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Abstract

NMB0315 is an outer membrane protein of Neisseria meningitidis serogroup B (NMB) and a potential candidate for a broad-
spectrum vaccine against meningococcal disease. The crystal structure of NMB0315 was solved by single-wavelength
anomalous dispersion (SAD) at a resolution of 2.4 Å and revealed to be a lysostaphin-type peptidase of the M23
metallopeptidase family. The overall structure consists of three well-separated domains and has no similarity to any
previously published structure. However, only the topology of the carboxyl-terminal domain is highly conserved among
members of this family, and this domain is a zinc-dependent catalytic unit. The amino-terminal domain of the structure
blocks the substrate binding pocket in the carboxyl-terminal domain, indicating that the wild-type full-length protein is in
an inactive conformational state. Our studies improve the understanding of the catalytic mechanism of M23
metallopeptidases.
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Introduction

Neisseria meningitidis, a commensal bacterium found in the human

nasopharynx, has caused global health concerns owing to its

potential to cause meningitis and sepsis. Pandemic outbreaks of

meningococcal disease (MD), which have been reported world-

wide, can be devastating, with a mortality rate of approximately

10% in many countries [1,2]. Because of the rapid progress of the

disease after its onset, early prevention seems to be indispensable

in seeking a cure, leading to a global research effort to create a

vaccine. The majority of MD is caused by 6 of the 13 serogroups

of Neisseria meningitidis, as classified according to the polysaccharide

capsule surrounding the bacterium [3,4]. Despite a number of

specific vaccines that have been developed against these

pathogens, frequent antigenic variation hampers the generation

of a broad-spectrum vaccine. The outer membrane proteins

(OMPs) of N. meningitidis, which have been implicated in bacterial

virulence, can effectively induce an immune response and thus are

a good antigen candidate for vaccine design [5]. For such reasons,

a number of OMPs have been identified and studied, including

NMB0315, a putative metallopeptidase.

NMB0315 is an OMP identified in Neisseria meningitidis as

belonging to serogroup B. The development of a universal vaccine

against this group remains a challenge [6]. Although few studies

have been dedicated to the uncharacterized protein NMB0315,

sequence similarities suggest that it is a lysostaphin-type metallo-

peptidase [7,8] belonging to the M23 peptidase family [9].

Proteins in this family are characterized by a conserved active site

containing an HXH motif [8,10], and all are zinc-dependent.

They have been reported to have a hydrolytic specificity for a

glycine-glycine peptide bond [11,12,13]. Over the past few

decades, many members of the M23 metallopeptidase family have

been identified, and fine structure analysis has been performed for

some. Although the proteolytic mechanism of the conserved Zn2+-

containing active site has been proposed and discussed, the

diversity of the overall structures has resulted in confusion

regarding their functional similarity in different bacteria

[14,15,16]. Moreover, it has been reported that some of the

Zn2+-dependent peptidases were synthesized as proenzymes and

thus are inactive against the preferred substrates, such as

polyglycine peptides [14,17,18].

In Gram-positive bacteria, such as Bacillus subtilis, lysostaphins

are involved in the degradation of cell wall peptidoglycan during

cell growth and separation [19,20]. However, in Gram-negative

bacteria, the peptidoglycan cell wall is directly crosslinked to each

other, and thus, it lacks the glycine-rich linker targeted by these

peptidases [21]. In Pseudomonas aeruginosa, LasA, which contributes

to the virulence of P. aeruginosa, has been confirmed to be an M23

peptidase and implicated in elastin degradation [22]. Another

Gram-negative bacterial M23 peptidase, the Yersinia pestis NlpD

lipoprotein, has been shown not only to be required in cell division

but also to serve as an essential virulence factor for bubonic and

pneumonic plague development [23]. Moreover, mutant NlpD

appeared to be a superior vaccine candidate that provided

effective immunity, indicating the potential for members of the

M23 peptidase family in Gram-negative bacteria to be used for

disease prevention [23].

A BLAST sequence search showed that certain proteins with at

least 98% sequence identity to NMB0315 were found not only in

different serogroups of N. meningitidis but also in Neisseria gonorrhoeae,
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the other species of the genus Neisseria that is pathogenic in humans

[24]. Although these two virulent species differ in niche preference

and the nature of the induced disease, their use of the same survival

or pathogenic mechanism based on NMB0315 is intriguing.

Here, we show the crystal structure of NMB0315 at 2.4 Å

resolution. A metal-coordinating site in our structure resembles the

previously reported structure of a Zn2+-containing metalloendo-

peptidase, indicating that NMB0315 is a member of the M23

peptidase family.

Results

Overall structure of NMB0315
The structure of NMB0315 was solved by single-wavelength

anomalous dispersion at 2.4 Å resolution. Two molecules of

NMB0315 were present in one asymmetric unit. In the final

model, molecule A covers residues 57–95, 102–245, 250–262 and

266–420, whereas molecule B covers residues 58–245 and 251–

420. The two molecules in the asymmetric unit have a root-mean-

square deviation (RMSD) value of 0.7 Å for the 349 Ca atoms. We

will refer only to molecule B in the following discussion.

The overall structure consists of three spatially separated

domains (Figure 1): Domain I (residues 58–151), Domain II

(residues 152–265 and 397–420) and Domain III (residues 266–

396). Domain I contains five anti-parallel b-strands (b1-b5) flanked

by two a-helices (a1-a2). Domain II is made up of four a-helices

(a3-a6), six b-strands (b6-b11) and one long C-terminal a-helix

(a7). Domain III is solely formed by ten b-strands (b12-b21)

(Figure 1). Two anti-parallel b-strands (b13 and b14) of Domain

III extend out and interact with a b-strand of Domain I. The b3-

b4 loop of Domain I points into the groove of the central b-strand

region of Domain III.

The active site
The 2Fo-Fc electron density map reveals a metal ion bound in

domain III (Figure 2A). This metal ion is coordinated by three

spatially adjacent residues (His295, Asp299, and His375) and two

water molecules (W142 and W141). Two other histidines, His343

and His373, take part in interactions with the metal ion through

the water molecule W141 (Figure 2A). This organization of the

active site is highly conserved in M23 family members (Figure 2B).

A sequence alignment also reveals that these five residues are

highly conserved among M23 peptidases (Figure 2C). Because all

peptidases of this family that have been found so far are zinc-

dependent, we first searched for zinc in our structure. However, no

signal was detected for a zinc atom in an X-ray fluorescence

spectrum. One possibility is that the Zn2+ was replaced by another

metal ion such as Ni2+ during the expression and purification of

the protein.

To test this hypothesis, we treated the NMB0315 protein with

EDTA to chelate bound metal ions and induce reuptake of Zn2+

into NMB0315 (for details, please see the methods section). The

atomic absorption spectroscopy data clearly show that the mole

ratio of Zn2+:protein is around 0.7, indicating that Zn2+ is included

in the NMB0315 protein (Figure 2D). On the other hand, we

purified Maltose binding protein (MBP) fused NMB0315 by MBP

beads (GE healthcare) and Gel-filtration column. We found that

the mole ratio of Zn2+:MBP-NMB0315 is around 0.6, confirming

that Zn2+ can bind in the active site of NMB0315 (Figure 2E). To

directly measure the binding affinity of Zn2+ with NMB0315, we

titrated Zn2+ into NMB0315 protein pre-treated with EDTA using

isothermal titration calorimetry (ITC). The calculated Kd value is

,18.5 nM (Figure 2F).

Structure comparison of NMB0315 and other M23
metallopeptidases

A structural comparison based on entire structure of NMB0315

using the Dali Server [25] resulted in only one structure that is

similar to NMB0315, a putative lysostaphin-type protein from

Vibrio cholerae (referred to as Vly hereafter) (PDB ID: 2GU1). This

three-domain containing protein belongs to the M23 peptidase

superfamily and has been reported to be in an inhibited

Figure 1. Crystal structure of NMB0315. (A) Overall topology of NMB0315. (B) Cartoon representation of NMB0315. The metal atom is shown as
a red ball. Domains I, II and III are colored in orange, blue and green, respectively.
doi:10.1371/journal.pone.0026845.g001
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Figure 2. The catalytic pocket of NMB0315. (A) The metal ion binding site. Nitrogen, oxygen and carbon atoms are colored blue, red and cyan,
respectively. The metal ion and water molecules are shown as red and yellow balls, respectively. The initial experimental electron density map
calculated from the SAD phases is shown contoured at 14s in black. Hydrogen bonds are shown as red dashed lines. (B) The superposition of the
active site of NMB0315 onto LasA. The side chains of conserved residues are shown as sticks, and the main chain is shown as loops. NMB0315 is
colored cyan, with the nitrogen and oxygen atoms of the side chains colored blue and red, respectively. LasA is colored gray. The metal ions of
NMB0315 and LasA in the active sites are represented as red and light pink spheres, respectively. (C) Sequence alignment of NMB0315, Vly and LytM.
Secondary structure elements of NMB0315 are shown as arrows (b-strands). The amino acids highlighted in red and denoted with asterisks are key
residues in the active site that are conserved across the three proteins. (D,E) The atomic absorption spectrum for the different metal elements in the
purified NMB0315 protein solution. (F) ITC measurement of the binding affinity between Zn2+ and NMB0315.
doi:10.1371/journal.pone.0026845.g002
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conformational state [16]. A side-by-side structural comparison of

NMB0315 and Vly showed that the overall spatial arrangement of

the three domains is distinct. However, the corresponding

individual domains resemble one another (Figure 3A,B). This is

especially true for Domain III, for which the comparison of these

two domains is strikingly similar, with an RMSD value of 1.5Å for

112 Ca atoms (Figure 3C). Moreover, the three-dimensional

structural features of Domain III are shared by many other

proteins. More than 10 structural homologs of Domain III alone

were found by the Dali Server, including the catalytic domain of

LytM from Staphylococcus aureus (PDB ID: 2B13) (Figure 3D) and

LasA from Pseudomonas aeruginosa (PDB ID: 3IT5) (Figure 3E).

LytM is a zinc-dependent lysostaphin-type metallopeptidase

involved in the autolysis mediated by Staphylococcus aureus, which

is required for bacterial cell growth, separation and metabolism

[26]. The structure of the active fragment of LytM has strong

similarities to Domain III of NMB0315, but differences exist. A

notable distinction between the two structures is the b12-b15

segment, which extends far from the b core in NMB0315 but is

shorter in LytM (Figure 3D).

LasA is another M23 metallopeptidase known to be involved in

entry to the host cell and other processes related to Pseudomonas

aeruginosa virulence [22,27,28]. Like LytM, LasA shares a

conserved b-strand region corresponding to the catalytic groove.

Figure 3. Structure comparison of NMB0315 with other M23 metallopeptidases. (A) Comparison of the overall structure of NMB0315 (left)
and Vly (right). Each domain from one protein resembles the corresponding domain in the other; however, the spatial arrangements of the three
domains between the two proteins are different. (B) Stereoview of the superposition of NMB0315 onto Vly (yellow), LytM (magenta) (C), or LasA
(orange) (D).
doi:10.1371/journal.pone.0026845.g003
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However, it differs most in the C-terminus of NMB0315 Domain

III, forming a three stranded b-sheet (Figure 3E) rather than an a-

helix (Figure 3A).

Auto-inhibition state of NMB0315
In our structure, the short b3-b4 loop of Domain I stretches into

the catalytic center of Domain III and forms numerous

interactions (Figure 4A). First, the b4 strand of Domain I forms

an anti-parallel interaction with the b14 strand of Domain III, and

they stabilize each other through several main-chain hydrogen

bonds. Second, Glu132 of Domain I makes a salt bridge with

Arg293 of Domain III. Third, the main-chain atoms of Gly131 of

Domain I make two hydrogen bonds with two residues Tyr325

and Thr296 of Domain III. Fourth, Asp130 of Domain I forms a

hydrogen bond with the carbonyl oxygen atom of Gly324 from

Domain III. Based on these interactions, Domain I of NMB0315 is

capable of tightly associating with Domain III, which blocks the

active site and the substrate binding groove (Figure 4B), suggesting

that full-length NMB0315 is in an auto-inhibited conformational

state. This kind of inhibition seems to be quite different from other

members of M23 metallopeptidase family, including Vly and

LytM. The full-length Vly protein is also in a latent form, and the

inhibition of its active site is achieved by an N-terminal helix from

Domain I (Figure 4C). Wild-type LytM is also inhibited by its long

N-terminal loop (Figure 4D) and strongly activated by the

physiologically unrelated peptidase trypsin [29]. In contrast, the

active site and substrate binding groove of the protein LasA are

wide open and ready for substrate entry (Figure 4E).

Discussion

Our results suggest that NMB0315 is a zinc-dependent peptidase

and belongs to the M23 metallopeptidase family. A metal-

containing active site was observed in our structure, in which one

asparagine and two histidines are involved in the central metal ion

coordination, with two additional histidines flanking one side. Given

that this active site is highly conserved among members of this

family, NMB0315 likely prefers glycine-containing peptides as its

substrates. Remarkably, two water molecules, which were found to

be involved in the coordination of the metal ion, bonded in the same

way as that reported for the crystal structure of LasA [15]. A

catalytic mechanism has been proposed based on the configuration

of the active site of LasA. The incoming substrate peptide may take

the position of one water molecule (corresponding to W142), with its

peptide carbonyl bond polarized by the metal ion, and the other

water molecule (corresponding to W141) likely functions as a proton

donor, performing a nucleophilic attack on the carbonyl carbon and

causing the hydrolysis of the peptide [15]. In the active site of our

structure, both the residue arrangement and the two water binding

sites resemble that of LasA, suggesting that a similar mechanism of

catalysis may exist for NMB0315.

Interestingly, a short loop from Domain I of NMB0315 is

positioned in the vicinity of the active site, apparently blocking

peptide substrates. This intruding loop is further stabilized by

interactions with several spatially adjacent residues (Figure 4A),

which seemingly renders the peptidase constitutively inactive. This

inhibition strategy differs from that of the other reported structures

of M23 metallopeptidases, such as full-length LytM, which is self-

inhibited by a loop from its N-terminus [14]. In the structure of

Vly, an a-helix from the first domain, instead of a loop, prevents

substrate access to the active site [16]. By contrast, despite the

above differences, all three proteins share the conformational

feature of using a segment of the N-terminus to block the active

site. This evidence suggests that NMB0315, like other lysostaphins,

is synthesized as a proenzyme and needs further processing to

become active [29].

Based on the comparison of NMB0315 and other M23

metallopeptidases in their active form, we propose that the

maturation of NMB0315 requires the amino-terminal domain to

be removed. However, the truncated segment containing only

domain III was very unstable and therefore had a low yield, which

hindered any investigation into its catalytic activity. Further studies

on NMB0315 and other peptidases from this family are expected

to provide a more complete understanding of the inhibition,

activation and hydrolytic mechanism of M23 metallopeptidases.

Figure 4. The auto-inhibition mechanism of NMB0315. (A) The
inhibition loop of Domain I of NMB0315 is stabilized by numerous
interactions with Domain III. The main chains of Domain I and Domain
III are colored orange and green, respectively. The hydrogen bonds are
shown as dashed magenta lines. The substrate binding grooves are
blocked in NMB0315 (B), Vly (C), and LytM (D) but open in LasA (E). The
catalytic domains of these four proteins are shown as surfaces in (B),
(C), (D) and (E), and the inhibiting domains are shown as cartoons. The
metal ions (M2+) in the active sites of these enzymes are represented as
cyan spheres. A tartrate molecule is colored as magenta in the open
catalytic site of LasA.
doi:10.1371/journal.pone.0026845.g004
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Materials and Methods

Protein expression and purification
The gene encoding residues 54–420 of NMB0315 protein were

cloned into a modified pET-32a (Novagen) vector, in which the

Trx tag was deleted by cleavage at two NdeI restriction sites and

the thrombin site and the S tag were replaced by a prescission

protease site (Leu-Glu-Val-Leu-Phe-Gln-Gly-Pro) and trans-

formed into E. coli BL21 (DE3) cells. The resultant cells were

then grown in LB medium at 25uC to A600 = 0.6, induced by

isopropyl-1-thiogalactopyranoside (IPTG) at a final concentration

of 0.2 mM and harvested after overnight incubation.

The cells were lysed in T20N500P0.1 buffer (20 mM Tris-HCl

pH 7.0, 0.1 mM phenylmethylsulfonyl fluoride, 500 mM NaCl)

by lysozyme (0.1 mg/ml) and sonication. After centrifugation at

20,000 g for 60 min, the supernatant was loaded onto a Ni-NTA

column, washed with T20N500P0.1 buffer containing 20 mM

imidazole and eluted with the same buffer to which 500 mM

imidazole had been added. The eluted His6-tagged protein was

digested by prescission protease at 4uC overnight and further

purified by gel filtration on a Superdex G-200 column (GE

Healthcare) in T20N500 buffer.

DNA fragment encoding residues 54–420 of NMB0315 was

cloned into the pET-MBP vector (Novagen) and then transformed

into BL21 codon plus Escherichia coli cells. The overexpressed

protein lysate in T20N400 buffer (20 mM Tris-HCl, pH 7.0 and

400 mM NaCl) was loaded directly onto an MBPTrap HP column

(GE Healthcare). After washing the column with 5 column

volumes of T20N400 buffer, the MBP-tagged protein was eluted

with T20N400 buffer containing 10 mM maltose. The fusion

protein was loaded onto a HighLoad 26/60 Superdex-200 size-

exclusion column (GE Healthcare) and eluted with T20N400 buffer

at a flow rate of 2.0 ml/min. The protein peak was identified by

SDS-PAGE gel and harvested and concentrated by Centricon

(Millipore).

Seleno-methionine (Se-Met) labeled NMB0315 was expressed

by E. coli B834 cells, which are methionine auxotrophs, in minimal

medium under the conditions described above, and the derived

protein was also purified following the protocol above.

Crystallization and data collection
Crystals of either wild-type or Se-Met substituted NMB0315

were grown at 4uC at a protein concentration of 40 mg/ml using

the sitting drop vapor diffusion method and equilibration against a

reservoir solution of 7% PEG20,000, 0.1 M Tris-HCl, pH 8.5 and

2% 1,4-Dioxane. After growing for more than 5 days, the crystals

were frozen in a cryoprotectant consisting of the reservoir solution

supplemented with 25% glycerol.

Both the native dataset for the wild-type crystal and the single

wavelength anomalous dispersion dataset for the Se-Met deriva-

tive were collected at the Shanghai Synchrotron Radiation Facility

(SSRF). The latter was collected at the peak wavelength for Se

atoms. The wild-type crystals of NMB0315 diffracted to 2.40 Å in

the space group C2 with unit cell dimensions of a = 195.68 Å,

b = 75.50 Å, c = 81.64 Å and b = 94.66u. The Se-Met substituted

crystals diffracted to 2.85 Å in the same space group and unit cell

dimensions of a = 195.20 Å, b = 76.63 Å, c = 81.58 Å and

b = 94.78u. Both datasets were processed and scaled with the

HKL2000 software package [30].

Structure determination and refinement
The program HKL2MAP [31] yielded seven of the eight

theoretical Se sites in one asymmetric unit, and the initial SAD

phases were calculated by PHENIX software [32]. The model was

first built automatically by the PHENIX program package and

then manually modeled using the COOT [33] program on the

basis of 2Fo–Fc and Fo–Fc difference Fourier maps. The structure

model was refined using the CNS [34] program. The final

structure had an Rcryst value of 25.5% and an Rfree value of 26.4%.

The Ramachandran plot calculated by PROCHECK [35] showed

that 83.2% of the residues were in their most favored regions;

15.2% of the residues were in additionally allowed regions; 1.7%

of the residues were in generously allowed regions; and no residues

were in disallowed regions. Detailed data collection and

refinement statistics are summarized in Table 1.

Zn2+ reuptake and atomic absorption spectrum
To chelate metal ions in purified NMB0315, the protein

(100 mM) was incubated with 10 mM EDTA at 4uC overnight.

EDTA was then removed by loading the mixture onto a HiPrep

26/10 desalting column (GE Healthcare) and eluting the protein

with T20N500 buffer. The Zn2+ reuptake was carried out by adding

Table 1. Data collection and refinement statistics.

Crystal name Wild-type Se-Met-crystal

Space group C2 C2

Unit cell (Å) a = 195.68, b = 71.50,
c = 81.64, b = 94.66u

a = 195.20, b = 76.63,
c = 81.58, b = 94.78u

Wavelength (Å) 0.9796 0.9792

Resolution range (Å) 50–2.40
(2.49–2.40)

50–2.85
(2.96–2.85)

No. of unique reflections 38,289 25,693

Redundancy 6.0(4.4)a 3.7(2.8)a

Rsym (%)b 6.6(44.9)a 9.2(36.9)a

I/s 24.6(2.4)a 17.0(1.9)a

Completeness (%) 99.5(50.5)a 99.2(46.1)a

FOM --- 0.685

Refinement

Resolution range (Å) 37.75,2.41

Rcrystal (%)c 25.5

Rfree (%)d 26.4

RMSDbond (Å) 0.007

RMSDangle(u) 1.0

Number of

Protein atoms
Ligand atoms

5,364
2

Solvent atoms 0

Residues in (%)

most favored 494

additional allowed 90

Generously allowed 10

disallowed 0

Average B factor (Å2) of
Protein
Ligand atoms

84.92
73.37

athe highest resolution shell.
bRsym~

X
j

SIT{Ij

�� ��.XSIT
cRcrystal =

P
hkl Fobs{Fcalcj j

�P
hkl Fobs

dRfree, calculated the same as Rcrystal, but from a test set containing 5% of data
excluded from the refinement calculation.

doi:10.1371/journal.pone.0026845.t001
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ZnSO4 manually to the protein sample to a final concentration of

5 mM and then incubating the mixture at 4uC overnight. The

residual ZnSO4 was removed by passing the sample through a

HiPrep 26/10 desalting column using T20N500 buffer.

To determine the atomic absorption spectrum, the 0.2 ml

protein solution after Zn2+ reuptake was supplemented with 2 ml

65% nitric acid and incubated overnight. The sample was then

diluted with double-distilled water and the concentrations of metal

ions were determined by a polarized Zeeman Atomic Absorption

spectrophotometer.

Isothermal titration calorimetry
Measurements were carried out using an ITC-200 microcalo-

rimeter (MicroCal) in T20N400 buffer (20 mM Tris-HCl pH 7.0,

400 mM NaCl) at room temperature. All samples were spun at

15,000 6 g for degassing, and their concentrations were

determined by both Bradford assay and spectrophotometry

(280 nm wavelength). Sample solutions with a concentration of

0.05 mM were put into the sample cell, and the titration solution

in the injection syringe was kept around 1 mM. To measure the

binding constants, 20 consecutive injections of the titration into the

calorimeter cell were collected at 120 intervals while being stirred

at 1,000 rpm. The titration data were analyzed using MicroCal

Origin software (MicroCal).

Protein Data Bank and accession code
Coordinate and structure factor have been deposited in the

Protein Data Bank with accession code 3SLU.
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