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Abstract

Low pathogenicity avian influenza (LPAI) viruses of H5 and H7 subtypes have the potential to mutate into highly pathogenic
strains (HPAI), which can threaten human health and cause huge economic losses. The current knowledge on the
mechanisms of mutation from LPAI to HPAI is insufficient for predicting which H5 or H7 strains will mutate into an HPAI
strain, and since the molecular changes necessary for the change in virulence seemingly occur at random, the probability of
mutation depends on the number of virus replicates, which is associated with the number of birds that acquire infection.
We estimated the transmission dynamics of LPAI viruses in turkeys using serosurveillance data from past epidemics in Italy.
We fitted the proportions of birds infected in 36 flocks into a hierarchical model to estimate the basic reproduction number
(R0) and possible variations in R0 among flocks caused by differences among farms. We also estimated the distributions of
the latent and infectious periods, using experimental infection data with outbreak strains. These were then combined with
the R0 to simulate LPAI outbreaks and characterise the resulting dynamics. The estimated mean within-flock R0 in the
population of infected flocks was 5.5, indicating that an infectious bird would infect an average of more than five
susceptible birds. The results also indicate that the presence of seropositive birds does not necessarily mean that the virus
has already been cleared and the flock is no longer infective, so that seropositive flocks may still constitute a risk of infection
for other flocks. In light of these results, the enforcement of appropriate restrictions, the culling of seropositive flocks, or
pre-emptive slaughtering may be useful. The model and parameter estimates presented in this paper provide the first
complete picture of LPAI dynamics in turkey flocks and could be used for designing a suitable surveillance program.
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Introduction

Infection with low pathogenicity avian influenza (LPAI) viruses is

widespread and in many countries has led to outbreaks in domestic

birds [1]. Although LPAI strains do not pose a serious concern for

animal health, LPAI subtypes H5 and H7 may mutate into highly

pathogenic strains (HPAI) [2], outbreaks of which can threaten

human health [3], in addition to causing huge economic losses due

to high bird-mortality rates and to the cost of control measures [4].

Although influenza viruses have been extensively studied, the

current knowledge on the mechanisms of mutation from LPAI to

HPAI is insufficient for predicting which H5 or H7 strains will

mutate into an HPAI strain. Moreover, given that the molecular

changes necessary for the change in virulence seem to occur at

random [5], the probability that an LPAI strain will mutate into an

HPAI strain depends on the extent of viral replication, which in

turn is associated with the number of birds that acquire infection.

Hence knowledge of the disease dynamics of LPAI viruses is

important for better understanding their reversion to virulence.

This knowledge can also contribute to optimizing surveillance

systems and improving the effectiveness of control measures for

reducing transmission and thus the number of virus replicates,

reducing the probability of mutation into HPAI viruses.

Studies conducted on the disease dynamics of LPAI viruses

under experimental conditions have provided rough estimates of

the parameters of bird-to-bird transmission for a H5N2 LPAI [6]

and a H7N1 LPAI [7] virus strains. For instance, the basic

reproduction number (R0), which is defined as the mean number

of secondary cases per primary case in a susceptible population [8]

and is a key epidemiological parameter, was estimated to be

between 0.6 and 4.0. However, in experimental conditions it is

impossible to assess the variability in transmission that occurs

among flocks in field conditions. Using outbreak data, the

transmission dynamics of HPAI strains have been studied by

applying compartmental models and using mortality data to

extrapolate the moment of virus introduction [9,10]. However, for

LPAI epidemics, such data cannot be used because infections

result in only mild symptoms and low mortality rates.

In the period 2000–2005, Italy experienced four epidemics of

LPAI, all of which occurred in the north and most of which

involved meat turkeys. In the present study, we used serosurveil-

lance data from these epidemics [11] to estimate the R0 of LPAI in

turkeys; this is the first time that field data have been used to

evaluate the transmission dynamics of LPAI. We fitted the

proportions of birds ultimately infected in 36 flocks into a

hierarchical model to estimate R0 and the possible variation in

PLoS ONE | www.plosone.org 1 October 2011 | Volume 6 | Issue 10 | e26935



R0 among flocks caused by differences among farms. To obtain a

more complete picture of LPAI transmission, we used experimen-

tal infection data with outbreak strains to estimate the distributions

of the latent and infectious periods. These were then combined

with the R0 to simulate LPAI outbreaks, characterise the resulting

dynamics, and discuss the implications for surveillance.

Results

Basic reproduction number (R0)
Using data from the 2000–2005 LPAI outbreaks in northern

Italy, we estimated the R0 based on the seroprevalence in selected

flocks after the outbreaks had come to an end (referred to as the

‘‘final size’’). In other words, we considered only those flocks that

tested negative to antigen detection 65 days from the earliest

positive serological finding in the flock. The selected farms

consisted of those with unvaccinated meat-turkey flocks housed

in a single shed. This resulted in 36 selected flocks (Table 1): 27

were infected by H7N3 and 9 by H7N1 LPAI strains. The mean

seroprevalence (i.e., final size) in the selected flocks was 89.3%

(Exact Fisher’s 95% confidence interval: 85.7–92.2), which was

significantly higher than the seroprevalence in the flocks that were

positive for antigen detection (i.e., 61.7%; 95%CI: 50.3–72.3, data

not shown), confirming the validity of this inclusion criterion (i.e.,

negative for antigen detection).

The final size data were fitted into a Bayesian hierarchical

model (Figure 1) to estimate the distribution of R0 among flocks,

resulting in a mean value of 5.5 (95% posterior credible interval:

3.4–18.3) and a variance of 11.3 (95%PCI: 1.7–298). The

sensitivity of the diagnostic test (i.e., haemoagglutination inhibi-

tion) was estimated in the same model and was equal to 0.977

(95%PCI: 0.953–0.992) (Table 2), which was insensitive to the

choice of prior distribution (0.975 with uninformative prior).

Estimation of latent and infectious periods
Given that field data were not available for estimating the

duration of the latent and infectious periods, we used previous data

from experimental infections with outbreak strains. The data were

available for 18 unvaccinated commercial turkeys challenged with

two different LPAI strains (H5N2 and H7N3, 9 birds per strain)

and swabbed at days 3, 5, 7, 10, 12, 15 and 20 post inoculation.

Infectivity was tested by means of both PCR and virus isolation

assays. The test results are given in Table 3. Because sensitivity was

higher for PCR, compared to virus isolation assays, we used the

PCR results for our default analysis. However, given that positive

virus isolation may better reflect infectivity, we repeated the

analysis with the virus isolation results to assess the sensitivity of

this choice for the outbreak simulations described below.

The estimates of latent and infectious periods were calculated

using a Bayesian model, and the results varied according to the

definition of ‘‘infected animal’’. When the definition was based on

the quantity of viral genome in faeces (identified by PCR), the

mean latent period was 2.9 days (95%PCI: 2.4–3.4), and the mean

infectious period was 8.2 days (95%PCI: 6.5–10.6). When the

definition was based on the isolation from faeces of a live virus

capable of replication (detected by virus isolation), the mean latent

period was 8.7 days (95%PCI: 3.9–33.8) and the mean infectious

period was 2.3 days (95%PCI: 1.3–3.5) (Table 4).

Outbreak simulations
To characterize the dynamics of LPAI outbreaks, we simulated

1,000 outbreaks in flocks of 10,000 turkeys each, with a SEIR

stochastic model using the posterior median transmission param-

eters (Tables 2, 4, 5), with the estimates of latent and infectious

periods derived from the PCR results (dataset A).

The descriptive statistics of the simulated outbreaks using the

baseline model (model 2) are shown in Table 6. The quoted

intervals are the 2.5th and 97.5th percentiles. The duration of

outbreaks (i.e., from the first to the last infected turkey) ranged

from 56 to 337 days (i.e., 2 to 11 months), although 90% of the

infections were observed in a period of 10–150 days. The epidemic

peak (i.e., the day that the peak number of infective birds was

reached) occurred at a median of 45 days after the first case, which

is only 7 days after a serological sample of 10 turkeys would be

detected with 50% probability (median Tdet50% is 38 days). At the

peak, a median of about 50% of the turkeys were infected, though

this percentage greatly varied among farms (3% – 74%). At that

Table 1. Outbreak data included in the analyses.

outbreak ID virus strain sampled birds positive findings

1 H7N3 10 10

2 H7N3 10 10

3 H7N3 10 5

4 H7N3 10 10

5 H7N3 10 9

6 H7N3 10 10

7 H7N3 10 9

8 H7N3 10 9

9 H7N3 10 10

10 H7N3 10 9

11 H7N1 10 10

12 H7N3 10 10

13 H7N3 10 9

14 H7N3 10 10

15 H7N3 8 8

16 H7N3 10 10

17 H7N3 10 10

18 H7N1 20 20

19 H7N1 10 8

20 H7N1 10 9

21 H7N1 10 10

22 H7N3 10 10

23 H7N1 15 12

24 H7N3 10 10

25 H7N1 10 1

26 H7N3 10 10

27 H7N1 10 10

28 H7N1 10 8

29 H7N3 10 10

30 H7N3 10 9

31 H7N3 10 7

32 H7N3 10 10

33 H7N3 10 10

34 H7N3 10 10

35 H7N3 10 2

36 H7N3 10 9

doi:10.1371/journal.pone.0026935.t001
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time, 15.8% – 28.3% of the turkeys were already seropositive,

indicating a period of overlap where both antigen and serological

tests were able to detect infection. As expected, the seroprevalence

at the end of the outbreak (Rfinal,) (i.e., the final size) was high, even

higher than 99.4% in half of the cases.

Sensitivity analysis
To investigate the possible sources of variation in the outbreaks’

descriptive statistics, we compared the above-mentioned results

(obtained with the baseline model) with simulations derived from

models with different levels of uncertainty (Table 5). In particular,

model 1 was used to investigate only stochastic effects, model 2

(i.e., the baseline model) to investigate stochastic effects and

variation in R0 among flocks, and model 3 to investigate stochastic

effects, variation in R0 among flocks, and uncertainty about the

parameters that defined the distribution of the R0, latent and

infectious periods. The results are provided in Table 7. The

estimated median values obtained with model 1 were very similar

to those obtained with the baseline model, though with a marked

narrowing of the 95% credible intervals. This is clearly visible for

the peak number of infective birds (median Ipeak: 52.4% in model 1

versus 49.8% in model 2), for which the precision of the estimation

in model 1 reached a very narrow interval (51.3%–53.4%). This

implies that most variation in the field is due to intrinsic differences

among flocks and not to stochastic effects. Obviously, model 3

added more uncertainty to the estimates, resulting in broader

credible intervals; however the median results of model 3 were

similar to those obtained with model 2 (Tables 6 and 7). The

differences between models 2 and 3 were relatively small,

indicating that more precise parameter estimates would improve

the predicted dynamics of LPAI outbreaks only to a limited extent.

This can also be seen in Figure 2, in which an example of the

impact of the three models on the time of the epidemic peak is

illustrated. Whereas the median estimates were quite similar, the

higher precision of model 1 led to a sharper distribution compared

to the distributions resulting from models 2 and 3, which

encompassed more uncertainty.

To investigate the effect of the definition of ‘‘infectious bird’’ on

the disease dynamics, we performed additional simulations using

the posterior estimates derived from virus isolation results (i.e.,

dataset B) (Table 4). Table 7 shows the descriptive statistics of the

1,000 simulated outbreaks using model 2 and dataset B. The final

size of the epidemic was the same (99.5%), yet the duration of the

epidemic was longer (135 days), the epidemic peak occurred

slightly earlier (41 days after infection), and the proportion of

infectious birds at the epidemic peak was lower (11.3%) The

different disease dynamics associated with different definitions of

‘‘infective birds’’ is shown in Figure 3. The different assumptions of

infectivity (i.e., based upon different diagnostic assays) led to

different peak prevalences; however, the timing of the peak

prevalences was very close (41 versus 45 days after infection).

Discussion

In this study, we provide quantitative information on key

epidemiological parameters of LPAI dynamics in turkeys, which is

the first time that this has been done using outbreak data. We first

estimated the basic reproduction number of LPAI infections using

the final size equation. To do so, some conditions had to be met.

First, the data had to refer to a single population with

homogeneous mixing. Because data from farms with multiple

sheds were not stratified by shed, only the flocks consisting of a

single shed were included in the analyses. Second, the seroprev-

alence in the samples needed to be representative of the entire

flock, so that the seroprevalence in each sample could be

considered to have a binomial distribution depending on the final

size and the sample size. In accordance with the surveillance plan,

sampled animals were randomly selected within each flock. Third,

the outbreaks in the flocks had to have ended (i.e., no virus should

have still been circulating). For this reason we included only flocks

with negative virus tests 65 days from the day of serological

positivity. The validity of this inclusion criterion was indicated by

the lower seroprevalence in virus-positive flocks, although absolute

certainty about the final size status of the flocks can never be

obtained. If a virus had still been circulating in some flocks, the R0

would have been underestimated.

Based on these assumptions, the estimated mean within-flock R0

in the population of infected flocks was 5.5, meaning that on

average an infectious bird would infect more than five susceptible

animals. In an experimental study of van der Goot et al. (2003) [6],

estimates of R0 for LPAI H5N2 in chickens were much lower,

ranging from 0.6 to 1.2. On the other hand, Gonzales et al. (2011)

[7] recently estimated R0 for LPAI H7N1 in experimentally

infected chickens to be about 4.0, demonstrating a high variability

in virus transmission among different strains. Another possible

Figure 1. Hierarchical model linking serosurveillance data with
R0 in the population of infected flocks, through the final size
equation. m, mean R0 in the population of infected flocks; s2, variance
of R0 in the population of infected flocks; R0i , basic reproductive
number of each infected flock i; p, final size of the epidemic; x,
proportion of positive samples; n, total number of samples.
doi:10.1371/journal.pone.0026935.g001

Table 2. Estimation of R0.

median 95% posterior credibility interval

r, rate 2.73 [0.9839 – 7.47]

k, shape 0.4909 [0.06023 – 2.07]

m, mean R0 5.535 [3.357 –18.33]

s2, variance of R0 11.29 [1.684 – 298.8]

Se, test sensitivity 0.9768 [0.9532 – 0.9924]

Median and 95% credibility intervals of the posterior densities of shape and rate
(i.e., the parameters defining the gamma distribution of R0 in the population of
infected flocks), mean and variance of R0 and test sensitivity.
doi:10.1371/journal.pone.0026935.t002
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explanation for the difference between our results and the

estimates reported in literature could be due to differences in

susceptibility between chickens and turkeys, which has been

reported in comparative experimental studies [12,13] that show

that turkeys are highly susceptible to LPAI infections and that

chickens are less susceptible. Lastly, the difference could also be

due to differences between experimental and field conditions, as

reported by Bos et al. (2010) [14] for HPAI; in particular, whereas

experiments take place under controlled settings, in field

conditions other factors can enhance transmission, such as

concurrent infections, climatic and environmental factors, and

factors related to management.

In several studies on within-flock transmission of HPAI based on

outbreak data [9,10,14], only a single R0 was estimated, based on

the assumption that there is only one R0 that is common to all

flocks. However, in the field a number of factors can result in

differences among flocks. First of all, there are differences between

LPAI virus strains [6,7], such as the amount of virus excreted by

infected birds and the minimum infectious dose [15]. Further-

more, we should also consider the differences in the characteristics

of the farms and the age of the birds when the outbreak occurs.

For example, the density of birds, which is mainly related to the

birds’ size and thus their age, can affect the contact rate among

animals. Moreover, the time at which the virus enters a flock may

instead influence the infectivity and/or susceptibility of the birds,

which is related to their age, immunological competence and

eventual stress due to intensive production cycles. Our approach

took into account this variability by modelling R0 as a probability

distribution and thus allowing the transmission dynamics to vary

from flock to flock. Furthermore, in our model, the sensitivity of

the test was estimated together with R0, and the median sensitivity

was 97.6%, which is fairly close to the sensitivity suggested by

laboratory experience (98%). Uncertainty about test performance

allowed us to better account for the fact that data came from a

serosurveillance program, whose results depend on the true

infectious status of the flock, the sampling scheme and the

accuracy of the diagnostic assays.

To investigate the within-flock dynamics of LPAI viruses, we

needed to know the temporal window of infectivity, defined by the

mean lengths of the latent and infectious periods. Because this

information was unavailable from field data, we based our

estimates on earlier experimental infections with the outbreak

strains. The infection status of single birds was tested by means of

both PCR and virus isolation assays. If PCR results reflect

Table 3. Test results of swabbed turkeys at different days post infection.

results of PCR assay (dataset A) results of virus isolation (dataset B)

days p.i.* 3 5 7 10 12 15 20 days p.i. 3 5 7 10 12 15 20

ID of challenged
birds

k1 + + + – – – – k1 + – – – – – –

k2 – + + + – – – k2 – – + – – – –

k3 – + + – – – – k3 – – – – – – –

k4 – + + + – – – k4 – – + – – – –

k5 – + + – – – – k5 – – – – – – –

k6 + + + – – – – k6 – – – – – – –

k7 – + + – – – – k7 – – + – – – –

k8 – + + – – – – k8 – + – – – – –

k9 – + + + – + – k9 – + + – – – –

k10 – + + + – + – k10 – – – – – – –

k11 + + + + + – – k11 – – – – – – –

k12 + + + + – – – k12 – – – – – – –

k13 + + + + + + – k13 – – – – + + –

k14 + + + + – + – k14 – – – – – + –

k15 + – – – – – – k15 + – – – – – –

k16 + + + + + + – k16 + – – – – + –

k17 + + + + – – – k17 – – – – – – –

k18 + + + + + – – k18 – – – – + – –

Birds k1 to k9 were challenged with H5N2 LPAI virus and birds k10 to k18 with H7N3 LPAI virus.
*Days p.i. = days post inoculation.
doi:10.1371/journal.pone.0026935.t003

Table 4. Estimates of the latent (LP) and infectious (IP)
periods.

dataset A dataset B

mean latent period (days) 2.932 [2.407; 3.388] 8.650 [3.847; 33.780]

mean infectious period
(days)

8.161 [6.454; 10.580] 2.323 [1.303; 3.530]

kL 17.480 [3.011; 128.20] 0.878 [0.240; 3.458]

rL 5.954 [1.096; 43.110] 0.102 [0.011; 0.533]

kI 4.640 [2.036; 9.634] 3.803 [0.672; 53.210]

rI 0.568 [0.233; 1.228] 1.723 [0.332; 18.100

Median and 95% credibility intervals of the posterior densities of kL, rL, kI and rI

(i.e., the parameters defining the gamma distribution of LP and IP), and the
mean latent and infectious periods.
doi:10.1371/journal.pone.0026935.t004
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infectivity (default), the infectious period of 8.2 days would be

longer than that reported for chickens: 4.5 to 7.7 days for LPAI

[6,7] and 1.3–2.5 days for HPAI [16]. This may be related to the

higher R0 in turkeys and to the virus strain.

In our experimental data, a positive PCR result indicated the

presence of viral genome in faeces, which may not be sufficient for

replication and the infection of new hosts, possibly resulting in an

overestimate of the length of the infectious period. For this reason,

we also estimated the infectious period using the results of virus

isolation assay, to assess the effect on the predicted outbreak

dynamics. In fact, a positive virus isolation implies that the virus

can replicate and may thus better reflect infectivity. The difference

between the two tests can be seen in Table 3: for example, bird

k13 tested positive to PCR from day 3 to day 15 (dataset A) but

showed a detectable amount of virus only starting from day 12

(dataset B). Thus, based on virus isolation, the latent period would

be longer and the infectious period shorter. However, the

difference in terms of mean generation time was small: 7.9 and

10.1 days for PCR and virus isolation results, respectively. The

comparison of the prevalence between the two datasets is unfair

because it is based on different diagnostic tests and assumptions

regarding infectivity. The important difference lies in the timing of

the peak prevalence and the increase in seroprevalence, which

were rather similar when comparing PCR and virus isolation data

(Figure 3), indicating that the results are not very sensitive to the

choice of diagnostic assay.

The comparison of the three simulation models showed that the

variation in R0 among flocks plays an important role in the

variation among outbreaks (Tables 6 and 7). In Figure 2, it appears

that model 1, which only accounts for differences due to the

stochastic process, resulted in only a limited variability in the

timing of the epidemic peak (median: 43 days, 95%PCI: 39–51).

Adding uncertainty related to possible variation of R0 among

flocks (model 2) resulted in a similar median estimate (45 days), yet

it remarkably increased the variation (95%PCI: 28–164), as

demonstrated by the much flatter density distribution of the

parameter. The inclusion of further uncertainty about the

parameter estimates (model 3) led to an additional widening of

the interval (95%PCI: 17–235), but the difference was limited

extent when compared to model 2. (Figure 2, solid versus dotted

line). We could thus argue that our estimates of latency, infectivity

and the mean and variance of R0 in the population of infected

flocks are sufficiently precise, though we cannot overlook the

variation in R0 among flocks, which seems to play the most

important role in the variation among infected premises.

The simulations showed that the finding of seropositive birds

does not necessarily mean that the flock is no longer infective:

Table 6 shows that at the epidemic peak about 50% of the turkeys

were infected, yet that 16% to 28% of the turkeys were already

seropositive, indicating a period of overlap where both antigen and

antibodies are detectable (Figure 3, grey lines). This implies that

seropositive flocks may still pose a risk for other flocks; thus the

enforcement of appropriate restrictions, the culling of seropositive

flocks or pre-emptive slaughtering may be useful in preventing

farm-to-farm transmission. On the other hand, sero-sampling for

early disease detection may be difficult, because the time by which

a serological sample of 10 turkeys would result in detection with

50% probability (Tdet50%) is only 7 days before peak infectivity

(Tpeak).

The model and parameter estimates presented in this paper

provide the first complete picture of LPAI dynamics in turkey

flocks and could as such be used for the design and optimization of

a suitable surveillance program.

Materials and Methods

The within-flock disease dynamics of LPAI were investigated

using field data from outbreaks and data from experimental

infections and combining these data in a stochastic simulation

model. The investigation was conducted in three steps:

1. Estimation of within-flock R0 for LPAI infections using field

data and a Bayesian hierarchical model based on the final size

equation, provided below;

Table 5. Input parameters and assumptions for the three simulation models.

model 1 model 2* model 3

input parameters m, kL, rL, kI, rI k, r, kL, rL, kI, rI k[i], r[i], kL[i], rL[i], kI[i], rI[i]

basic reproduction number R0[i] = m R0[i] , Gamma(k, r) R0[i] , Gamma(k[i], r[i])

latent period LP[i] , Gamma(kL, rL) LP[i] , Gamma(kL, rL) LP[i] , Gamma(kL[i], rL[i])

infectious period IP[i] , Gamma(kI, rI) IP[i] , Gamma(kI, rI) IP[i] , Gamma(kI[i], rI[i])

*baseline model.
m, mean R0; kL and rL, parameters describing the gamma distribution of the latent period; kI and rI, parameters describing the gamma distribution of the infectious
period; k, shape parameter of the gamma distribution of R0; r, rate parameter of the gamma distribution of R0; i = 1 to 1,000 (i.e., number of simulated outbreaks).
doi:10.1371/journal.pone.0026935.t005

Table 6. Descriptive statistics for 1,000 simulated outbreaks
using the baseline model (model 2) and reference dataset
(dataset A) (i.e., PCR results).

parameter mean median 2.5th percentile 97.9th percentile

Duration (days) 106 83 56 337

Tpeak (days) 57 45 28 164

D90% (days) 32 20 10 150

Ipeak (%) 46.4 49.8 3.4 74.1

Rpeak (%) 28.8 29.6 15.8 28.3

Rfinal (%) 93.5 99.4 41.9 100

Tdet50% (days) 47 38 25 130

Model 2 assumed that all 1,000 simulated outbreaks had the same value of
mean latent and infections periods (estimated using the results of PCR assay),
whereas values of R0 were all sampled from the same gamma distribution with
parameters k and r at the median value of the posterior distributions.
Parameters’ meaning: Duration, duration of the epidemic in days; Tpeak, time of
the epidemic peak (days after infection); D90%, time interval (days) during which
the mid-90% of the cases occur (90% incidence interval); Ipeak, peak number of
infective birds; Rpeak, seroprevalence at the epidemic peak; Rfinal,
seroprevalence at the end of the outbreak; Tdet50 , time by which a serological
sample of 10 turkeys would result in detection with 50% probability (days).
doi:10.1371/journal.pone.0026935.t006
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2. Estimation of the distribution of latent and infectious periods of

LPAI in turkeys, using pre-existing data from experimental

infections; and

3. Simulation of outbreaks using the estimates in points 1 and 2

and characterisation of LPAI outbreaks and their uncertainty

(sensitivity analysis).

Estimation of the basic reproduction number (R0)
Data source. The field data were provided by the intensive

surveillance system which was in place during the LPAI epidemics in

2000–2001, 2002–2003, 2004 and 2005 [17]. During and around the

time of the epidemics, a total of 6,102 poultry farms were routinely

visited; 495 infected premises (i.e., outbreaks) were identified; 429

(87%) of these premises reared meat turkeys. Of the 429 outbreaks,

we included only those that had occurred among unvaccinated flocks

(n = 204). Although it would have been interesting to have

investigated the disease dynamics in vaccinated birds, this was not

possible because in the vaccinated flocks only unvaccinated sentinels

were sampled. To fulfil the assumption of homogeneous mixing of the

animals required for the analysis, we only included those farms on

which the birds were housed in a single shed (n = 64).

Inclusion criteria. At the 64 farms, multiple samplings had

been carried out. In each flock, a median of 10 (range: 8–20) birds

per sampling were considered. We considered the earliest

sampling that revealed a positive serological finding and

determined whether an antigen detection assay had been

performed 65 days from this finding; antigen detection had

been performed on mixed samples (pools) of five birds. If the flock

was negative, then the outbreak was assumed to be over, and the

seroprevalence in the sample was considered to represent the

proportion of the population that had been infected by the end of

the outbreak (defined as the ‘‘final size’’). This resulted in the

identification of 36 outbreaks (Table 1 and Table S1).

Model building. The final size of an epidemic (p, the

proportion of a population that had been infected by the end of

an outbreak) and the basic reproduction number (R0) are related

through the final size equation:

p~1{e(-pR0) ð1Þ

which is considered to be valid under very general circumstances

[18]. Serosurveillance data were fitted to a hierarchical model

(Figure 1), assuming that R0 in the population of infected flocks

followed a gamma probability distribution, with mean m and

variance s2. Each R0i of flock i corresponds to a final size pi,

calculated numerically from Eq. 1. The observed number of

positive samples xi in each flock was then considered to be a

sample from a binomial distribution with n = ni (sample size) and

p = pi (final size)*test sensitivity (which represents the apparent

prevalence in each flock i). The gamma distribution of R0 was

defined by the parameters shape (k.0) and rate (r.0), which are

related to the mean (m) and variance (s2) of R0 as:

m~ k
r and s2~ k

r2

Furthermore, the use of an imperfect diagnostic test was

assumed in the detection of seroprevalence, with sensitivity

modelled as a Beta distribution. This model is the result of a

careful preliminary investigation in which several alternatives have

been compared. The initial assumption of a single R0 value

common to all the infected flocks did not fit our field data and we

thus modelled R0 as a probability density distribution. Different

hypothesis on R0 distribution and test sensitivity were then

Table 7. Sensitivity analysis: descriptive statistics for 1,000 simulated outbreaks under different model assumptions and datasets.

Model 1 – dataset A Model 3 – dataset A Model 2 – dataset B

Parameter median
2.5th

percentile
97.5th

percentile median
2.5th

percentile
97.5th

percentile median
2.5th

percentile
97.5th

percentile

Duration (days) 79 72 90 86 42 400 135 100 400

Tpeak (days) 43 39 51 47 17 235 41 18 175

Ipeak (%) 52.4 51.3 53.4 46.7 1.4 87.2 11.3 1.2 16.2

Rfinal (%) 99.6 99.5 99.7 99.3 38.4 100 99.5 49.7 100

Model 1 assumed that all 1,000 simulated outbreaks had the same R0, kL, rL, kI and rI, all medians from the posterior distributions. Model 2 assumed all simulations
with the same kL, rL, kI and rI, but with different R0. In model 3 all simulations had different kL, rL, kI, rI, and R0. Dataset A includes the results of PCR assay, whereas
dataset B includes the results of virus isolation. Duration, duration of the epidemic in days; Tpeak, time of the epidemic peak (days after infection); Ipeak, peak number
of infective birds; Rfinal, seroprevalence at the end of the outbreak.
doi:10.1371/journal.pone.0026935.t007

Figure 2. Sensitivity analysis: estimates of time of the epidemic
peak (Tpeak) resulting from 1,000 outbreak simulations using
the three different models and the reference dataset (i.e., PCR
data).
doi:10.1371/journal.pone.0026935.g002
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explored and evaluated by means of the deviance information

criterion (DIC) [19]. The currently presented model is the one

which resulted in the best fit of the field data.

The model was implemented in WinBUGS software version

1.4.3; posterior distributions were obtained using the default

internal Gibbs sampler [20]. Uninformative prior distributions

were used for the parameters k and r [i.e., Gamma(0.01,0.01)].

Informative prior information, based on laboratory experience

(but no solid data), was used for the distribution of test sensitivity.

Using the R function beta.prior (available at http://skoval.bol.

ucla.edu/beta.prior.R), we derived the parameters of the Beta

distribution that corresponded to a most likely sensitivity of 0.98

and to a 95% certainty that the sensitivity would be greater than

0.95 [i.e. Beta(151.77,4.08)]. Posterior inferences were based on

30,000 iterations with a sampling lag of 10, after a burn-in of

15,000 iterations was discarded. Convergence was assessed by

running multiple chains from dispersed starting values and using

the Gelman-Rubin statistic.

Estimation of latent and infectious periods
Data source. The data used for this analysis were taken from

a vaccine trial performed in 2004 at the Italian National Reference

Laboratory for Avian Influenza (unpublished data). Eighteen

unvaccinated commercial turkeys (i.e., the controls of the trial)

were challenged with two LPAI strains at 12 weeks of age via the

intranasal route. Nine birds were challenged with H5N2 LPAI

virus A/TK/IT/80 and 9 birds with H7N3 LPAI virus A/TK/

IT/8000/02. The infective dose was 104 EID50. For each bird,

cloacal swabs were taken at day 3, 5, 7, 10, 12, 15 and 20 post-

inoculation and tested using a real-time RT-PCR assay and virus

isolation in SPF fertile eggs. The results are given in Table 3.

Because of the higher sensitivity, we used the PCR results for our

default analysis. However, given that a positive virus isolation may

better reflect infectivity, we repeated the analysis with the virus

isolation results to assess the sensitivity of this choice for the

simulation output. Thus two different datasets were built: dataset

A (PCR assay) and dataset B (virus isolation).

Model building. We assumed that infectivity was indicated by

a positive test result and that, based on individual test results

(Table 3), the infectious period was preceded by a latent period.

This latent period began immediately after virus inoculation (day 0)

and ended at a time point (T1) between the last negative and the first

positive test result. Consequently, the infectious period started just

after the latent period and ended in the period (T2) between the last

positive test and the subsequent negative test. For example, bird k2

in Table 3 (dataset A) showed a latent period starting at day 0 and

lasting to somewhere between day 3 and 5 (3,T1,5); the infectious

period lasted from T1 to between day 10 and 12 (10, T2,12). We

then assumed that both the latent period (LP) and infectious period

(IP) in the population of infected birds followed a gamma

distribution, characterized by parameters k and r, as follows:

LP , gamma(kL , rL) and IP , gamma(kI , rI)

To have an estimate of the latent and infectious periods in the

population, we built a Bayesian model to link the distributions of

these periods in the population of infected birds with the test results

Figure 3. Outbreak simulation in a flock of 10,000 turkeys using the baseline model (model 2): comparison of disease dynamics
assuming different definitions of ‘‘infective birds’’ [i.e., based on PCR data or virus isolation (VI) data].
doi:10.1371/journal.pone.0026935.g003
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of the 18 challenged turkeys. We noted that for each bird (k1–k18)

and at each sampling day (D = 3, 5, 7, 10, 12, 15 and 20) the test

result y could be either positive (1) or negative (0). It follows that y

has a Bernoulli distribution, depending on the success probability p:

y , Bernoulli(p)

Assuming that the diagnostic test perfectly reflects infectivity, the

success probability (i.e., positive test result) depends on whether or

not the sample was taken during the infectious period (i.e., when the

bird sheds the virus with faeces). We thus assumed 100% probability

of a positive test result (p = 1) if the sampling day D was within the

infectious period and 0% probability of a positive test result (p = 0) if

the sample was collected before or after the infectious period:

p = 1 if T1#D#T2 and p = 0 if D , T1 or D . T2

Due to the limited amount of data, it was impossible to obtain

reliable estimates of LP and IP for H5N2 and H7N7 strains

separately. However, preliminary investigations showed that the

overall generation time was a good average of the two separately,

which were not that far apart indeed. We thus decided to estimate

LP and IP using all the available data, given that the further

infection model will encompass enough variability to allow for

different virus transmission characteristics.

The model was implemented in WinBUGS software using the

default internal Gibbs sampler [20]. Uninformative prior distri-

butions were used for the parameters kL, rL, kI and rI [i.e.,

Gamma(0.01,0.01)]. Posterior inferences were based on 30,000

iterations with a sampling lag of 10, after a burn-in of 15 000

iterations was discarded. Convergence was assessed by running

multiple chains from dispersed starting values and using the

Gelman-Rubin statistic.

Outbreak simulations
Model building. Estimates of R0, kL, rL, kI and rI were

combined to simulate and characterize the course of LPAI

outbreaks in turkey flocks. Simulations were carried out in R

statistical software [21]. Simulations started with one index case

infected at time = 0 and 9,999 susceptible birds. The end of the

latent and infectious periods of the index case were sampled and

stored. At each time step of 0.02 days, the number of infected birds

I was calculated; then the number of new infections C was sampled

from a binomial distribution (n = number of susceptible birds;

p = 0.02 b I/10,000; b = transmission rate = R0 lI); finally, the

latent and infectious periods of the new cases were sampled and

stored.

The simulated outbreaks were summarized by calculating six

descriptive statistics: the time of the epidemic peak Tpeak, the peak

number of infective birds Ipeak, the seroprevalence at the epidemic

peak Rpeak, the seroprevalence at the end of the outbreak Rfinal, the

time interval during which the mid-90% of the cases occur (90%

incidence interval) D90%, and the time by which a serological

sample of 10 turkeys would result in detection with 50%

probability (assuming a test sensitivity of 97.7%) Tdet50.
Sensitivity analysis. To distinguish between sources of

variation and uncertainty, three sets of 1,000 simulations each

were performed (Table 5):

N model 1: all simulations with the same R0, kL, rL, kI and rI, all

medians from the posterior distributions. Variation among

these simulations only reflects stochastic effects.

N model 2: all simulations with the same kL, rL, kI and rI, but

with different R0. The values of R0 were all sampled from the

same gamma distribution with parameters k and r at the

median value of the posterior distributions. Variation among

these simulations reflects stochastic effects plus variation in R0

among flocks.

N model 3: all simulations with different kL, rL, kI, rI, and R0.

For each simulation, a random quartet of kL, rL, kI and rI was

sampled from their multiivariate posterior distribution. A

random couple of k and r was also sampled, and R0 was

sampled from the corresponding gamma distribution. Varia-

tion among these simulations reflects stochastic effects and

variation in R0 among flocks, plus uncertainty about the

parameter values.

Model 2 was our baseline model because it reflects the course of

outbreaks and variation therein, according to our best estimate.

The estimates of kL, rL, kI and rI included in the above-

mentioned models came from dataset A (i.e., PCR results) because

we selected PCR as our default analysis, given its higher sensitivity.

To investigate the role of the virus detection assay as a further

source of uncertainty, a fourth set of 1,000 simulations was

performed applying model 2 to dataset B (i.e., virus isolation

results).
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