The sampled concentrations were “injected” into the second
dimension as Gaussians having standard deviations calculated from the relevant peak
capacity using Eq. 4b, with unit resolution. The numbers of observed peak maximums were
then counted. Maximums were determined as values of the three-dimensional concentration
matrix, which were larger than their eight surrounding nearest-neighbor concentrations [15].
Each simulation was repeated fifty times with different exponentially random peak heights
(and uniformly random peak coordinates, when dealing with this case), and the average
number of observed peaks was calculated. Six or seven combinations of 1nc, 2nc values
spanning 10 to 150 were examined for simulations based on random peak coordinates and a
set of five total peak capacities ranging from 500 to 4000. Values of 1nc greater than 150
were not considered due to extensive computational time. For the weakly correlated peak
coordinates, taken from actual experimental studies, the arbitrarily chosen (i.e., not
experimental) total peak capacities of 500 and 2000 were used. The peak capacity
combinations are reported in Table 1. They were chosen to span the upper peak-capacity
range in nearly linear increments, with the lower range determined by the product rule.
Some arbitration was involved, with the ratio of 1nc to 2nc varying for different nc,2D to keep
the peak capacities within reasonable bounds. Computations were made for ts/1σ varying
from 0.2 to 16 to cover the range of almost infinitely fast sampling to values large enough to
encompass sampling rates typical of practice.

Simulations of ideally sampled 2D separations of peaks with weakly correlated first and
second dimension retention times were made in the reduced 2D space as discussed
previously [15]. In brief, 1σ and 2σ were calculated from Eqs. 4a and 4b with unit resolution
for different peak capacities given in Table 1 for nc,2D equaling 500 and 2000. To mimic
sampling-induced broadening at ts/1σ values from 0.2 to16, 1σ was multiplied by < β > as
per Eq. 2. The profiles of bi-Gaussian peaks having the scaled correlated coordinates,
standard deviations < β > and 2σ, and exponentially random heights were summed, and the
numbers of observed peaks were counted. The simulation was repeated fifty times with
different exponentially random heights, and the average number of observed peaks was
calculated. Each average was compared to the average number of observed peaks in the
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corresponding simulated comprehensive 2D separation having the same scaled correlated
coordinates.

Calculation of average number of observed peaks by 2D SOT
The average number of observed peaks was calculated by 2D SOT as described previously
[15]. The parameters of the calculation were the number of constituents, the ratio of first and
second dimension peak capacities, and the effective peak capacity. The last depends on the
first dimension peak broadening factor and on the peak standard deviations and dimensional
spans as shown by Eqs. 1 - 4. Calculations were made for constituent numbers (or peak
numbers) equaling 100, 250, 400, and 550, dimensionless sampling periods spanning from
0.2 to 16, and all peak capacity combinations given in Table 1.

Results and Discussion
Accuracy of the product rule with uncorrelated peak coordinates

Figures 3 and 4 give graphs of the average number of observed peaks vs. the dimensionless
sampling period for various numbers of constituents and total peak capacities. The different
symbols identify results for the different combinations of 1nc and 2nc in Table 1. These
results are relevant not only to c-2D separations but in the limit of very fast sampling to
traditional 2D separations in beds or gels as well (this conclusion follows because the
profiles of very rapidly sampled peaks and unsampled peaks are virtually indistinguishable).
In most cases, regardless of the number of constituents and total peak capacity, there is
almost no change in the number of observed peaks as the ratio of nc,2D to 2nc is varied
regardless of the dimensionless sampling period. In other words, the number of observed
peaks is largely independent of the peak capacity distribution, when the total peak capacity
is constant and the dimensionless sampling period ts / 1σ (or the peak broadening factor < β
>) is held constant. This means that for random c-2D separations even when the first
dimension is severely broadened by undersampling the product rule (Eq. 1) works well.
Thus we conclude that the assumptions of all previous workers, although not absolutely
correct, are close enough that the error is minor and not practically important. This “negative
result” is very important. Clearly, if this were not the case the experimental optimization of
c-2D separations would be enormously more complicated.

The dashed curves in each graph are the average numbers of observed peaks predicted by
2D SOT for the smallest 1nc and largest 2nc used here, whereas the solid curves represent the
2D SOT predictions for the largest 1nc and smallest 2nc used here. The predictions for
other 1nc, 2nc combinations almost lie (see below) between these extremes and are not
shown. The results and predictions are given in different graphs for clarity. For example, the
superposition of Figures 3a and 3b for nc,2D = 500 would be confusing, because some results
are numerically similar.

Several trends are clear. For any number of constituents and total peak capacity the number
of observed peaks decreases with increasing dimensionless sampling period [15]. At any
dimensionless sampling period, the fraction of constituents appearing as observed peaks
decreases as the number of constituents increases and as the total peak capacity decreases.
Furthermore, the number of observed peaks does not change very much with the number of
constituents at low sampling rates when the total peak capacity is small (e.g., 500) thus
demonstrating the severe consequences of undersampling inefficient separations.

However, as pointed out above, by far the most important finding is that for any number of
constituents, total peak capacity, and dimensionless sampling period, the average number of
observed peaks depends only weakly on the specific values of 1nc and 2nc, provided that the
product of the two peak capacities is fixed. The average numbers of observed peaks increase
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only slightly as 1nc decreases. To evaluate their variation, the percentage difference between
the smallest and largest average in all 1nc, 2nc combinations was calculated for different
constituent numbers m, dimensionless sampling periods ts / 1σ, and total peak capacities
nc,2D. The relative standard deviation (RSD) of the averages was also calculated for
all 1nc, 2nc combinations and different m, ts/1σ, and nc,2D. Table 2 reports the maximum of
these metrics for each nc,2D. The maximum percentage difference is about 25-30% for small
nc,2D and decreases to about 5% for large nc,2D, and is associated with large m (400 and 550)
and large ts / 1σ (16). The maximum RSDs are associated with the same m and ts / 1σ, and
typically are 10 or less (only one RSD out of 280 exceeds 10). The reason for these trends is
discussed below. These relatively small numbers suggest that the choice of specific 1nc, 2nc
combinations in c-2D separations is largely irrelevant, provided that sampling time ts can be
adjusted to maintain the appropriate dimensionless sampling period. Since the mechanics of
processing first and second dimension peaks are very different, this is, to us, a somewhat
surprising and fortuitous finding.

Predictions of 2D SOT for uncorrelated peak coordinates
The predictions by 2D SOT shown in Figures 3 and 4 agree well with the simulation results.
Many of the reported trends can be explained by the systematic decrease in the number of
observed peaks with increasing saturation factor (α) [7,8,15] defined below:

(5)

where m ̄ is a statistical approximation to the number of constituents and  is the average
minimum resolution required for two observed peaks to be formed [8,24].  itself depends
on the saturation factor [8]. The final expression in Eq. 5 is obtained by combining the
central expression with Eqs. 3 and 4, showing that the saturation factor is inversely
proportional to the effective peak capacity. The number of observed peaks decreases with
increasing dimensionless sampling period because the correction < β > for undersampling
gets bigger (see Eq. 2), the effective peak capacity gets smaller, and consequently the
saturation factor increases. Similarly, the fraction of constituents appearing as observed
peaks decreases at any dimensionless sampling period with a large number of constituents m
and small total peak capacity, because the saturation factor increases. Finally, the number of
observed peaks is weakly dependent on the number of constituents at low sampling rates and
small total peak capacities because the saturation factor is high, and the number of observed
peaks is less sensitive to the saturation factor when it is large as compared to when it is
small (i.e., dp / dα decreases with α).

For any given number of constituents, total peak capacity, and dimensionless sampling
period, the numbers of observed peaks in Figures 3 and 4 must all have the same saturation
factor (see Eq. 5); consequently, the small deviations among them as the relative
contribution of the two dimensions to the total peak capacity is varied must be due to some
issue other than the saturation factor. 2D SOT also predicts that the number of observed
peaks can increase because of the “edge effect” [7]. This is the reduced likelihood that peaks
overlap near the edges of 2D separations. As stated previously, the likelihood of overlap is
lower in the edge regions because no peaks lie beyond the edges; thus, they cannot cause
overlap. A detailed discussion of the edge effect in c-2D separations is given in the
Appendix to this paper. There, it is shown that for a given number of constituents, total peak
capacity, and dimensionless sampling period, the number of observed peaks increases with
decreasing values of the first dimension peak capacity and decreasing fraction of the total
peak capacity that is distributed in the first dimension.
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Accuracy of the product rule with correlated peak coordinates
The purpose of this section is to evaluate whether the chief findings discussed above also
apply to correlated distributions of peaks. This is important because typically peaks in real
c-2D separations are not entirely randomly distributed. Usually their coordinates are
positively correlated to some extent because the separation mechanisms in the two
dimensions are not fully independent [25,26]. Figure 5a is a graph of the retention times of
experimental observed peaks for a LC × LC of corn-leaf extract [10]. Figures 5b - 5d are the
retention times of experimental observed peaks for a GC × GC of jet fuel oil [19], as
detected by mass spectrometry at three different mass-to-charge ratios using peak-finding
software described elsewhere [27] (the parallelogram in Figure 5b is discussed below). The
three detection channels produced different retention time distributions and numbers of
observed peaks due to different ion fragmentations, with numbers m equaling 598, 564, and
419 for mass-to-charge ratios of 57 (Figure 5b), 95 (Figure 5c), and 105 (Figure 5d),
respectively. Similar work has been reported on highlighting different perspectives of
sample composition by detecting GC × GCs at multiple mass-to-charge ratios [28]. Various
degrees of correlation are apparent, with the largest in Figure 5a and the smallest in Figure
5d, as measured by the linear correlation coefficient. This metric is perhaps not the best,
since it is based on a presumed fit of a line to all retention times. For example, a part of
Figure 5b is extremely correlated. However, the retention times clearly are not random.

It has been argued that results on peak overlap obtained from simulations of random peak
coordinates, such as discussed above, are not important to separations acquired with highly
selective detection, such as mass spectrometry. However, these GC × GC retention time
distributions show that very complex mixtures can yield literally hundreds of observed
peaks even at a single mass-to-charge ratio [19], with peak overlap being a realistic concern.
Unlike the simulations described below, these GC × GCs were collected at modest sampling
rates (i.e., three or more samples per first dimension peak) [19] and represent the true
sample complexity with little sampling-induced peak broadening.

The retention times were scaled and used as the coordinates in simulations of c-2D
separations. Figure 6 shows graphs of the average numbers of observed peaks vs. the
dimensionless sampling period for total peak capacities of 500 and 2000. The symbols and
peak capacity combinations are given in Table 1. Larger total peak capacities were not
considered because the experimental retention times were determined to only three
significant digits, and peak widths at larger total peak capacities were less than or equal to
the digitized intervals between retention times, causing some anomalies. Predictions by 2D
SOT are not useful in this case and thus not shown because the retention times are not
random.

Overall, the findings are similar to those obtained for random peak coordinates. As before,
the average number of observed peaks decreases with increasing dimensionless sampling
period and at any dimensionless sampling period it increases with increasing total peak
capacity. Most importantly, as in the case of random peak distributions it is largely
independent of the specific combination of 1nc and 2nc used to produce the total peak
capacity. As above, the edge effect produces slightly greater numbers of observed peaks at
low sampling rates for small 1nc and large 2nc (see Appendix).

However, unlike the case of totally random peak coordinates, the number of observed peaks
depends on the specific 1nc, 2nc combination as the sampling rate becomes fast (i.e., as ts / 1σ
decreases). This is a consequence of the asymmetric distribution of vacant space around the
correlated peak coordinates, which favors better separations for certain 1nc, 2nc
combinations than for others (see below). As expected on mathematical grounds, however,
the number of observed peaks for any particular 1nc, 2nc combination asymptotically
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approaches a constant value as the sampling rate becomes very fast. This behavior is shown
in the inset to Figure 6a. The rate of convergence depends on 1nc, 2nc; here, it is slow for 1nc
= 60 and 2nc = 33.3 (i.e., the results represented by crosses).

As before, the variation among average numbers of observed peaks was evaluated by
calculating percentage differences between the smallest and largest averages, and by
calculating RSDs of averages, for all 1nc, 2nc combinations, ts / 1σ and nc,2D. Table 3 reports
the maximum of these metrics for both nc,2D. They are similar to ones reported in Table 2
for random peak coordinates, with the maximum percentage differences ranging from about
10 to 35% and the maximum RSDs typically equaling 10 or less (82 out of 88 RSDs are less
than 10). Both metrics usually are associated with large dimensionless sampling periods
(ts / 1σ ≥ 12). This may be surprising, because variations of the observed peak numbers are
very noticeable in Figure 6 at small ts / 1σ and large nc,2D. Two exceptions to the trends are
found for the GC × GC results in Figure 6c. First, the variation is much larger than usual for
nc,2D = 500 due to the large observed peak number for 1nc = 10, 2nc = 50. Second, the
variation is greatest at small ts / 1σ when nc,2D = 2000.

With correlated peak coordinates, small variations of the average number of observed peaks
for the same, fast sampling rate but different 1nc, 2nc are not surprising. We will illustrate
this by discussing two examples. In Figure 5b, a parallelogram encloses 36 highly correlated
GC × GC retention times. Figure 7a is a panel of elliptical contours centered about these
times for ts/1σ = 0.2, 1nc = 60, and 2nc = 33.3 (nc,2D = 2000). Figure 7b is a similar panel
with the same total peak capacity but now 1nc = 150 and 2nc = 13.3. The cluster number in
Figure 7b (21) is almost twice that in Figure 7a (12), with arrows identifying contours that
are isolated in one panel but not the other. The cluster numbers also are similar to the
average numbers of observed peaks (19.9 and 14.2, respectively) determined from 50
simulated c-2D separations. Here, the separation is better for large first dimension and small
second dimension peak capacities, because the correlated retention times are more closely
aligned with the first dimension than the second dimension. Consequently, better separation
in the first dimension favors larger numbers of observed peaks. This trend is observed in all
the GC × GCs.

In contrast, the LC × LC coordinates in Figure 5a produce more observed peaks with small
first dimension and large second dimension peak capacities, when ts/1σ is small and nc,2D =
2000 (see Figure 6a). By constructing graphs of ellipse clusters like Figure 7, we found this
behavior is mostly caused by the 27 peaks eluting within the first 8 minutes. In this region,
many peaks have identical first dimension retention times, with separation occurring
exclusively in the second dimension. Consequently, broad second dimension peaks produce
relatively poor separations, whereas narrow ones produce better separations. For example, in
this region we found only 17 ellipse clusters for 1nc = 150, 2nc = 13.3, but we found 25
clusters for 1nc = 26.7, 2nc = 75 (ts/1σ = 0.2).

The different trends in the GC × GCs and LC × LC arise from the specifics of the
asymmetric vacant space around the peak coordinates. Although these examples show that
we can analyze the coordinate patterns and decide which 1nc, 2nc combinations are favorable
or unfavorable, we are unaware of a simple metric for this purpose. As shown in Figure 6,
however, the trends largely disappear as the sampling rate decreases. At very low sampling
rates many peaks merge into a single sample of first dimension effluent, with a partial loss
of the asymmetric vacant space around them and the subtle interaction the space produces. A
similar result is found on reducing the total peak capacity from 2000 to 500, that is, the
asymmetric space is occupied by broader peaks, and the changes in the number of observed
peaks are not as pronounced (see Figures 6b – 6d).
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We observe that the GC × GCs of jet fuel oil represent an extreme case of retention-time
correlation, since this mixture contains principally only four compound classes (acyclic
alkanes, cyclic alkanes, alkylmonoaromatics, and alkyldiaromatics). Consequently, the
departures in Figure 6 from trends for random retention times are likely to be larger than for
most mixtures, and consequently set an upper bound on such departures.

Relationship between average number of observed peaks and effective peak capacity
The results in Figures 3, 4, and 6 can be expressed relative to the effective peak capacity
nc,2D using the dimensionless sampling periods, the total peak capacity, and Eq. 3. Figure 8
gives graphs of the average number of observed peaks vs. the effective peak capacity for
250 and 550 random peak coordinates and for the correlated peak coordinates in Figure 5.
All average numbers of observed peaks and total peak capacities were used. A relationship
exists in all cases, with the average increasing rapidly with the effective peak capacity and
asympotically approaching the number of constituents. A relationship is not surprising for
random peak coordinates, since the saturation factor α of 2D SOT principally determines the
average number of observed peaks and α depends on nc,2D (see Eq. 5). As postulated in the
Introduction, however, relationships also exist for correlated peak coordinates, although they
are not as precise or currently predictable from equations. These relationships support the
hypothesis that any combination of total peak capacity and dimensionless sampling period
generating the same effective peak capacity produces nearly the same number of observed
peaks for a given distribution of peak coordinates.

Validation of the peak broadening factor < β > for correlated c-2D separations
In our previous work [15], ideally sampled 2D separations containing bi-Gaussians having
first and second dimension standard deviations equaling < β > 1σ and 2σ, respectively, were
simulated to verify that they contain (on average) the same number of observed peaks as
c-2D separations simulated at various dimensionless sampling periods. However, only 33
trials were made with correlated peaks. Further investigation of correlated peaks is
warranted, even though this section of the paper is not directed at the main topic, since the
expression for < β > (see Eq. 2) was based solely on random peaks.

One might expect < β > to account poorly for the subtle issues affecting peak overlap such
as the edge effect and the asymmetric distribution of vacant space that are possible with
correlated retention times. For example, as shown in Figure 6b when nc,2D = 2000, 1nc =
150, and 2nc = 13.3 the observed peak numbers (represented by circles) are relatively large
at fast sampling and relatively small at slow sampling; however, when again nc,2D = 2000
but 1nc = 26.7 and 2nc = 75 the observed peak numbers (represented by triangles) are smaller
at fast sampling and larger at slow sampling. The SOT based < β > factor does predict these
trends thereby validating its use with correlated retentions, at least in this instance. Figure 9a
is a graph of these numbers vs. the dimensionless sampling period, with the superposition of
the average numbers of observed peaks in 50 ideally sampled 2D separations. The
agreement is nearly exact.

In general, the average numbers of observed peaks in Figure 6 provide a large database to
test how well < β > works with correlated separations. Figure 9b shows the frequency of the
percentage error between these numbers and their counterparts in ideally sampled 2D
separations for ts/1σ values greater than or equaling one. The number of different
combinations of 1nc, 2nc, and ts/1σ was 480, with the 2nc/1nc ratio spanning the range, 0.089
≤ 2nc/1nc ≤ 5 (as calculated from Table 1 for nc,2D equaling 500 and 2000). The average and
standard deviation of the frequency are 0.45 and 3.94, respectively. The 25 outliers, as
measured by two standard deviations from the mean, have no common pattern other than
with ts/1σ ≥ 6 (with one exception). The frequency in Figure 9b only resembles a Gaussian
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but it is not (the Pearson statistic is 50.5 for 26 degrees of freedom and significant at the
95% confidence level). The frequency's near-zero average and small standard deviation
show that < β >, as calculated from Eq. 2, is a good measure of the average first dimension
peak broadening factor even in weakly correlated separations.

Conclusions
1. The most practically significant result is that there is only a weak dependence of the

numbers of observed peaks on the distribution of the total peak capacity between
the first and second dimensions. This offers a great deal of flexibility in method
development for 2D separations, in that the instrumental configuration that yields
the largest total peak capacity will also yield (for the same peak distribution) the
largest number of observed peaks. Since the effective peak capacity depends on the
dimensionless sampling period (see Introduction), it is indeed fortunate that there is
no a priori reason to prefer to put more effort into the first or second dimension to
obtain more observed peaks. There may, of course, be very practical reasons to
prefer to put more effort into one dimension versus the other but these will vary
with the methodologies used to do the 2D separation.

2. At slow sampling rates where there is a small dependence (RSDs of 10 or less) of
the number of observed peaks on the distribution of peak capacity, the trend favors
asymmetric peak capacity distributions with small 1nc relative to 2nc. This too is a
fortuitous outcome, as it is far easier to adequately sample a low peak capacity first
dimension separation having relatively wide peaks and then generate the bulk of the
total peak capacity in the second dimension, than is the converse. This is especially
true in gradient elution LC × LC when the gradient cycle time of the second
dimension of the system is considered. Nonetheless, it is not advisable to
deliberately make 1nc smaller than 2nc simply for the sake of capitalizing on the
edge effect.

3. At slow sampling rates, this small increase in the number of observed peaks for
asymmetric peak capacity distributions results from larger edge effects caused by
first dimension undersampling. Interestingly, the effect of sampling-induced
broadening acts to make the space more symmetric when 2nc is smaller than 1nc,
but the reverse occurs when 2nc is larger than 1nc. This is the primary reason that
asymmetric peak capacity distributions with relatively low first dimension peak
capacities are generally favored.

4. At fast sampling rates, the number of observed peaks depends weakly (typical
RSDs of 10 or less) on the peak capacity distribution when vacant space is
asymmetrically distributed around correlated peak coordinates. In some cases more
observed peaks are produced when 1nc > 2nc but in other cases when 1nc < 2nc. At
this time, the most favorable 1nc, 2nc combination cannot be predicted from a
simple metric. The dependence weakens as the sampling rate decreases. This
variation, which is not observed with random peak coordinates because the vacant
space is symmetrically distributed, differs from the predictable outcome of the edge
effect and supports the prevailing paradigm that the separation mechanism used in
c-2D separations should be highly orthogonal.

5. Simulations of c-2D separations using weakly correlated retention times taken from
real LC × LC and GC × GC experiments showed that the sampling-induced peak
broadening factor < β >, which was described in a preceding paper and determined
using random peak coordinates, also accurately describes first dimension
broadening in real 2D separations, where peak coordinates are not entirely random.
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Appendix. Edge Effect in c-2D Separations
The edge effect is responsible for the reduced probability of peak overlap seen in the edges
and corners of rectangular 2D separations. For random peak distributions, the number of
observed peaks in these regions increases with smaller constituent number, larger saturation
factor, and larger aspect ratio, which is the ratio of the first and second dimension peak
capacities at equal resolution [7]. Since the first two variables are constant at any
dimensionless sampling period in the panels of Figures 3 and 4, it is the aspect ratio that is
related to the variation of the average number of observed peaks. A shortcoming of the
aspect ratio (as defined in ref 7) in treating c-2D separations is the fact that it does not
depend on which peak capacity is larger. Since undersampling in c-2D separations always
reduces the effective 1nc but has no effect on 2nc, a function related to the aspect ratio is
needed, but one that distinguishes between the peak capacities of the two dimensions. We
introduce

(A1)

where the factor < β >, as described above, accounts for the reduction of the first dimension
peak capacity due to undersampling. The traditional aspect ratio equals either δ or 1/δ,
depending on which is larger. Because 1nc/< β > is the effective peak capacity of the first
dimension will call δ the specific aspect ratio, meaning it is defined with 2nc in the
numerator and the effective 1nc in the denominator. The meaning of δ is simple: in a reduced
2D space of unit length and width [7], δ is greater than one for peaks broadened mostly in
the first dimension, and is less than one for peaks broadened mostly in the second
dimension. For a given number of constituents and saturation factor, the edge effect is large
for either very large or very small δ; it reaches a minimum at δ = 1.

It is useful to relate δ to the percentage of the total peak capacity, due to the first dimension

(A2)

By combining Eq. 1 with Eqs. A1 and A2, we find

(A3)

which tells us that a large edge effect from the first dimension (δ >> 1) will be obtained
when < β > is large due to undersampling, and %1nc and 1nc are small. Since δ is inversely
proportional to the product of %1nc and 1nc, for a given number of constituents and
saturation factor the edge effect and number of observed peaks in c-2D separations will be
enhanced at low sampling rates when both %1nc and 1nc are small.

The consequences of varying %1nc, 1nc, and < β > are shown in the four panels of Figure
A1. Here the ellipses representing the contours of 100 peaks are randomly distributed over
four different 2D separations (shown as reduced spaces of unit length and width) all having

Davis et al. Page 13

Anal Chem. Author manuscript; available in PMC 2011 October 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



a total peak capacity of 500. In all cases, the peak coordinates are the same and lie within the
space, but the peak contours near the space's edges can lie outside. Geometrically, the edge
effect is large when large portions of peak areas lie near and outside the space [7]. In Figures
A1a and A1c, 1nc is large and 2nc is small, whereas in Figures A1b and A1d their values are
reversed. The sampling rate is fast in Figures A1a and A1b but is slow in Figures A1c and
A1d. Specific values are reported in the figure and caption.

We first consider exchanging 1nc and 2nc at fast sampling rates, where < β > is small
(Figures A1a and A1b). In both cases, δ is close to one, the edge effect is small, and the
number of observed peaks (ellipse clusters) is about the same, although the primary
dimension of peak broadening changes. A different result is found, however, on
exchanging 1nc and 2nc at slow sampling rates, where < β > is large. As before, δ is close to
one for large %1nc and 1nc (Figure A1c) and the edge effect is small, although relative to a
fast sampling rate the primary dimension of peak broadening is reversed (cf. Figures A1a
and A1c). However, for small %1nc and 1nc (Figure A1d), δ and the edge effect are large,
significant portions of peak areas lie outside the space, and the number of observed peaks
increases.

The 2D SOT predicted “lengths” and “widths” (i.e., axes) of ellipses in Figure A1 are
 and  [7,8]. Using Eqs. 4a and 4b, they can be expressed as

 and . Unlike the resolutions 1Rs and 2Rs, however the value of 
in 2D SOT is not arbitrary; it varies with the amount of peak overlap but is always less than
one for peaks having exponentially random heights [8,24]. This explains why the “lengths”
and “widths” in Figure A1 are smaller than the reciprocal peak capacities.

We do not mean to overstate the importance of δ. The edge effect also depends on the
constituent number and saturation factor [7], and a large δ is not sufficient by itself to
markedly increase the average number of observed peaks. For example, the largest δ
associated with Figures 4e and 4f, 42.0, exceeds that in Figure A1d, but the edge effect is
minor because the total peak capacity is large (4000) and the saturation factor is small. The
importance of the saturation factor is also seen in Table 2, where the edge-effect induced
variations of the average number of observed peaks are greatest for large m, large ts / 1σ, and
small nc,2D because all increase the saturation factor (see Eq. 5).

Some trends illustrating the subtleties of the edge effect are best described using tabular
data. Tables A1a – A1d report values of 1nc, %1nc, δ, the 2D SOT predicted number of
observed peaks p, and the average and standard deviation of numbers of observed peaks in
50 simulated c-2D separations for 550 randomly distributed constituents, several
dimensionless sampling periods (ts/1σ = 2, 4, 8, and 16), and the 1nc, 2nc combinations in
Table 1 for a total peak capacity of 2000. In Tables A1a – A1d, δ evolves from a number
less than one to a number exceeding one as 1nc and %1nc decrease, with the primary
dimension of peak broadening in the reduced space shifting from the second to the first. For
any specific 1nc and %1nc, δ increases with increasing dimensionless sampling period,
because < β > increases (see Eq. A3). For each dimensionless sampling period, the minimum
p predicted by 2D SOT is found at intermediate 1nc and %1nc values, for which δ nearly
equals one. The minimum is associated with larger 1nc and %1nc as the dimensionless
sampling period increases, because < β > increases. For the largest 1nc and %1nc considered
here, δ is not small enought for a large edge effect in the second dimension, and p increases
only slightly above its minimum value. Thus, the solid curves in Figures 3 and 4 for the
largest 1nc and smallest 2nc combinations are virtually indistinguishable from ones for the
smallest p. In general, the p's in Tables A1a – A1d agree with the average numbers of
observed peaks in simulations. The simulation RSDs range from 1.8 to 4.4, which mask the
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small edge effect for δ < 1. However, the large edge effect for δ >> 1 is apparent. For the
dimensionless sampling period of 16 in Table A1d, statistical differences are found among
the average numbers of observed peaks as δ increases (e.g., the error bar of the final entry
does not overlap with the error bars of the other entries).
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1.
Classification of different types of distributions of peak coordinates observed in c-2D
separations.
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2.
Illustration of the fraction of ‘bins’ in a 2D separation bed that are occupied by peaks. The
fraction corrects the total peak capacity for incomplete usage of the separation space. Circles
represent coordinates of observed peaks in an experimental LC × LC separation [10]. The
solid line defines the perimeter around the bins which are considered to be occupied.
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3.
Graphs of average number of observed peaks vs. the dimensionless sampling period (ts/1σ)
for m = 100, 250, 400, and 550 randomly distributed constituents, and for total peak
capacities (nc,2D) of 500 and 1000. Symbols are identified in Table 1 for different 1nc, 2nc
combinations and represent the average of 50 simulations. Curves are predictions by 2D
SOT (- - -, smallest 1nc and largest 2nc; —, largest 1nc and smallest 2nc).
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4.
As in Figure 3, but for total peak capacities (nc,2D) of 2000, 3000, and 4000.
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5.
Weakly correlated retention times of observed peaks in experimental separations by a) LC ×
LC [10] and b - d) GC × GC [19]. GC × GC retention times were determined at mass-to-
charge ratios of b) 57, c) 95, and d) 105.
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6.
Graphs of average number of observed peaks vs. the dimensionless sampling period (ts/1σ)
for constituents having retention times in Figure 5 and the arbitrarily chosen total peak
capacities (nc,2D), 500 and 2000. Inset in a) shows convergence of average number of
observed peaks at small ts/1σ for nc,2D = 2000. Symbols are identified in Table 1.

Davis et al. Page 21

Anal Chem. Author manuscript; available in PMC 2011 October 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7.
Elliptical peak contours centered on 36 retention times in parallelogram of Figure 5b.
Arrows point to contours isolated in one panel but not the other. Ellipse areas are the same
in both panels. ts/1σ = 0.2, nc,2D = 2000. a) 1nc = 60, 2nc = 33.3; b) 1nc = 150, 2nc = 13.3.
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8.
Graphs of the average number of observed peaks vs. the effective peak capacity (nc,2D) for
a), b) random peak coordinates and c) - f) correlated peak coordinates in Figure 5. Data were
taken from Figures 3, 4, and 6, with nc,2D calculated from total peak capacities,
dimensionless sampling periods, and Eq. 3.
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9.
a) Graph of average number of observed peaks vs. the dimensionless sampling period (ts/1σ)
for comprehensive and ideally sampled 2D separations having retention times in Figure 5b
and the total peak capacity, 2000. Numbers for comprehensive and ideally sampled
simulations are represented by circles and squares, respectively, for 1nc = 150, 2nc = 13.3;
and by triangles and crosses, respectively, for 1nc = 26.7, 2nc = 75. b) Frequency of 480
percentage errors between average numbers of observed peaks in comprehensive and ideally
sampled 2D separations having the weakly correlated retention times in Figure 5. Percentage
errors were calculated relative to the average numbers of observed peaks in c-2D
separations. Distribution average, standard deviation: 0.45, 3.94.
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A1.
Elliptical peak contours predicted from 2D SOT for 100 randomly distributed peaks and
total peak capacity of 500. In a) and b), α = 0.103, ts/1σ = 2, and < β > = 1.36; in c) and d), α
= 0.376, ts/1σ = 14, and < β > = 6.55. Ellipse areas are the same in panels a) and b), and in
panels c) and d). a) 1nc = 50, %1nc = 10, 2nc = 10, δ = 0.272, cluster number = 84; b) 1nc =
10, %1nc = 2, 2nc = 50, δ = 6.81, cluster number = 88; c) 1nc = 50, %1 = 10,2nc = 10, δ =
1.31, cluster number = 49; d) 1nc = 10, %1nc = 2, 2 = 50, δ = 32.7, cluster number = 57.
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Table 2

Maximum percentage difference between, and RSD of, average numbers of observed peaks in c-2D
separations with random peak coordinates for all 1nc, 2nc combinations, m, ts/1σ, and nc,2D. Maximums are
reported as a function of nc,2D. Values of m associated with maximums are reported. ts/1σ, = 16 in all cases.

nc,2D Maximum percentage differencea Maximum RSD m

500 26.3 8.6 400

1000 28.1 10.1 400

2000 17.9 6.2 550

3000 11.0 4.2 550

4000 5.5 2.0 550

a
calculated relative to smaller number
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Table 3

Maximum percentage difference between, and RSD of, average numbers of observed peaks in Figure 6 for
all 1nc, 2nc combinations, ts / 1σ, and nc,2D. Maximums are reported as a function of nc,2D. Values of ts / 1σ,
associated with maximums are reported in parentheses.

peak coordinates nc,2D Maximum percentage differencea Maximum RSD

LC × LC, Figure 5a 500 20.1 (16) 7.4 (16)

2000 19.7 (14) 6.3 (12)

GC × GC, Figure 5b 500 34.5 (16) 11.6 (16)

2000 29.3 (14) 10.7 (16)

GC × GC, Figure 5c 500 79.9b (16) 25.9c (16)

2000 16.5 (1) 5.8 (0.2)

GC × GC, Figure 5d 500 22.5 (16) 8.0 (16)

2000 12.3 (14) 4.3 (14)

a
calculated relative to smaller number

b
becomes 30.0 on excluding datum for 1nc = 10, 2nc = 50

c
becomes 11.7 on excluding datum for 1nc = 10, 2nc = 50
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Table A1a

Attributes for random distribution of m = 550 constituents with 1nc, 2nc combinations reported in Table 1.
nc,2D = 2000, ts/1σ = 2, < β > = 1.36, α = 0.14.

1nc %1nc δ observed peak number p

150 7.5 0.12 412.5 ± 7.8 416.2

120 6.0 0.19 410.7 ± 8.2 415.7

90 4.5 0.34 411.3 ± 9.4 415.3

60 3.0 0.76 410.8 ± 8.4 415.0

40 2.0 1.70 410.5 ± 8.6 415.0

26.7 1.33 3.83 412.4 ± 8.1 415.4

13.3 0.67 15.3 414.5 ± 7.5 417.2
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Table A1b

As in Table A1a, but ts/1σ = 4, < β > = 2.10, α = 0.20.

1nc %1nc δ observed peak number p

150 7.5 0.19 352.6 ± 8.0 364.1

120 6.0 0.29 353.7 ± 8.2 363.5

90 4.5 0.52 354.6 ± 8.6 363.1

60 3.0 1.17 355.5 ± 8.7 362.9

40 2.0 2.63 354.1 ± 8.7 363.3

26.7 1.33 5.92 356.2 ± 7.6 364.3

13.3 0.67 23.7 358.4 ± 8.8 368.0
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Table A1c

As in Table A1a, but ts/1σ = 8, < β > = 3.83, α = 0.32.

1nc %1nc δ observed peak number p

150 7.5 0.34 265.8 ± 9.8 277.2

120 6.0 0.53 266.2 ± 9.2 276.6

90 4.5 0.95 268.5 ± 9.1 276.3

60 3.0 2.13 266.8 ± 8.7 276.8

40 2.0 4.79 270.3 ± 8.4 278.2

26.7 1.33 10.8 271.2 ± 8.8 281.0

13.3 0.67 43.1 281.7 ± 9.0 290.0
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Table A1d

As in Table A1a, but ts/1σ = 16, < β > = 7.47, α = 0.51.

1nc %1nc δ observed peak number p

150 7.5 0.66 174.0 ± 7.0 177.7

120 6.0 1.04 175.0 ± 6.1 177.5

90 4.5 1.84 175.1 ± 6.5 177.9

60 3.0 4.15 174.7 ± 7.7 179.9

40 2.0 9.34 180.1 ± 6.2 183.7

26.7 1.33 21.0 185.7 ± 5.9 189.9

13.3 0.67 84.0 205.2 ± 6.7 208.5

a α and < β > are not proportional because resolution  depends on α (see Eq. 5)
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