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Abstract
A theoretical comparison is made of the numbers of observed peaks in one-dimensional (1D) and
two-dimensional (2D) separations having the same peak capacity, as calculated from the
traditional metric of resolution. The shortcoming of the average minimum resolution of statistical
overlap theory (SOT) for this comparison is described. A new metric called the “effective
saturation” is introduced to ameliorate the shortcoming. Unlike the “saturation”, which is the usual
metric of peak crowding in SOT, the effective saturation is independent of the average minimum
resolution and can be determined using traditional values of resolution and peak capacity. Our
most important finding is that under a wide range of practical conditions, 1D and 2D separations
of the same mixture produce almost equal numbers of observed peaks when the traditional peak
capacities of the separations are the same, provided that the effective saturation and not the usual
saturation is used as the measure of crowding. This is the case when peak distributions are random
and when edge effects are minor. The numerical results supporting this finding can be described
by empirical functions of the effective saturation, including one for the traditional peak capacity
needed to separate a given fraction of mixture constituents as observed peaks. The near equality of
the number of observed peaks in 1D and 2D separations based on the effective saturation is
confirmed by simulations. However, this equality is compromised in 2D separations when edge
effects are large. The new finding does not contradict previous predictions by SOT of differences
between 1D and 2D separations at equal saturation. Indeed, the simulations reaffirm their validity.
Rather, the usual metric, i.e., the saturation, is just not as simple a metric for comparing 1D and
2D separations as is the new metric, i.e., the effective saturation. We strongly recommend use of
the new metric for its great simplifying effect.

Introduction
In a recent paper by Stoll, Wang, and Carr, the practical resolving power of one-dimensional
(1D) and two-dimensional (2D) separations was compared by determining the peak
capacities and numbers of observed peaks in both the fully optimized 1DLC and practical
comprehensive 2DLC of a corn-seed extract [1]. The peak capacities of both separation
types were calculated at unit resolution, with the 2D peak capacity including corrections for
the fraction of separation space occupied by peaks and the broadening of first-dimension
peaks due to undersampling. The ratio of the 1D and 2D peak capacities, and the ratio of the
numbers of observed peaks, were compared at different analysis times. Both ratios
approached unity at 5 minutes, with optimized 1DLC being superior at shorter times and
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practical 2DLC being superior at longer times. At 5 minutes, however, the same peak
capacity produced the same number of observed peaks in both separations.

This finding is an apparent contradiction of point-process statistical-overlap theory (SOT),
which predicts that a mixture will produce fewer observed peaks in a 2D separation than in a
1D separation having the same peak capacity [2]. In part, the difference occurs because the
peak coordinates in the 2D separation of Stoll et al. are weakly correlated. More importantly,
the resolutions determining the peak capacity in the two cases are different. The resolution
used by Stoll et al. is the traditional metric, whereas the resolution of SOT is the average
minimum resolution [3,4], a value that is often misunderstood and is reviewed below. The
two resolutions typically are not the same.

This experimental finding stimulated us to ask the question: should a complex mixture
produce the same number of observed peaks in 1D and 2D separations with the same peak
capacity, when that capacity is calculated using the traditional metric of resolution? The
answer is relevant, since almost all experimentalists compare the two separation types using
traditional metrics of resolution and peak capacity. It also indicates which separation type is
superior, all other matters being equal. Interestingly, this problem has not been addressed by
theory. The most general answer must depend on the specific way in which peaks are
distributed in the separations (e.g., strongly correlated, weakly correlated, or random). This
paper answers the question for separations containing random distributions of peaks by
introducing a new metric of peak crowding, which we call the effective saturation. This
metric assimilates the average minimum resolution and for the first time permits us to make
SOT calculations of peak overlap using the traditional metrics for resolution and peak
capacity. These calculations facilitate a more useful comparison of 1D and 2D separations
by SOT, whose predictions are not changed but simply are expressed relative to the
effective saturation. On doing so, some very interesting results are found.

Theory
Average minimum resolution

Some background on the average minimum resolution is useful. In SOT, the intervals
between peaks and the heights of peaks are assumed to be governed by probability
distributions, from which various attributes of the separation (e.g., number of mixture
constituents, peak widths, etc.) can be calculated from a large ensemble of similar
separations [2,3,5–11]. In particular, point-process SOT allows one to calculate the average
number of observed peaks in the separation ensemble. Several reviews have been published
[12–16]. In SOT, peaks must be separated by some minimum resolution if they are to belong
to two different observed peaks [3]. In other words, this minimum resolution is required to
observe a separation. The minimum resolution depends on the requirements of the
separation [17], and in recent years it has been mostly identified with the production of
maxima. Therefore, a “peak” is the concentration profile of a single mixture constituent,
whereas an “observed peak” is a detected maximum in the separation and may contain one
or more constituents. The minimum resolution differs for pairs of peaks having different
sizes: it can be as small as 0.5 for peaks of equal height, and it can even be substantially
greater than 1 for peaks of vastly different heights. All combinations of peak heights must be
considered, with the average of the minimum resolutions determining the average number of
observed peaks. This average is called the average minimum resolution and its numerical
value is usually designated as . In the first studies of SOT,  was an empirical parameter
[17–19]. With subsequent experimental [15,19–22] and theoretical [15,23] evidence that
peaks in multi-constituent separations often have an exponential (or near exponential)
distribution of heights, researchers studied the effect of this height distribution on  by
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simulating multi-constituent separations [23–25] and calculating the resolution distribution
using Monte Carlo simulation [26] and rigorous theory [27]. The rigorous theory is the most
elegant work and showed that  is 0.725 for Gaussian peaks having equal standard
deviations and an exponential distribution of heights [27]. However, this value allows SOT
to predict the correct number of observed peaks only when the degree of peak crowding is
small [11,28]. The reason is simple: it is based on the overlap of only two peaks, whereas
observed peaks in real separations subject to extensive peak overlaps often contain more
than two constituents.

The importance of multi-constituent peak overlap to the minimum resolution is illustrated in
Figure 1. Figure 1a shows two observed peaks (maxima) formed from three Gaussian peaks
labeled A, B, and C. The peak A is a singlet, whereas peaks B and C overlap to form a
doublet. In Figure 1b, the singlet A has been shifted toward the doublet, until two distinct
maxima barely are observed. Further shifting causes the singlet to fuse with the doublet,
forming a triplet with a single maximum. Therefore, the resolution of peaks A and B, 0.536,
is its minimum value, with A and B belonging to different observed peaks. Interestingly, it is
less than the minimum resolution of peaks A and B, 0.752, that barely produces two
observed peaks in the absence of peak C (see Figure 1c). The reason is simple: even though
the doublet is broadened more than the singlet, its maximum is shifted away from the singlet
even more than it is broadened. Consequently, the peaks A and B can approach more closely
at minimum resolution in the presence of peak C than in its absence. This trend extends to
observed peaks that are triplets, quartets, etc., with the implication that the minimum
resolution is not fixed but decreases with increasing peak crowding.

Clearly, it is easy to envision a case in which the height of peak C is so small that the
minimum resolution of peaks A and B is nearly independent of C. In general, however, the
decrease must be addressed. Equations based on SOT and predicting this decrease have been
published for both 1D separations [28] and 2D separations [11]. Figure 1d shows the
predicted dependence of  on the “saturation” α, when peaks have an exponential
distribution of heights and are distributed randomly throughout the separation. The
saturation is a metric of peak crowding that increases with increasing peak overlap; it is
defined precisely below. As it approaches zero, all observed peaks become singlets and the
limiting  discussed earlier, 0.725, is appropriate. As it increases, however, many observed
peaks become doublets, triplets, etc., causing  to systematically decrease and to become
less than 0.5. The average minimum resolution for 2D separations, , is smaller than its
counterpart for 1D separations, , at all positive saturations. The two functions differ,
because the ways in which peaks can overlap, and likelihood of peak overlap, differ in the
two separation types. These  functions work very well with SOT, facilitating the
prediction of accurate numbers of observed peaks when overlap is severe [11,28]. Indeed,
the failure to address their variation results in poor predictions when overlap is severe
[11,28].

However, the variations cause a number of ensuing complications. As shown below, the

saturation depends on  in 1D separations and on  in 2D separations, but these
values themselves depend on the saturation (see Figure 1d) and consequently numerical
methods are required to determine them. More important, the 1D and 2D peak capacities

defined by SOT are inversely proportional to  and  [3,4], which means they
themselves are functions of saturation. This is a very undesirable property, which is totally
at odds with the traditional concept of peak capacity as an invariant metric of the maximum
number of peaks that can be contained in a separation space.
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Perhaps most importantly, the variation of  and  with saturation greatly complicates
the comparison of 1D and 2D separations by SOT. One interpretation of the saturation is the
ratio of the number of mixture constituents (or peaks) to the peak capacity defined relative to

 [3,4]. Accordingly, for a given mixture the peak capacities of 1D and 2D separations are
equal at the same saturation. However, since the size of a peak-capacity unit is proportional
to  [3,4] and since  at all positive saturations, the unit is relatively smaller in 2D
separations than in 1D ones. Consequently, at equal saturations the separations are not
compared under identical conditions, and the significance of the comparison -- even if
correct -- is ambiguous.

In contrast, the effective saturation eliminates this ambiguity. Relative to the effective
saturation, 1D and 2D separations of randomly distributed peaks can easily be compared by
SOT using equal traditional peak capacities having units of the same relative size.

Terminology and assumptions
The terminology of Schoenmakers et al. [29] for multi-dimensional separations is used when
possible. It is assumed that the peaks in both 1D and 2D separations are randomly
distributed and have an exponential distribution of heights. It also is assumed that the
standard deviation 1σ of Gaussian peaks in 1D separations is constant, and that the standard
deviations 1σ and 2σ of bi-Gaussian peaks in 2D separations are constant although they can
differ between dimensions. The invariance of 1σ and 2σ is consistent with results for well
optimized gradient methods (e.g., solvent in LC and temperature in GC). Finally, it is
assumed that 2D separations are rectangular, as they are in most beds and gels, and in
comprehensive separations. The spatial lengths or temporal durations (i.e., the extents) of a
1D separation and the first dimension of a 2D separation are 1D; the extent of the second
dimension is 2D. The arbitrary resolution 1Rs determines the traditional peak capacity 1nc of
a 1D separation and the first dimension of a 2D separation; the arbitrary resolution 2Rs
determines the traditional peak capacity 2nc of the second dimension. These constant
resolutions have no relation to the SOT functions  and . By “traditional peak
capacity”, we mean the metric used by most researchers as defined below. In general, the
subscripts “1D” and “2D” are used as needed with variables common to 1D and 2D
separations but having different characteristics (e.g.,  and ). However, the subscripts
are dropped on comparing the variables (e.g., the label  for the ordinate of Figure 1d).

Effective saturation
In accordance with SOT, the saturation α1D of a 1D separation is normally defined as [3]

(1)

where m ̄ is a statistical metric for the number of mixture constituents (or peaks). The value
of  in Eq. 1 is not arbitrary: it must be chosen from the graph in Figure 1d, such that the
result on the right-hand-side of Eq. 1 equals the corresponding value of α1D in the graph
[28]. For any m ̄, 1σ, and 1D, only one coordinate satisfies this condition.

The definition of the traditional peak capacity of a 1D separation, or the first dimension of a
2D separation, is [30]
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(2)

where 1w = 4 1σ is the first-dimension peak width. Eqs. 1 and 2 can be combined to obtain a
new metric, the effective saturation αe,1D of a 1D separation

(3)

The great appeal of Eq. 3 is that it depends only on the number of mixture constituents m ̄
and the separation attributes 1w and 1D. It is independent of resolution, as shown by the first
term on the right-hand-side of Eq. 3. Therefore, the presence of 1Rs in the second expression
on the right-hand-side can easily give rise to confusion; it is only a scaling factor that
expresses the effective saturation in terms of the traditional peak capacity 1nc, with 1nc
and 1Rs being inversely proportional. For example, the effective saturation is the same for a
traditional peak capacity 1nc of 500 at 1Rs = 1 and a traditional peak capacity of 1000 at 1Rs
= 0.5, because 1D/1w is 500 in both cases. The second and third expressions of Eq. 3, which
researchers can evaluate easily from measured peak widths and the dimension extent, are
related to SOT predictions using the final expression in Eq. 3. In brief, the predictions are
evaluated at saturation α1D as in previous studies, and the associated effective saturation
αe,1D then is calculated by dividing α1D by the corresponding  value in Figure 1d. At
first glance, this does not seem to excise the average minimum resolution, since the 
value is needed. However, as is shown below, the calculation only needs to be made once,
with the SOT predictions ultimately expressed in terms of the convenient metric, αe,1D.

In accordance with SOT, the saturation α2D of a 2D separation is defined as [4,11]

(4)

As before, the value of  in Eq. 4 is not arbitrary; it must be chosen from the graph in
Figure 1d, such that the result on the right-hand-side of Eq. 4 equals the corresponding value
of α2D in the graph [11]. Only one coordinate satisfies this condition.

The traditional peak capacity of the second dimension of a 2D separation is

(5)

where 2w = 4 2σ is the second-dimension peak width. Eqs. 2, 4, and 5 can be combined with
the expression for the traditional 2D peak capacity nc,2D [31]

(6)

to define the effective saturation αe,2D of a 2D separation
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(7)

As before, the appeal of Eq. 7 is that it depends only on m ̄ and the separation
attributes 1w, 2w, 1D, and 2D. It is independent of resolution; as before, the resolution
factors 1Rs and 2Rs in the third expression simply describe αe,2D in terms of the traditional
2D peak capacity nc,2D, with nc,2D and the product 1Rs 2Rs being inversely proportional. The
value of αe,2D appropriate to saturation α2D is found by dividing α2D by the square of the
corresponding  value in Figure 1d and then multiplying by 4/π.

It is common to use peak capacities as metrics of separation efficiency. Eqs. 3 and 7 show
that expressing the effective saturation relative to traditional peak capacities requires
definition of the resolutions 1Rs and 2Rs. As discussed above, different combinations of
traditional peak capacity and resolution give the same effective saturation αe, but one
specific combination is particularly interesting. By comparing Eqs. 3 and 7 at equal αe, one
sees that 1D and 2D separations of the same mixture of m ̄ constituents have the same
traditional peak capacities (1nc = nc,2D), when the 1Rs value for the 1D separation equals the
product, 1Rs 2Rs, for the 2D separation. When 1Rs = 2Rs = 1 as is often assumed, the
traditional 1D and 2D peak capacities are equal for the same m ̄ and αe.

The effective saturation has properties that are desirable in SOT. To take advantage of them,
one must associate the SOT predictions of the number of observed peaks p at saturation α
with the effective saturation αe.

SOT predictions of p relative to saturation α
The average number of observed peaks (maxima) p1D in a 1D separation of m ̄ randomly
distributed peaks is [3,28]

(8)

Similarly, the average number of observed peaks (maxima) p2D in an unbounded 2D
separation of m ̄ randomly distributed peaks is [2,10,11]

(9)

Obviously, any real 2D separation actually has boundaries. Here, the word “unbounded”
means that the “edge effect” is negligible. The edge effect describes the fact that there is a
lower probability for peak overlap near boundaries (i.e., the edges and corners) of a multi-
dimensional separation space than in the center of the space. It exists because there are no
peaks outside the boundaries available to overlap with peaks just inside and near the
boundaries [10]. As a result, the probability of finding an observed peak and thus the
average number of observed peaks in the edge region must be somewhat larger than in the
central region and thus the total number of observed peaks will be larger than Eq. 9 predicts.
The edge effect in 2D SOT has been modeled successfully, and the theory and equations to
predict p2D are given elsewhere [10,11]. They show that the edge effect increases with
decreasing constituent number, increasing saturation, and increasing aspect ratio (i.e., the
ratio of 1nc and 2nc at equal resolution). Although such predictions are reported in this paper,
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the equations are not cited because they are relatively cumbersome and the detail is not
necessary.

Procedures
Simulations of 1D and 2D separations containing 100 to 1000 peaks (or mixture
constituents) with randomly distributed coordinates and exponentially distributed heights
were calculated as detailed elsewhere [11,28]. A repetition of this detail here is not
instructive. The results reported below are the average numbers of maxima observed in 50
simulations. The predictions of p by SOT were calculated from Eqs. 8 and 9 (or from edge-
effect corrected equations [10,11]) as functions of the saturation (α). The same predictions
then were expressed relative to the effective saturation (αe) by using Figure 1d and the right-
hand-side of Eqs. 3 and 7.

Results and Discussion
SOT results relative to saturation α

Figure 2 reports graphs of SOT predictions and simulation results expressed relative to the
traditional metric of peak crowding, the saturation α. These are similar to others reported
elsewhere [11,28] and are discussed only briefly to set the stage for the new, more important
results. Figure 2a is a graph of the average number of observed peaks in 1D separations
(p1D) vs. the 1D saturation (α1D) for numbers of mixture constituents (m) from 100 to 1000.
The simulation results are given by the symbols; the curves are SOT predictions calculated
from Eq. 8. The inset shows the results at large α1D. Figure 2b is a graph of the average
number of observed peaks in 2D separations (p2D) vs. the 2D saturation (α2D) for the same
constituent numbers and an aspect ratio of one (for which the edge effect is minimal [10]).
The simulation results are given by symbols; the curves are the edge-effect corrected SOT
predictions. The inset shows results at large α2D. The variation of  with saturation shown
in Figure 1d is included in both the 1D and 2D predictions. The predictions are in very good
agreement with simulations except at high saturation, where overlap is severe (e.g., p/m ̄ <
0.1).

Figure 2c contains selected simulation results from Figures 2a and 2b and shows that the
ratio of the average numbers of observed peaks to mixture constituents (p/m ̄) decreases more
rapidly with saturation in 2D separations than in 1D ones. This is consistent with theory. As
observed above, at the same saturation 1D and 2D separations have the same peak capacities
for the same number of mixture constituents. However, since , the 2D separation
space is proportionally smaller than the 1D one. Consequently, it is not surprising that the
2D separation is worse. The traditionally defined saturation is simply not a good metric for
comparing the separations.

It is useful to note that the 2D peak capacity of SOT is larger than the product of the first
and second dimension peak capacities by the geometrical factor, 4/π [32,33]. If the 2D peak
capacity of SOT were defined instead by this traditional product [33], then m ̄ constituents
would have the same 1D and 2D peak capacities when α1D equals πα2D/4, and the variable
α2D in Eq. 9 would be replaced by πα2D/4. Under this condition, however,  is still less
than  (results not shown), and the 1D and 2D peak-capacity units still have different
relative sizes. Unsurprsingly, p2D is still less than p1D.
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SOT results relative to effective saturation αe
Figure 3a is a plot of the effective saturation αe vs. the saturation α for 1D and 2D
separations, as calculated from Eqs. 3 and 7, and Figure 1d. In both cases, the effective
saturation increases rapidly with α but the 2D separations do so even more rapidly. Perhaps
the most striking result is the rapidity of the increase, with αe approaching 25 for the larger α
ranges in Figures 1d and 2. The choice of unit resolution (1Rs = 2Rs = 1) as the basis for the
αe values corresponds to traditional peak capacities that are 25 times smaller than the
average number of mixture constituents. Thus a coupling of SOT with αe can offer insight
into separations at very high peak crowding.

Figure 3b is a plot of the average minimum resolution  vs. the effective saturation αe.
Here, the values of  in Figure 1d are unchanged but are now referenced to αe instead of α.
Because αe,2D increases much more rapidly with α than does αe,1D (see Figure 3a),  is
now “stretched out” along the abscissa and is larger than  at any positive αe, in contrast
to the graphs in Figure 1d.

1D and unbounded 2D separations—Figure 3c shows the predicted fraction of
mixture constituents appearing as observed peaks, p/m ̄, vs. αe for 1D and unbounded 2D
separations. The graph is the exact analog of Figure 2c but the dependent variable (p/m ̄) is
referenced to αe instead of α. The solid curve for 1D separations was calculated from Eq. 8,
divided by m ̄; the dashed curve for unbounded 2D separations was calculated from Eq. 9,
divided by m ̄. In both cases the p/m ̄ predictions were not changed but only referenced to αe
using Figure 1d, and Eqs. 3 and 7. The two curves are essentially the same, with p2D/m ̄
being slightly smaller than p1D/m ̄ at large αe. The greatest deviation between the curves at
any αe is less than 0.037. The close agreement is obtained only by including the variation
with α of the functions  in Figure 1d, thus justifying the importance of their derivation.
This is shown in Figure 3d, which is identical to Figure 3c except that αe is calculated using
a fixed value of , set equal to its limiting value (0.725) at zero saturation. Here the p/m ̄
ratios diverge at even small αe, which has a much smaller range than in Figure 3c because 
is constant.

This is a most important and profoundly simple finding. It means that 1D and unbounded 2D
separations of randomly distributed peaks produce almost the same numbers of observed
peaks over a wide range in αe, when equal 1D and 2D traditional peak capacities calculated
at unit resolution are used. This assertion is supported by Figure 4, which shows selected
simulation data for 1D and 2D separations in Figures 2a and 2b. The data are referenced to
αe, expressed as the ratio of the average numbers of observed peaks to mixture constituents,
and superimposed on the curves first shown in Figure 3c. The results are almost identical at
the same αe and also agree well with predictions. The near equality of 1D and unbounded
2D separations means that, all other matters aside, researchers should choose the
separation method (1D vs. 2D) having the greater traditional peak capacity, regardless of
dimensionality. Usually, this will be the 2D separation.

This is arguably one of SOT’s most important insights, but its earlier predictions are not
wrong. In fact, Figure 2 shows they are correct. However, it is clear that the saturation α is a
much less useful metric than the effective saturation αe for comparing 1D and 2D
separations, due primarily to the undesirable properties of the average minimum resolution

. When these properties are removed by assimilating  into the effective saturation, the
near equality of 1D and unbounded 2D separations in terms of the number of observed peaks
becomes very evident.
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To some extent the new terminology “effective saturation” was modeled on the classical
chromatographic term, “effective plate number”. The virtue of the effective plate number is
that it allows chromatographic formats to be more evenhandedly compared in terms of
resolution than does the conventionally defined plate number. The resulting equation for
resolution and effective plate number involves an implicit dependence of retention factor
whereas the equation for resolution and plate number involves an explicit dependence on
retention factor [32]. This is very analogous to the situation existing in Eqs. 3 and 7, with
various functions of the effective saturation (e.g., the average number of observed peaks)
depending implicitly on .

A question of fundamental interest is, why are the p/m ̄ ratios for 1D and unbounded 2D
separations nearly equal at the same effective saturation? Perhaps the agreement is
testimony to the soundness of the traditional peak capacity as a metric. If this metric is
meaningful, then one might expect that the provision of equal numbers of “units” in which
to place 1D and 2D peaks should produce the same p/m ̄ ratio, provided that the distribution
of peaks is the same in both cases (e.g., random). This indeed is the case.

The fact that peak overlap in 1D and unbounded 2D separations is about the same at the
same effective saturation is very relevant to the work of Stoll et al. [1] discussed in the
Introduction. Other recent work by Stoll and the authors of this paper showed that the
manner in which the traditional 2D peak capacity is partitioned between the first and second
dimensions does not have much impact on the number of observed peaks [34]. Given these
results and our current findings, we conclude that 2DLC will produce more observed peaks
than fully optimized 1DLC, at least for separation times greater than 5 minutes. This may
not be the case in GC × GC as pointed out by Blumberg and coworkers [35].

Empirical fit to graphs of p/m̄ vs. αe—Although the curves in Figures 3a – 3c are
predicted from theory, they lack analytical expressions because the variation of  with α, on
which αe depends, was computed by the numerical solution to multiple equations [11,28].
However, they are described well by various empirical fits in the Appendix. Here, we
discuss the results of a fit of Eq. 10 to the p/m ̄ ratios in Figure 3c

(10)

where the β’s are fitting coefficients. Eq. 10 can easily be solved to obtain the traditional
peak capacities (scaled by resolutions), 1nc 1Rs and nc,2D 1Rs 2Rs, needed to separate m ̄
mixture constituents into p observed peaks. The solution, which is given in the Appendix, is
a remarkably simple and useful result for designing 1D and 2D separations. Figures 5a and
5b are graphs of p vs. the logarithm of the 1D and 2D traditional peak capacities for
different m ̄, as calculated from Figure 3c and the solution to Eq. 10. The agreement between
the numerical and analytical results is excellent. The analytical results extend to larger
traditional peak capacities, simply because the numerical results have a limited range. As an
example, the solution to Eq. 10 shows that nc,2D 1Rs 2Rs must be 1355 for an unbounded 2D
separation of m ̄ = 500 constituents to produce p = 375 observed peaks, and it must be
increased to about 3940 for the separation to produce 450 observed peaks. The
corresponding 1nc 1Rs values for a 1D separation are about 1210 and 3540. In these
calculations, both m ̄ and p are statistical averages, and some fluctuation about them is
expected in any given separation. The calculations and Figure 5 reaffirm a previous
prediction of SOT: the number of mixture constituents must be much less than the peak
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capacity, if most of them are to be resolved. Further a slightly higher peak capacity is
needed for a 2D separation than a 1D one.

Eq. 10 can be used to calculate relationships other than the p/m ̄ ratio. For example, the
average number of observed peaks p is the product of Eq. 10 and m ̄. In addition, the fraction
of the traditional 1D peak capacity used in producing 1D observed peaks, p1D/1nc, is the
product of Eq. 10 and 1Rsαe,1D (see Eq. 3). Similarly, p2D/nc,2D is the product of Eq. 10
and 1Rs 2Rs αe,2D (see Eq. 7).

Bounded 2D separations and the edge effect—Unfortunately, the edge effect
complicates the near equality of 1D and 2D separations, even when SOT is referenced to the
effective saturation. For example, the 2D simulation results in Figure 4 are slightly larger
than predicted by Eq. 9 due to a small edge effect. This is confirmed in Figure 6a, which is a
graph of the ratio of the average numbers of observed peaks to mixture constituents (p2D/m ̄)
vs. the 2D effective saturation αe,2D for the smallest constituent number, m = 100 (the edge
effect increases with decreasing m [10]). The solid curve represents the edge-effect corrected
prediction, whereas the dashed curve represents the unbounded 2D separation. At large
αe,2D, the former describes the results better than the latter.

The edge effect in 2D separations also increases as the aspect ratio departs from unity [10].
Figure 6b is a graph of p2D/m ̄ vs. αe,2D for the same m’s as before, but now the aspect ratio
is 40 (i.e., the peak capacity of one dimension is 40 times greater than the other). At large
αe,2D, the simulation results are larger than predicted for the unbounded 2D separation, as
represented by the dashed curve. They also show a small dependence on m. However, they
are described well by the edge-effect corrected theory, as shown in Figure 6c for average
constituent numbers m ̄ of 250 (solid curve) and 1000 (coarsely dashed curve). The
prediction for m ̄ = 250 does not span the full αe,2D range, because of limitations on theory
[10].

These differences are not surprising. Although in principle 1D separations are subject to an
edge effect, only the first and last peaks in the separation lack neighboring peaks on one
side, with minor consequences unless the constituent number is small [5]. In contrast, a
greater fraction of all the peaks are near boundaries in a 2D separation.

The edge effect can be substantial in severely undersampled comprehensive 2D (c-2D)
separations, in which the profiles of observed peaks are extensively broadened in the first
dimension. This occurs because severe undersampling can increase the aspect ratio,
particularly when 1nc is smaller than 2nc (e.g., by 5-fold or more) [34]. Such combinations
occur in 2DLC when an inefficient first-dimension separation (e.g., size exclusion or ion
exchange) is coupled to an on-line, efficient second-dimension separation (e.g., RPLC).
Recent work has shown that the average peak width 1w of first-dimension Gaussian peaks
after sampling is 4 <β> 1σ, where

(11)

and ts is the sampling time in the first dimension [34,36]. Since the effective saturation is
proportional to 1w (see Eq. 7), it is also proportional to <β> in c-2D separations of randomly
distributed peaks. Figure 6d is a graph of p2D/m ̄ vs. αe,2D, with <β> included in the
calculation of αe,2D. The symbols represent the average results of 1436 sets of simulated
c-2D separations (with 50 simulations per set) in a recent publication [34]. The c-2D
separations had aspect ratios of 40 or less and contained 100 to 550 randomly distributed
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peaks sampled over the dimensionless sampling periods, 0.2 ≤ ts/1σ ≤ 16. These periods
determined <β>, Eq. 11. The dashed curve is the result for an unbounded 2D separation. The
results show the same trends as in Figures 6a – 6c, with excellent agreement at small αe,2D
and small deviations at relatively large αe,2D.

Figure 6 shows that accurate predictions of the p2D/m ̄ ratio for 2D separations having large
edge effects cannot always be made from theory for an unbounded 2D separation, even
relative to the effective saturation. At large effective saturations, the actual p2D/m ̄ ratio can
exceed its unbounded 2D counterpart, and the edge-effect corrected theory must be used for
accuracy. Since this theory depends in a complex manner on m ̄, the effective saturation, and
the aspect ratio, it is not possible to construct a universal curve. The conditions under which
edge effects can be neglected will be described in a future publication. For now, we simply
will argue that the edge effect may not always require quantitative treatment, because it is
largest when the p2D/m ̄ ratio is small (see Figure 6). Since a small ratio indicates the
separation is poor, it may not be necessary to know with accuracy how poor it is: it may
suffice simply to know that it is poor. Therefore, researchers may find it convenient to use
Eq. 10 as an approximation to the p2D/m ̄ ratio even when the edge effect is large, with an
awareness that the prediction will be too small.

Effective saturation in correlated 2D separations—Commonly peaks in real 2D
separations are not entirely randomly distributed. Usually their coordinates are positively
correlated because the separation mechanisms in the two dimensions are not fully
independent. Based on recent work, we have every reason to think that the average number
of observed peaks in a correlated 2D separation and the effective saturation αe,2D are related
[34]. However, the exact relationship differs for different distributions of peak coordinates
and cannot be predicted at this time. The study of such relationships clearly is important but
is best deferred to another publication due to its complexity.

Conclusions
The prediction by Eqs. 8 and 9 of nearly equal p/m ̄ ratios for 1D and unbounded 2D
separations at equal effective saturations αe is one of the most important results thus far
obtained from SOT. It shows that these separations are almost identical, with one having
little or no advantage over the other in terms of the separation produced by a given
traditional peak capacity. In contrast, the separation power appears to be very different,
when interpreted relative to the usual SOT metric of peak crowding, the saturation α. We
think that the effective saturation is the metric that experimentalists prefer, as it is based on
traditional resolutions and peak capacities that are simple to measure. The ease with which
the empirical result, Eq. 10, can be used to predict the p/m ̄ ratio and related quantities (e.g.,
p, the ratio of p to the traditional peak capacity, and the traditional peak capacity needed to
separate m ̄ constituents into p observed peaks) should greatly assist experimentalists in
characterizing and optimizing separations having very high effective saturations (e.g., 25).

Extensions of SOT have been published to address shortcomings of Eqs. 8 and 9, such as the
variations of peak density and standard deviation that are common in 1D and 2D separations
[37,38]. Similar extensions can be made to Eq. 10 or equations in the Appendix. However,
to do so here would detract from the main theme of this paper, namely that relative to the
effective separation 1D and unbounded 2D separations of randomly distributed peaks are
essentially the same.

It is evident that simulations of 1D and 2D separations of randomly distributed peaks having
the same traditional peak capacity could have been developed long ago and used to establish
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their near equality on an empirical basis. However, the theoretical basis for the equality
would have been lacking. It is satisfying that SOT provides that basis.
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Appendix

Fits to curves in Figures 3a – 3c
Over the range, 0 ≤ αe ≤ 25, a simple useful fit to the graphs of p/m ̄ vs. αe in Figure 3c is
given by Eq. A1 and in the text by Eq. 10

(A1)

with β1,1D = 0.775 ± 0.002 and β2,1D = 0.0750 ± 0.0009 for 1D separations, and with β1,2D =
0.862 ± 0.002 and β2,2D = 0.111 ± 0.001 for unbounded 2D separations. The algebraic
differences between the curves in Figure 3c and Eq. A1 (i.e., the residuals) never exceed
0.0051. Eq. A1 is useful, because it can easily be solved for the scaled traditional peak
capacities, 1nc 1Rs and nc,2D 1Rs 2Rs, required to separate m ̄ constituents into p observed
peaks

(A2)

As p/m ̄ approaches unity, Eq. A2 approaches infinity, indicating that infinitely large
traditional peak capacities are required for total separation as we expect. The dashed curves
in Figure 5 were calculated from Eq. A2 and the β’s reported above.

Because the curves in Figure 3c are almost the same at any αe, some researchers may prefer
not to distinguish them. Eq. A1 can be fit to the average of their cubic splines (the curves
themselves cannot be averaged because their αe’s differ), with β1,ave = 0.837 ± 0.004 and
β2,ave = 0.081 ± 0.001 (the subscript, “ave”, refers to the average p/m ̄ ratio). The algebraic
differences between the average p/m ̄ ratio and the fit never exceed 0.013. Unsurprisingly,
the βave’s lie between the dimension-specific β’s reported above. Over the range, 0.10 ≤ p/m ̄
≤ 1, the traditional peak capacities predicted by Eq. A2 using the βave’s differ by at most
±10% from those predicted using the dimension-specific β’s.

The p/m ̄ ratios at different αe also can be estimated from fits that preserve the SOT equations
in their original form. Over the range, 0 ≤ αe ≤ 25, the variation of the average minimum
resolution  with αe in Figure 3b can be fit with

(A3)
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(A4)

with β3 = 0.1942 ± 0.0005, β4 = 0.930 ± 0.001, β5 = 0.351 ± 0.002, and β6 = 0.880 ± 0.002.
The algebraic differences between the curves in Figure 3b, and Eqs. A3 and A4, never
exceed 0.0060. Eqs. A3 and A4 can be combined with Eqs. 3 and 7 to express the saturation
α in terms of αe

(A5)

(A6)

Eqs. A5 and A6 approximate the curves in Figure 3a (although with reversed axes). They
can be substituted into Eqs. 8 and 9 to estimate p as a function of αe. The algebraic
differences between these p estimates, divided by m ̄, and the curves in Figure 3c never
exceed 0.0049. Eq. A6 also can be used to estimate p using edge-effect corrected theory.
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Figure 1.
a) Individual Gaussian peaks A, B, and C (——) and the detected signal from them (——).
b) As in a), but with peak A shifted until two observed peaks (maxima) are barely observed.
Axes are scaled as in a). c) As in b) but peak C is absent. d) Graph of the average minimum
resolution  vs. the saturation α for 1D separations ( ) and 2D separations ( ).
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Figure 2.
a) Graph of the average number of observed peaks in 1D separations (p1D) vs. the 1D
saturation (α1D) for numbers of randomly distributed constituents m equaling 100 (○), 250
(□), 500 (◇), 750 (△), and 1000 (∇). Curves are SOT predictions. Inset shows results at
large α1D. b) As in a) but for 2D separations having an aspect ratio of one. c) Graph of the
ratio of the average numbers of observed peaks to mixture constituents (p/m ̄) vs. the
saturation (α) of 1D and 2D separations. Selected simulation results in a) and b) are
represented by filled and open symbols, respectively. Symbol types are the same as in a) and
b), e.g., circles for m = 100.
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Figure 3.
a) Graph of the effective saturation αe vs. the saturation α for 1D separations (αe,1D) and 2D
separations (αe,2D). b) Graph of the average minimum resolution  vs. the effective
saturation αe for 1D separations ( ) and 2D separations ( ). c) Graph of the p/m ̄ ratio
vs. the effective saturation αe for 1D separations (——; calculated from Eqs. 3 and 8, and
Figure 1d) and unbounded 2D separations (- - -; calculated from Eqs. 7 and 9, and Figure
1d). d) As in c), but with αe determined by .
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Figure 4.
Graph of the ratio of the average numbers of observed peaks to mixture constituents (p/m ̄)
vs. the effective saturation (αe). Selected simulation results for 1D separations in Figure 2a
and 2D separations in Figure 2b are represented by filled and open symbols, respectively.
Symbol types are the same as in Figure 2. The curves for the p/m ̄ ratio in Figure 3c are
shown.
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Figure 5.
a) Graph of p1D vs. log (1nc 1Rs) for 1D separations calculated from Figure 3c (——) and
the solution to Eq. 10 (- - -), with m ̄ = 100, 250, and 500. b) As in a), but a graph of p2D vs.
log (nc,2D 1Rs 2Rs) for unbounded 2D separations.

Davis and Carr Page 19

Anal Chem. Author manuscript; available in PMC 2011 October 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Graphs of the ratio of the average numbers of observed peaks to mixture constituents (p2D/
m ̄) vs. the effective saturation (αe,2D). The prediction for an unbounded 2D separation is
shown (- - -). a) Circles are simulation results in Figure 2b for m = 100; solid curve is the
edge-effect corrected prediction for m ̄ = 100. Aspect ratio: one. b) As in a) but for
simulation results having an aspect ratio of 40. Symbols have the same meaning as in Figure
2b. c) As in b) but for m’s of 250 and 1000, with edge-effect corrected predictions for m ̄ =
250 (——) and m ̄ = 1000 (– –). d) As in a), but with the effective saturation αe,2D including
the peak broadening factor < β>, Eq. 11. Circles are average results from 1436 sets of
simulated c-2D separations with 100 to 550 randomly distributed peaks, aspect ratios of 40
or less, and ts/1σ ratios between 0.2 and 16 [34].
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