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Abstract

Congenital deficiency of the mitochondrial respiratory chain complex I (CI) is a common defect of oxidative phosphorylation
(OXPHOS). Despite major advances in the biochemical and molecular diagnostics and the deciphering of CI structure,
function assembly and pathomechanism, there is currently no satisfactory cure for patients with mitochondrial complex I
defects. Small molecules provide one feasible therapeutic option, however their use has not been systematically evaluated
using a standardized experimental system. In order to evaluate potentially therapeutic compounds, we set up a relatively
simple system measuring different parameters using only a small amount of patient’s fibroblasts, in glucose free medium,
where growth is highly OXPOS dependent. Ten different compounds were screened using fibroblasts derived from seven CI
patients, harboring different mutations. 5-Aminoimidazole-4-carboxamide ribotide (AICAR) was found to be the most
beneficial compound improving growth and ATP content while decreasing ROS production. AICAR also increased
mitochondrial biogenesis without altering mitochondrial membrane potential (Dy). Fluorescence microscopy data
supported increased mitochondrial biogenesis and activation of the AMP activated protein kinase (AMPK). Other
compounds such as; bezafibrate and oltipraz were rated as favorable while polyphenolic phytochemicals (resverastrol,
grape seed extract, genistein and epigallocatechin gallate) were found not significant or detrimental. Although the results
have to be verified by more thorough investigation of additional OXPHOS parameters, preliminary rapid screening of
potential therapeutic compounds in individual patient’s fibroblasts could direct and advance personalized medical
treatment.
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Introduction

The congenital disorders of mitochondrial oxidative phosphor-

ylation (OXPHOS) are common inborn errors of metabolism,

with an incidence of 1:5000–8000 live births [1,2]. Among these,

deficiency of mitochondrial respiratory chain complex I (NADH

CoQ oxidoreductase, EC 1.6.5.3) is the most common and

accounts for one-third of all patients referred for OXPHOS

evaluation [3].

Complex I (CI), is the first complex of the mitochondrial

respiratory chain. It is a large multimeric complex composed of 45

structural subunits; seven are encoded by the mitochondrial DNA

(mtDNA) while 38 structural subunits and a number of CI

assembly factors are all nuclear encoded [4]. Some of the subunits

are post transcriptionally modified by phosphorylation, acetylation

or glutathionylation [5–7].

Disease causing mutations have been identified in all mtDNA

encoded subunits as well as in a number of the nuclear encoded

complex I subunits and assembly factors [8,9].

The clinical phenotype of complex I deficiency is varied and

includes severe neonatal lactic acidosis, Leigh disease, cardiomy-

opathy-encephalopathy, hepatopathy-tubulopathy, leukodystro-

phy with macrocephaly optic atrophy, cerebellar ataxia, retinitis

pigmentosa and growth retardation [10]. The extensive damage

observed in patients with complex I deficiency is most probably

due to energy depletion and to over- production of reactive oxygen

species (ROS) with subsequent initiation of the apoptotic cascade

[11–13].

Despite major advances in the biochemical and molecular

diagnostics and the deciphering of the CI structure, function,

assembly and pathomechanism, there is currently no satisfactory

cure for patients with mitochondrial complex I defects. Small

molecules provide one feasible therapeutic option, however their

use has not been systematically evaluated using a standardized

experimental system, and treatment has been based on ‘‘trial and

error’’ [14–16]. Vitamins (vitamin K, riboflavin, B1,B2), cofactors

(CoQ, carnitine, creatine), and ROS scavengers (vitamin E,

CoQ10), have all been administered to improve OXPHOS, by

providing alternate substrates, removing lactate accumulation (by

dichloroacetate) and ameliorating oxidative damage (reviewed by

Dimauro and Mancuso) [15–16]. The favorable effect of

Coenzyme Q10 supplementation for CoQ deficiency is undispu-

PLoS ONE | www.plosone.org 1 October 2011 | Volume 6 | Issue 10 | e26883



table however the efficacy of riboflavin has been demonstrated

only in a few cases of complex I deficiency [11,17]. For other

compounds, results have been equivocal or were reported

anecdotally. In recent years, a large number of compounds with

therapeutic potential have been described. These include poly-

phenolic phytochemicals such as resveratrol, grape seed extract,

green tea extract and genistein. Resveratrol is a natural

phytoalexin found in a wide variety of plant species, including

grapes. Among its numerous properties, resveratrol has been

reported to have anti-oxidant activities and to activate the genetic

expression of key genes in energy metabolism such as peroxisome

proliferator-activated receptor gamma coactivator 1 alpha

(PGC1a). Resveratrol and grape seed extract (a proanthocyanidin)

were demonstrated to have beneficial effects on mitochondrial

function in several experimental models [18–20]. Green tea

polyphenols attenuated mitochondrial dysfunction in glucose

deprived glial cell cultures [21]. Genistein is a soy derived

isoflavone which has been evaluated in substrate reduction therapy

for mucopolysaccharidoses and was also reported to induce

mitochondrial biogenesis [22–23].

In addition to polyphenols, other substances such as compounds

enhancing energy metabolism, antioxidants and chemical chap-

erones are potentially beneficial.

Representative of this type are 5-Aminoimidazole-4-carboxa-

mide ribotide (AICAR), oltipraz, bezafibrate and sodium phenyl-

butyrate.

AICAR is a pharmacological activator of AMP activated protein

kinase (AMPK).This heterotrimeric protein complex plays a key role

in the regulation of energy homeostasis. The kinase is activated by an

elevated AMP/ATP ratio caused by cellular and environmental

stress, such as heat shock, hypoxia and ischemia. AMPK regulates

energy expenditure by modulating NADH+ dependent-type III

deacetylase SIRT1, resulting in the deacetylation of downstream

targets including PGC1a forkhead box O1 and 3 transcription

factors [24]. Notably, Thr172 phosphorylation on the AMPK

protein is a prerequisite for its activation [25]. Oltipraz is a 1,2-

dithiole-3-thione compound with antioxidant properties. Oltipraz

has also been demonstrated to reduce apoptosis in cells with

chemically inhibited CI by exerting its cytoprotective effect though

AMPK [26–27]. Bezafibrate is an agonist of peroxisome proliferator-

activated receptors (PPARs) stimulating oxidative metabolism and

has a documented positive effect on mitochondria. On the other

hand, fenofibrate was reported to have a negative effect on CI

[16,28–29]. Sodium phenyl butyrate is a, histone deacetylase

(HDAC) inhibitor, affecting protein phosphorylation and relief of

endoplasmic reticulum stress. Although the mechanism of action of

this compound is poorly defined, it has been found to be beneficial in

a number of diseases including cancer, neurodegenerative diseases

and metabolic diseases [30–33]. All of the above mentioned

compounds have been documented to exert positive effects, however

to our knowledge, they have not been systematically screened in

OXPHOS deficient patient’s cells together in the same system.

The objectives of this research were two-fold; to develop an in

vitro system for the rapid screening of multiple compounds using a

small amount of fibroblasts from individual patients and to identify

compounds with a therapeutic potential for mitochondrial

complex I deficiency.

Materials and Methods

Subjects
Fibroblasts previously derived (with informed consent, approved

by the IRB), from six patients with mitochondrial respiratory chain

complex I (CI) deficiency, were included in the study. Most of

these patients have been previously described and all harbored

known mutations in different nuclear encoded complex I subunits:

NDUFS2[34,8]. NDUFS4 or assembly factors; C6ORF66 (NDU-

FAF4)[35], C20ORF7[36], FOXRED1 [37,8] B17.2.L (NDU-

FA12L)[38]. Their clinical and biochemical data are briefly

summarized in Table 1.

Tissue cultures
Fibroblasts were maintained in DMEM (Biological Industries,

Kibbutz Beit Haemek, Israel) medium containing 4.5 g glucose

per liter and supplemented with 10% fetal calf serum, 50 mg/ml

uridine, and 110 mg/ml pyruvate (GLU, permissive medium) at

37uC, 5%CO2.

For assessment of various compounds, 36103 cells/100 ml were

seeded in triplicate on three identical 96 well microtiter plates. The

following day, the medium was removed, the wells were washed

once with phosphate buffered saline (PBS) and replaced with

100 ml GLU medium or a restrictive glucose-free DMEM medium

(Biological Industries, Kibbutz Beit Haemek, Israel) supplemented

with 10% dialyzed fetal calf serum and 5 mM galactose (GAL)

with or without additives as follows: 0.5 mM AICAR (Tocris,

Bioscience, Bristol UK); 50 mM Genistein (GENI) (Cayman

Chemicals Ann Arbor MI USA; 100 mM, Bezafibrate (BEZA);

10 mM Oltipraz (OLTIP); 5uM Resveratrol (RSV); 10 uM

Epigallocatechin gallate (EGCG)(Sigma-Aldrich, Steinheim, Ger-

many) or grape seed extract (GSE) (Ttianjin Jianfeng Natural

Products, China). 72h post-treatment the tissue cultures were

analyzed for growth, reactive oxygen species (ROS) and ATP.

(Biological Industries, Kibbutz Beit Haemek, Israel).

Assays
Cell growth was measured by a colorimetric method based on

the staining of basophilic cellular compounds (mainly nucleic

acids, independent on redox status) with methylene blue at

A620nm, as modified by Jones et al [39]. For the evaluation

methylene blue assay (MB) control cells were serially diluted in

GLU medium, seeded in six wells. After 48h triplicate wells were

measured by MB and triplicate wells were subjected to viable

count by trypan blue. For evaluation of time course, 36103

control cell and cells from a patient were seeded in GLU

medium. The following day the medium was replaced either with

fresh GLU or GAL. The amount of cells was quantified by MB

after 24 h, 48 h, 72 h and 144 h (medium was replaced with

fresh after 72 h).

The intracellular ROS production was measured using 29,79-

dichlorodihydrofluorescein diacetate (DCF) (Biotium Harvard CA

USA)[40]. Briefly, growth medium was removed and replaced by

100ul/well of 10 mM DCF in PBS-Ca2+ Mg2+ (PBS containing

0.9 mM calcium chloride and 0.5 mM magnesium chloride) and

the plates were incubated for 20 min at 37uC, 5%CO2. After

removal of DCF, the ROS production was monitored for 20

minutes in 100ul PBS-Ca2+ Mg2+ at lex 485 nm and lem 520 nm.

ATP content was measured by luciferin-luciferase using the

ATPliteH luminescence assay system according to the manufac-

turer’s instruction (Perkin Elmer Waltham MA, USA).

Luminescence, fluorescence and absorbance measurements

were performed with a Synergy HT microplate reader (Bio-Tek

instruments, Vinoosky VT, USA).

Relative fluorescence units (RFU) and relative luminescence

units (RLU) were calculated by normalizing to growth as

measured by MB in parallel wells for each separate experiment.

The mean of all experiments was calculated and compared to that

of GAL without additive (containing vehicle only). All experiments

were performed in triplicate wells on at least two separate
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occasions. Statistical significance (p,0.05) was calculated by 2-

tailed student’s t-test. Data were also visualized using the

matrix2png software [41]. http://www.bioinformatics.ubc.ca/

matrix2png/.

Fluorescence microscopy
Fibroblasts, were seeded at 3.56104 cells/ml in GLU medium.

The following day the medium was replaced with GLU, GAL or

GAL containing 0.5 mM AICAR for 72hrs. For assessment of

Table 1. Patient data.

patient/
mutated gene C20ORF7 NDUFS2 NDUFS4

C6ORF66
(NDUFAF4) FOXRED1 B17.2L (NDUFA12L)

age of onset 1 year 6 months 3 months birth 4 months 8 months

clinical details Leigh’s
syndrome,
mild lactic
acidosis, died
at 6years

optic atrophy, hypo
dense basal ganglia,
cardio-myopathy,
severe lactic acidosis,
died at 2years

lactic acidosis,
seizures

encephalo-myopathy,
severe lactic acidosis,
died at 2 months

Micro-cephaly,
encephalo-pathy,
lactic- acidosis

hypotonia, motor delay,
horizontal nystagmus,
bilateral optic atrophy,
abnormal MRI, mild
lactic acidosis

residual muscle
enzymatic
activities

CI 54% CIV 38%
CII,III within
normal range

CI 17% C II-V
within normal
range

CI 25% C II-V
within normal
range

CI 14% C II-V within
normal range

CI 7% C II-V within
normal range

CI 24% C II-V within
normal range

reference 36 34,11 unpublished 35,12 37 37,13

doi:10.1371/journal.pone.0026883.t001

Figue 1. Measurement of growth, ROS and ATP in control and patient fibroblasts. Fibroblast from control and patient (NDUFS2) were
grown in microtiter wells in GLU, GAL or GAL supplemented with AICAR. The amount of control cells, measured by methylene blue (MB) at A620 was
compared to viable count by trypan blue at 72h (A). Growth of control and patient cells was measured at 24,48,72h and 144h by MB at A620 (B,C).
Growth with AICAR was assessed at 72h (C). ROS measured by DCF at 72h is expressed as relative fluorescent units (RFU) divided by the amount of
cells measured by MB at A620 (D). ATP was measured at 72h by luciferin-luciferase is expressed as relative luminescence units (RLU) divided by the
amount of cells measured by MB at A620 (E). Values are presented as mean of triplicates +/- standard deviation. *p,0.05.
doi:10.1371/journal.pone.0026883.g005
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mitochondrial content and Dy, the cells grown in 35 mm glass

bottom tissue culture, plates and incubated with 200 nM Mito-

Tracker Green FM (MTG) and 50 nM tetramethylrhodamine ethyl

ester (TMRE) (Molecular Probes Eugene, Oregon USA), for 90 and

45 minutes respectively at 37uC, 5%CO2 [42]. For phospho-AMPK

(pAMPK) immunocytochemistry and Mitotracker stain, cells were

grown on fibronectin coated coverslips and incubated with 1.5 mM

MitoTracker Red CM-H2XRos (MTR, Molecular Probes Eugene,

Oregon USA) for 45minutes at 37uC, 5%CO2, chased for 30

minutes with the respective growth medium, fixed with 4%

paraformaldehyde in PBS, permeabilized with 0.25% Triton X-

100, stained with 1:75 Phospho-AMPKa-(Thr172) primary anti-

body (Cell Signalling Technology Inc.Denver MA,USA) and

subsequently, with Dylight 488 conjugated anti rabbit secondary

antibody (Jackson Thermo Scientific, Rockford IL,USA). Cells were

visualized by fluorescent confocal microscopy (1064). Image

analysis was done with MetaMorph image analysis software. All

micrographs in a series were taken under the same conditions.

Oxygen consumption
Oxygen consumption rate (OCR) was measured using an XF24

extracellular flux analyzer (Seahorse Biosciences, North Bill-

eric,MA,USA). Fibroblast were seeded at 12- 146103 cells/well

in 300 ml in GLU medium on an XF 24 well plate at 37uC,

5%CO2. The following day the medium was replaced with GLU,

GAL or GAL containing 0.5 mM AICAR. After 72hrs the growth

medium was changed to 500 ml unbuffered DMEM medium with

the same constituents as above (GLU, GAL or GAL with AICAR)

and incubated at 37uC for 1h for equilibration before the

measurements. After 10 minutes of OCR baseline measurements,

50 ml carbonylcyanide-3-chlorophenylhydrazone (CCCP) was

injected to reach a working concentration of 20 mM and the

maximal OCR was measured. Background OCR was measured

after injection of rotenone and antimycin to a final concentration

of 5 mM each. After the experiment, cell content was estimated by

MB and OCR was calculated as OCR minus background divided

by MB.

Figure 2. The effect of various compounds on growth, ROS and ATP in control and patient fibroblasts. Fibroblast from three separate
controls and seven patients (C20ORF7,NDUFS2,NDUFS4,C6ORF66, FOXRED1 and B17.2L) were grown in microtiter wells in GLU or GAL medium or in
GAL medium, supplemented with one of eight various compounds (BEZA,AICAR,OLTI,SBP,RZV,GENI,EGCG,GSI) in GAL for 72hrs. Growth was assessed
by MB (A). ROS was measured by DCF and normalized to MB (B). ATP was measured by luciferin-luciferase and normalized to MB (C). Values (A-C) are
presented as relative values graphically presented as heatmaps representing the mean of triplicates performed on at least 2 separate occasions.
Growth in GAL without additives was set as the value of 1(black). Values , 1 are presented in increasingly green and values .1 in increasingly red. All
parameters are summarized in (D) and evaluated as a significantly positive (+), negative (2) or nonsignificant (ns) effect. Increased values for growth
and ATP were regarded as positive while negative for increased ROS. Positive only is shaded in red, negative only in green, nonsignificant in dark grey
and mixed responses in gray.
doi:10.1371/journal.pone.0026883.g001
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Results

All patients presented in infancy, were severely affected and

diagnosed with isolated CI deficiency in muscle, with the

exception of patient C20ORF7 who had a combined partial

deficiency of both CI and CIV. All patients were molecularly

defined with mutations either in a nuclear encoded CI subunit or

in a CI assembly factor (Table 1). Fibroblasts from these patients

were initially assessed for growth, ROS production and ATP

content. Preliminary experiments demonstrated that 36103 cells/

well was sufficient to obtain clear readings and reproducible results

(Fig. 1A). As it was not possible to measure all parameters in the

same well, 3 identical plates treated in parallel were measured in

each experiment. Still it was possible to screen ten variables in

triplicate wells using less than 36105 cells (less than a T25

confluent flask). In order to relate values to cell content, we initially

evaluated the MB assay and compared those values to values

obtained by viable counts. There was a linear relationship between

the number of cells and methylene blue absorption (Fig. 1A). As

MB staining is much more feasible to perform than viable

counting of hundreds of microtiter wells, we therefore continued to

evaluate growth by the MB assay. Accordingly, all RFU and RLU

values were normalized to MB in order to compare values per cell

content. To establish a suitable time frame for the experiments we

compared the time course of growth in GLU and GAL. While

patient’s cell growth was comparable to control cells in GLU

media, impaired growth of patient’s cells in GAL media was

evident after 72h (Fig. 1B). Therefore, 72h was chosen as the

optimal time frame for examining compounds.

A typical experiment with control and patient fibroblasts is

depicted in Fig. 1C–D. Since it is difficult to present and summa-

rize a large number (1000,) of measurements, the summary of all

data are depicted as a heatmaps in Fig. 2 A–C. (The values on

GAL were set at 1 in the middle of the scale (black). Values less

than 1 were increasingly green and higher then 1 increasingly red)

The growth in GAL medium relative to GLU was slightly

decreased in control fibroblasts while growth was markedly

decreased in all patients cells (Fig. 2A). These results were

anticipated, as GAL medium is devoid of substrates for glycolysis

and therefore growth is highly dependent on the oxidation of fatty

acids (derived from FCS) by intact OXPHOS for energy

production [43]. Intracellular ROS production was generally

increased in GAL medium. The increase was evident in one

control and four of the patients (Fig. 2B). In patient NDUFS2 the

ratio was reversed, presumably because of the severe growth defect

in GAL (Fig. 1 B). This is also be the reason for the very low ATP

Figure 3. The effect of AICAR on mitochondrial content and Dy. Control 1 and an NDUFS2 patient’s fibroblasts were grown in GLU or GAL
medium and in GAL supplemented with 0.5 mM AICAR (GAL+AICAR) for 72 hrs. Cells were then incubated with TMRE (red) and Mitrotracker green
(green) and examined by confocal fluorescent microscopy. A: depicts a representative micrograph TMRE stain in red and MTG stain in green. The
graphs represent green intensity per cell (B) and red:green ratio (C), +/2 standard deviation (*p,0.05). All micrographs were taken under the same
conditions.
doi:10.1371/journal.pone.0026883.g002
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content in GAL medium (Fig. 1C). Notably all control cells had

higher ATP content in GAL medium, reflecting the higher

efficiency of ATP production by OXPHOS than by glycolysis.

This was not the case for four of the six patients and reflects the CI

defect. Notably cells with a high ATP content in GAL were

derived from controls or patients C2ORF7 and NDUFS4 with a

relatively high residual CI activity in muscle (Table 1, Fig. 2C).

Next, the effect of various compounds was examined. The

compounds tested were polyphenols, and other compounds with

reported effects on ROS production and mitochondrial biogenesis.

Untreated cells in the presence of vehicle (DMSO), cells grown in

GAL and control cells were included in each experiment. It should

be noted that the examination of the effect of different compounds

required a prior set of experiments initially based on data available

from the literature, in order to optimize conditions with respect to

medium and concentration. As these experiments required larger

quantities of cells, they were performed in normal cells and in

some of the patient’s cells. From the preliminary data, we

concluded that the effect of additives was best demonstrated under

stressful conditions i.e in GAL medium compared to growth with

vehicle only in the same medium (Fig. 1B). The effect of each

compound on each cell on each of the above parameter is

presented in Fig. 2A–C. Many compounds either lacked any effect

or had a beneficial effect on growth. For example, bezafibrate

increased growth in C20ORF7 approaching that in GLU

medium. On the contrary, genistein, EGCG and grape seed

extract had a negative effect on growth. Therefore, the

investigation of these compounds was not continued in the

remaining cells (Fig. 2A). Intracellular ROS production was also

favorably affected by many compounds, although mostly by

bezafibrate and AICAR. The only compound with an overall

negative effect on ROS was sodiumphenylbutyrate (Fig. 2B).

AICAR exerted a positive effect on ATP content in four of the six

patient cells and one control cell line. Other cells were not affected

with the exception of the negative effect on NDUFS4 (Fig. 1C,

Fig. 2C).

In order to create a simplified overview, we rated a compound

as beneficial when it increased growth, ATP and decreased ROS

compared to the values on GAL. The evaluation was designated

with a plus sign for each favorable parameter while a negative

effect was designated with a minus sign. When no parameter was

significantly altered by a compound it was designated non

significant (ns). Mixed effects were designated plus/minus

(Fig. 2D). To summarize, AICAR was the most favorable

compound with positive effects on several parameters in five out

of six patient cells. Bezafibrate was also beneficial to two patient’

cells but to a lesser extent. Interestingly, Otipraz had a beneficial

effect on half the patient’s. Although sodium phenylbutyrate

slightly increased ROS in some cells, the overall score was positive

in fifty percent of the patients (Fig. 2D). No positive but many

mixed and some negative effects were observed with resveratrol,

EGCG and grapeseed extract. The effect of genistein was unclear

since it had a positive effect on only FOXRED1 cells while

negatively affected the control.

In order to further investigate the effect of AICAR we

conducted an extended study of a representative cell (NDUFS2)

to include the evaluation of mitochondrial content and mitochon-

drial Dy by fluorescence microscopy and oxygen consumption

(Figs. 3 and 4). Mitochondrial content estimated by MTG was

found slightly but significantly increased in both control and

patients cells in GAL medium. AICAR induced a clear increase in

mitochondrial content only in the patient’s cells (Fig. 3A and B).

The alteration of TMRE stain relative to mitochondrial content in

the presence of AICAR was minor and not significant, indicating

that Dy was not substantially affected (Fig. 3A and C). While

uncoupled oxygen consumption was increased in GAL medium,

AICAR had no significant effect (Fig. 4A and B) although the basal

uncoupled OCR was somewhat, not significantly relative to basal

OCR in the patient’s cells (Fig. 4B).

To examine to the downstream effect of AICAR, we performed

immunostaining with an antibody towards Thr172 phosphorylat-

ed AMPK (pAMPK) while co-staining with MTR (Fig. 5A–C).

Figure 4. Oxygen consumption. Control 1 (A) and NDUFS2 patient’s (B) fibroblasts were grown in GLU or GAL medium and in GAL supplemented
with 0.5 mM AICAR (GAL+AICAR) for 72 hrs. Media were changed to unbuffered media and oxygen consumption rates (OCR) were measured by an
XF24 instrument. Basal OCR was measured (basal) before the addition of uncoupler and maximal rate (CCCP) after. The results are presented as rates
subtracted by non mitochondrial oxygen consumption (in the presence of rotenone and antimycin) and normalized to cell amount measured by
methylene blue (MB)at A620, +/2 standard deviation. *p,0.05.
doi:10.1371/journal.pone.0026883.g003
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While clearly present in control cells, pAMPK stain was very weak

in NDUFS2 cells grown on GLU (Fig. 5A and B). AICAR

supplementation caused a marked and significant increase of

pAMPK in the patients cells. Mitotracker stain was increased in

patient’s cells on GAL but approached control values in the

presence of AICAR (Fig. 5A and C).

Discussion

The search for therapeutic agents for mitochondrial complex I

deficiency and OXPHOS defects in general, is seriously hampered

by the lack of a standardized model system for evaluating

treatment. Many studies focused on small groups of patients

simultaneously treated with several agents leading to difficulties in

interpreting data and patient responses to therapy in vivo.

Documented in vitro assays usually focus on a specific compound

or a specific parameter using a relatively large sample size (11–

13,17).

We developed an accessible and relatively simple system in 96

well plates assessing a number of different parameters by the use of

one instrument. This enabled us screen multiple compounds on a

small amount of fibroblasts simultaneously while measuring a

number of different parameters. The small sample size allowed the

use of primary cells which is advantageous not only for practical

reasons but also because immortalized cells frequently do not

retain their original phenotype and thus respond differently than

primary cells (personal experience).

The fibroblasts for this study were chosen to represent CI

deficiency, the most common OXPHOS defect. The cells were

derived from patients with different CI defects, in order to assess

individual responses to different compounds. Indeed the responses

differed in some instances between the patients. This is exemplified

by bezafibrate which was beneficial for NDUFS2 ATP content but

not for C20ORF7, emphasizing the need to evaluate compounds

on an individual basis. Individual evaluation is especially

important when attempting to treat disorders where the

mitochondrial function is already a priori compromised. The

necessity to measure different parameters was evident when

observing the effect of the various polyphenolic cytochemicals

(resveraterol, EGCG, grape seed extract and geneticin) included in

the study. Generally they decreased ROS formation which is

advantageous, but concomitantly decreased growth and ATP

content. Although some of these results contradict studies

reporting positive effects previously mentioned in the introduction,

Figure 5. The effect of AICAR on pAMPK and mitotracker red stain in control and patient fibroblasts. Control and patient fibroblasts
were grown on coverslips in GLU or GAL medium and in GAL supplemented with 0.5 mM AICAR (GAL+AICAR) for 72 hrs. Cells were than incubated
with mitotracker red (MTR), fixed, stained with anti pAMPK antibodies and visualized by fluorescent (pAMPK) secondary antibodies. The coverslips
were examined by confocal fluorescent microscopy (10640). A: depicts a representative migrograph of pAMPK stain in green and MTR stain in red.
The graphs represent green intensity per cell (B) and red intensity per cell (C) +/2 standard deviation (*p,0.05). All micrographs were taken under
the same conditions.
doi:10.1371/journal.pone.0026883.g004
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they are actually in accord with other studies reporting that some

polyphenols can induce cancer cell death though mitochondrial

membrane depolarization and apoptosis [44,45]. On the other

hand, AICAR was found to be the most promising compound with

no detected negative effect and an overall positive score in most of

the patient’s cells. The positive effect on mitochondrial biogenesis

was also clearly visible by the MTG stain while the Dy was not

affected. Immunocytochemistry also supported activation of

AMPK. Remarkably AICAR has been given intravenously to

humans in clinical trials for the treatment of hyperinsulinemia

[46]. Recently AICAR was also reported to be favorable in

cytochrome c oxidase deficiency [47,48].

Apparently there is a discrepancy between the mixed effect of

resveratrol and the positive effect of AICAR since they both

activate the same SIRT1, PGC1a axis pathway [18,24,49]. The

underlying mechanism for this inconsistency remains unclear and

requires further thorough investigation. Nevertheless, we suggest

that the positive effects of resveratrol on patients cells might be

masked by some additional negative effects. Notably, resveratrol

was reported to inhibit the mitochondrial FoF1 ATPsynthase

(complex V) and oxygen consumption while depleting ATP

content [50,51]. In fact, resveratrol alone is suggested to act as

an anticancer compound by targeting mitochondria through the

activation of pro-apoptotic pathways [52]. It is therefore

conceivable that resveratrol might exert a negative effect on some

parameters on some individual patient’s cells with an a priori

mitochondrial dysfunction. Apart from AICAR, oltipraz and

bezafibrate disclosed a general positive effect, but to a lesser extent.

Sodium phenylbutyrate increased ATP but also caused a slight

increase of ROS and therefore the use of this compound in

OXPHOS defects could be questionable.

We detected only a partial correlation between individual

responses in fibroblasts and residual enzymatic complex I activity

in muscle, genotype or clinical presentation (Table and Fig. 2).

Moreover, the clinical correlation between fibroblasts responses

and patients response to treatment has only been proved in a few

instances and further correlation studies are warranted [11,17].

Nevertheless patient’s fibroblasts provide an accessible tissue for

testing individual responses to additives and drugs [48].

Taken together, we present an accessible and relative simple

system using a small amount of patient’s fibroblasts for screening

potential treatments in OXPHOS defects. This enables the

screening to be performed on an individual basis while measuring

a number of different parameters which are not limited to the

measurement of a specific respiratory chain complex. Conse-

quently the system has a wide applicability, and could be used for

other defined and undefined OXPHOS defects. The authors are

aware that this system is suitable for preliminary screening only,

and that the results will have to be verified by precise investigation

of additional parameters and mechanisms by other methods

measuring OXPHOS by enzymatic assays and expression analysis

on the protein and mRNA levels. Nonetheless these assays are

more complex and require a larger number of cells making them

much less applicable for screening purposes. We propose that

rapid preliminary screening of potential therapeutic compounds in

individual patient’s fibroblasts could direct and advance person-

alized medical treatment.
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