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Abstract
We present a new method for decomposing the one convolution required by standard Particle-
Particle Particle-Mesh (P3M) electrostatic methods into a series of convolutions over slab-shaped
subregions of the original simulation cell. Most of the convolutions derive data from separate
regions of the cell and can thus be computed independently via FFTs, in some cases with a small
amount of zero padding so that the results of these sub-problems may be reunited with minimal
error. A single convolution over the entire cell is also performed, but using a much coarser mesh
than the original problem would have required. This “Multi-Level Ewald” (MLE) method
therefore requires moderately more FFT work plus the tasks of interpolating between different
sizes of mesh and accumulating the results from neighboring sub-problems, but we show that the
added expense can be less than 10% of the total simulation cost. We implement MLE as an
approximation to the Smooth Particle Mesh Ewald (SPME) style of P3M, and identify a number of
tunable parameters in MLE. With reasonable settings pertaining to the degree of overlap between
the various sub-problems and the accuracy of interpolation between meshes, the errors obtained by
MLE can be smaller than those obtained in molecular simulations with typical SPME settings. We
compare simulations of a box of water molecules performed with MLE and SPME, and show that
the energy conservation, structural, and dynamical properties of the system are more affected by
the accuracy of the SPME calculation itself than by the additional MLE approximation. We
anticipate that the MLE method’s ability to break a single convolution into many independent sub-
problems will be useful for extending the parallel scaling of molecular simulations.
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1 Introduction
Observing biochemical processes through computer simulations requires thorough
equilibrium sampling of a protein or nucleic acid system with thousands of degrees of
freedom. The quality of the molecular model is of utmost importance, but validation requires
extensive simulations to yield precise results for properties such as equilibrium
conformations, 1 crystallographic temperature factors, 2 binding energies, 3 and molecular
folding rates. 4 The capabilities of molecular simulations and the models themselves
therefore evolve in step with computer performance and parallel algorithm design.
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The central challenge with parallel molecular dynamics algorithms is the treatment of
electrostatic interactions. Because the electrostatic potential decays as the inverse distance,
charged particles influence one another at long range, implying a great deal of information
sharing and potentially a great deal of algorithmic complexity–as much as O(N2) in the
number of particles N. Particle ⇋ mesh implementations of the Ewald sum,5,6 and more
generally Particle-Particle Particle-Mesh (P3M) methods,7 are popular choices for treating
long-ranged electrostatic forces in molecular simulations because of the favorable
complexity of the algorithms—O(MlogM) or O(M) for a number of mesh grid points M
depending on the choice of Poisson solver. For commodity hardware, Poisson solvers based
on the Fast-Fourier Transforms (FFTs) are commonly used because of their computational
efficiency,5,8 which is so great that the parallel scaling of these approaches is still limited,
on most clusters, to a few hundred processors. Most molecular dynamics codes meet high
scaling targets by dedicating a subset of the processors to the FFT, but the number of
messages and the amount of data that must be shared can still limit the total number of
processors that can be devoted to the calculation and thus the maximum speed of molecular
simulations.

Some recent variations of P3M9,10 make use of real-space Poisson solvers based on finite
difference or multigrid methods. These approaches offer better algorithmic complexity
(O(M) for the real-space methods, versus O(MlogM) for the FFT-based methods) and
asymptotically better inter-processor communication in parallel calculations. However,
because the real-space solvers require significantly more work to map the particles’ charge
density to the mesh and extract forces from the mesh, their only successful application has
been on specialized hardware. 9

Other strategies for solving particle ⇋ mesh problems can be found in the broad class of
Multilevel Summation methods pioneered by Brandt11 and developed for molecular
simulations by Skeel12 and others, the Fast-Multipole Method,13 and Adaptive P3M
techniques used in astrophysical gravity calculations.14,15,16 Thesemesh refinement
techniques, along with the basic P3M method, may all be viewed as variations on the theme
of smoothly and (in essence) isotropically splitting a long-ranged potential into short- and
long-ranged components that can be accurately represented on meshes of different
resolutions. Like multigrid Poisson solvers, when applied to condensed-phase systems, the
mesh refinement methods also exchange computational effort for scaling benefits, but the
simplicity of the algorithms and communication patterns makes these methods highly
adaptable for applications on commodity hardware and general-purpose graphics processor
units.

In this article, we present an alternative method for replacing the one convolution required
by traditional electrostatic P3M solvers with a series of convolutions, each pertaining to a
slab subdomain of the simulation cell, building up to a single convolution involving a
coarsened mesh which describes the entire simulation cell. In contrast to the smooth splitting
employed by other mesh refinement methods, our approach is to split the mesh-based
potential sharply and anisotropically such that the individual components all contain
discontinuities but can nonetheless recover a smooth potential when summed. This “Multi-
Level Ewald” (MLE) approach produces the electrostatic potential in a single pass over all
levels of the mesh; the extra computational effort is small.

We explore numerous strategies for manipulating the parameters of MLE scheme itself and
the details of the associated particle ⇋ mesh operations in order to tune the accuracy of the
resulting forces and energies with small amounts of overlap between adjacent slabs.
Approximating the reciprocal space convolution using MLE can incur scarcely more error in
the resulting particle forces than would be obtained with an equivalent P3M calculation. We
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expect that MLE can reduce the data communication requirements of molecular dynamics
simulations for modern networked computing architectures, and will prove adaptable for
balancing communication loads when the network connectivity is heterogeneous.

2 Theory
2.1 The problem of computing long-ranged electrostatics, the Ewald solution, and its
evolution into P3M

The Ewald method can be summarized as splitting the calculation of the electrostatic energy
of a periodic system of point (or otherwise highly localized) charges E(coul) into a
“reciprocal space” sum describing the energy of a system of spherical Gaussian charges,
which has identical coordinates to the system of interest, and a “direct space” sum which
modifies the energy of the reciprocal space sum to recover the energy of the system of point
charges:

(1)

In these equations, n · L represents images of the unit cell throughout all space, i and j run
over all charged particles in the system, ri j is the distance between particles i and j, ε0 is the
permittivity of free space, and β is the “Ewald coefficient.” The reciprocal and direct space
sums, E(rec) and E(dir), obtain their names because each converges absolutely in Fourier
(reciprocal) or real (direct) space, respectively. The splitting is necessary because a
straightforward summation over many periodic images of all charges in the system will not
converge absolutely.

In its original formulation, the Ewald method relies only on the positions of particles. The
direct space calculation involves a loop over all particles with a nested loop over each
particle’s neighbors within a cutoff distance Lcut sufficient to give a convergent direct space
sum. The reciprocal space calculation involves a loop over all particles with a nested loop
that again involves all particles.

Splitting a potential into short- and long-ranged components is also the basis of Particle-
Particle Particle-Mesh (P3M) methods.7 These similarities led Darden and colleagues to
propose “Particle Mesh Ewald”6 as a special case of P3M which incorporated a Gaussian
function for splitting the potential function. Many variants of this particular case have since
been developed, 5,9,10 along with distinct approaches for optimizing the influence function
that modulates the interaction of charges on the mesh.17 In all of these methods, the basic
procedure may be summarized: 1.) assign charges to the density mesh Q using the positions
and charges of particles plus a suitable particle → mesh interpolation kernel, 2.) solve the
field on the mesh by convolution with the mesh-based representation of the inter-particle
potential function, and 3.) interpolate forces on all particles given the particle positions,
charges, field values, and particle → mesh interpolation kernel.

The most common motivation for using particle-mesh strategies is to exploit the convolution
theorem, which states that for two sequences of numbers f1 and f2,

(2)
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Above, ⋆ represents a convolution, ℱ(f) is the (Fast) Discrete Fourier Transform (FFT) of f,
ℱ−1(f) is the inverse FFT of f such that ℱ−1(ℱ(f)) = f, and ℱ(f1)·ℱ(f)2 is the element-wise
product of ℱ(f)1 and ℱ(f)2.

The most popular variant of P3M for electrostatics, Smooth Particle Mesh Ewald (SPME),5
makes use of cardinal B-splines18 to map the system’s charges to the mesh Q. An elegant
derivation of the Fourier transform of the reciprocal space pair potential, ℱ(θ(rec)), is
obtained by folding together Euler exponential splines in the mesh B (the Fourier-space
representation of B-splines are Euler splines) and the Fourier-space representation of the
Gaussian charge smoothing function W (the Fourier transform of a Gaussian is another
Gaussian):

(3)

(4)

(5)

In the equations defining B and W, Mn represents a cardinal B-spline of order n, i is the
square root of −1, α is one of the mesh dimensions x, y, or z, ηα is a displacement in the
mesh dimension α, and gα is the size of the mesh in α. Also, in the equation defining W, V is
the volume of the simulation cell, σ is the RMS of the Gaussian charge smoothing function
(note that σ = 1/(2β)), and k is the displacement from the origin in Fourier space. (Readers
should consult the original SPME reference5 for a detailed presentation of the derivation of
this approximation to θ (rec) and particle ⇋ mesh interpolation using B-splines. We have
provided the most important definitions here because they will be important later as we
develop our new method.) After ℱ(θ(rec)) has been prepared, the electrostatic potential U(rec)

is computed with only two FFT operations:

(6)

The electrostatic potential energy of the system E(rec) may then be obtained by element-wise
multiplication of the charge density Q with the electrostatic potential:

(7)

This operation would be performed in real space, and would require that a copy of the
original charge density be saved before computing U(rec). To avoid this extra memory
requirement, FFT-based Poisson solvers use an identity to obtain E(rec) during the element-
wise multiplication in Fourier space, when the system virial is available as well. However,
we emphasize the real-space expression for the energy as this will be necessary as we
develop a replacement to the convolution step of P3M methods in electrostatics.
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2.2 Accurate Decomposition of the Mesh-Based Sum: The MLE Method
In the interest of improving the parallel scaling of P3M methods for molecular electrostatics,
we focused on improving the method in which Q ⋆ θ (rec) is computed while preserving
other aspects of the algorithm. Our approach was to split θ (rec) into fine and coarse
resolution components as shown in Figure 1. Rather than splitting the potential isotropically
in terms of the absolute distance between points, however, the splitting is done
anisotropically along planes perpendicular to one dimension, which we will call . The fine

resolution potential  exactly describes the interactions between any two mesh points
separated by up to (and including) Tcut in , regardless of the distance between the points in

the other unit cell dimensions  and . Conversely, the low resolution pair potential 
approximately describes the interactions of points separated by more than Tcut in , no
matter their locations in  and . For convenience, we will refer to the set of mesh points
which share the same coordinate in the  direction as a “page” of the mesh. The meshes of
different resolutions used in our approximation will be refered to as different “levels” of
mesh. Our convention is to call the finest resolution mesh the lowest level; the extent of the
reciprocal space pair potential grows as the mesh level becomes higher.

With θ (rec) split into two components, the convolution can be restated:

(8)

where Q c is a coarsened charge mesh interpolated from Q. (Note that, while  is sparse

and  contains a void where  is nonzero, Q and Qc are full: every point in Qc is
interpolated from the appropriate points in Q.) This approximation does not immediately

reduce the communication requirements of computing Q ⋆ θ (rec), but because  is zero in

all but a narrow region 2(Tcut) + 1 pages thick, the convolution  can be
accomplished as a series of convolutions:

(9)

where each sub-mesh Qi spans the simulation box in  and  and is zero-padded 2Tcut pages
in . We will refer to these sub-meshes as “slabs.” Each of the P slabs of the lowest level
mesh is therefore padded by 2Tcut pages of zeroes, and each of the series of convolutions
described in equation 9 can be computed independently. The padding is done so that FFTs
may be used for the convolution without having charges near the yz faces of any slab “wrap
around” and erroneously influence other parts of the same slab, and so that the influence of
charges near the yz faces of each slab will be recorded as the results of all these convolutions
over slabs are then spliced back together to accumulate the approximation to U(rec). The
electrostatic influence of charge density in slab Qi on the neighboring slabs is recorded in its
zero-padded pages. (Generally, the neighbors of Qi are Qi−1 and Qi+1, although QP and Q1
are neighbors due to the periodicity of the unit cell.) The basic procedure is illustrated in
Figure 2. In principle, convolutions with many radially symmetric potential functions could
be split in this manner, though we focus on the case of the inverse distance kernel for
application to biomolecular simulations. Numerous styles of P3M are also compatible with
this convolution splitting procedure; we have chosen to implement it within the Smooth
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Particle Mesh Ewald style described above and call the new method “Multi-Level Ewald”
(MLE).

In our MLE implementation, the coarsened reciprocal space pair potential  is obtained
simply by extracting points from θ (rec) at regular intervals of the coarsening factor, Cyz, in
the  and  directions:

(10)

where i, j, and k represent coordinates in the , , and  directions, respectively, and gx is
the mesh size in the  direction. (Here, k should not be confused with k used earlier to
describe a vector in Fourier space.) While this approach may appear to discard much of the
information present in θ (rec), we will show that it can produce very high accuracy depending
on the other MLE parameters. We wrote an optimization procedure to try and improve the
coarsened reciprocal space pair potential mesh by using steepest descent optimization to
adjust the values of  at individual mesh points and minimize the root mean squared
(RMS) error in the approximate U(rec). This approach could only reduce the error rate of
MLE calculations by about 2% (data not shown) and was not given further consideration in
these studies.

Similar to the construction of , Qc is interpolated from Q using cardinal B-splines18

similar to those used for particle ⇋ mesh interpolation in standard SPME. However, mesh
⇋ mesh interpolation is a two-dimensional process as the mesh resolution is only reduced in

 and  and maintained in . Each page of the mesh Qc is interpolated from the
corresponding page of Q. As we will show in the results, it can be advantageous to use
relatively high values of the order of mesh ⇋ mesh interpolation I(mm) as opposed to the
order of particle ⇋ mesh interpolation I(pm). In the same way that higher values of I(pm)

improve the accuracy of SPME calculations, higher values of I(mm) improve the accuracy of
the MLE approximation; however, whereas the cost of an SPME calculation scales as the
cube of I(pm) because each particle has a different alignment to the mesh, the regularity of
the mesh ⇋ mesh interpolation makes it separable in each dimension and thus the operation
scales merely as I(mm).

While  will typically span a small region of the simulation box, if  were to span the
rest it might be impractical to compute  as a series of convolutions. However, it is
still possible to add more mesh levels by splitting  into its own “fine” and “coarse”

resolution components , in the same manner that the original θ (rec) was
split (see Figure 3). The most general expression of the MLE method is then:

(11)

The scheme above involves L–1 coarsened meshes with as many distinct coarsening factors.
In general, a single convolution of the highest level charge mesh with the coarsest
component of the reciprocal space pair potential must be performed, involving data collected
over the entire simulation cell. However, because the mesh spacing in the highest level

charge mesh can be 2 to 6 times larger than the mesh spacing in Q, calculating  is
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not so demanding as calculating Q ⋆ θ (rec), and the communication burden is likewise
reduced.

2.3 Considerations for constant pressure simulations
It is important to note that, in order to make MLE run efficiently, θ (rec) must be computed
by taking the inverse Fourier transform of ℱ(θ(rec)) as is typically computed in particle-

mesh methods, then extracting  and , and finally computing the Fourier transforms

 and . This preparatory work must be done at the beginning of the
simulation so that during each step of dynamics the necessary convolutions described in
Equation 8 or 9 can be accomplished with only two Fourier transforms each. This necessity
may appear to limit the applicability of the MLE approximation to constant volume systems,
where θ (rec) is constant throughout the simulation. However, if the unit cell volume
rescaling in constant pressure simulations is isotropic, and the Gaussian charge smoothing
parameter σ and the mesh spacing μ vary in proportion to the unit cell dimensions, the

updated pair potentials  and  for any new unit cell volume can be obtained be

simply rescaling the  and  obtained at the beginning of the simulation.

3 Methods
3.1 The MDGX Program

In order to test the Multi-Level Ewald (MLE) method, we wrote an in-house molecular
dynamics program, MDGX (Molecular Dynamics with Gaussian Charges and Explicit
Polarization—not all parts of the acronym are yet fulfilled, as the purpose of the program is
to be a proving ground for new algorithms). Routines in MDGX are able to read AMBER
topology files and produce outputs in a format like that of the SANDER module in the
AMBER software package.19 The MDGX program is able to run unconstrained molecular
dynamics trajectories of systems such as a box of SPC-Fw water molecules20 in the
microcanonical (NVE) ensemble, or simply compute energies and forces acting on all atoms
of a system for a single set of coordinates. The MDGX program implements both Smooth
Particle Mesh Ewald (SPME) as well as our new MLE method, and also offers the option of
using different particle ⇋ mesh interpolation orders in different dimensions, a feature which
we will show is very helpful for tuning MLE. When run with identical parameters, the
SPME reciprocal space electrostatic forces computed by MDGX agree with those of sander
to 1.0×10−9 relative precision. MDGX links with the FFTW21 library to perform its FFTs.

3.2 A Matlab Ewald Calculator
While the MDGX program is an excellent tool for testing MLE and other new variants of
P3M, it currently only works with orthorhombic unit cells (the reciprocal space code is
actually set up to perform calculations with non-orthorhombic cells, but the direct space
domain decomposition is not yet ready in this respect). The MDGX program was therefore
only used for calculations involving rectangular unit cells.

Before MDGX was created, Multi-Level Ewald was discovered and verified through a set of
script functions written for the Matlab software package (The MathWorks, Inc., Natick, MA,
U.S.A.). These scripts, which can easily produce forces and energies for a particular set of
coordinates and charges but are not efficient enough to propagate a lengthy molecular
dynamics trajectory, were used for any calculations involving non-orthorhombic unit cells.
The calculator facilitates analysis of every stage of the Multi-Level Ewald process through
Matlab’s high-level programming language, and is available from the authors on request.
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3.3 Test Systems
As presented in Table 1, we chose a number of systems representative of those found in
typical, condensed phase, biomolecular simulations. The first, a system of 1024 SPC-Fw
water molecules, was used for testing energy conservation and ensemble properties of the
system collected over long molecular dynamics runs. The other systems were much larger
protein-in-water and protein crystal systems used in our previous study developing a
different P3M method.22 Most importantly, these systems span a variety of unit cell types: as
will be shown, MLE can be performed with any type of unit cell, but the geometry of the
unit cell itself affects the accuracy of the MLE approximation.

3.4 Smooth Particle Mesh Ewald Accuracy Standards and Reference Calculations
Standards for the accuracy of electrostatic forces in molecular simulations must be
established before assessing the accuracy of MLE approximations with respect to SPME
targets. Generally, we chose the accuracy obtained by the default settings of the SANDER
molecular dynamics engine in the AMBER software package19 as a reasonable level of
accuracy for molecular simulations. These settings are mesh spacing μ as close to 1.0Å as
possible given a mesh size g with prime factors 2, 3, 5, and possibly 7, particle ⇋ mesh
interpolation order I(pm) = 4, and direct sum tolerance Dtol = 1.0×10−5 with direct space
cutoff Lcut = 8.0Å leading to a Gaussian charge smoothing half width σ = 1.434Å. They can
be expected to produce electrostatic forces with a root mean squared (RMS) error of about
1.0×10−2 kcal/mol-Å, but the exact number varies depending on the system composition and
geometry. Most SPME calculations for this work were performed with these parameters, and
most modifications to the parameters were made in such a way as to conserve the overall
accuracy of the calculation. For reference, very high quality SPME calculations were
performed with μ ~ 0.4Å, I(pm) = 8, and an identical value of σ to ensure that the direct space
and reciprocal space components of the SPME calculation could both be compared to the
reference. The reference calculations produced forces convergent to within 1.0×10−6 kcal/
mol-Å.

4 Results
4.1 Accuracy of Forces and Energies Computed with Multi-Level Ewald

The most important products of our new Ewald reciprocal space approximation are correct
reproduction of the electrostatic energy of a system of particles and correct reproduction of
the gradients of that energy. As our implementation of Multi-Level Ewald (MLE) is an
approximation to the Smooth Particle Mesh Ewald (SPME) method, we performed SPME
calculations with high-accuracy “reference” parameters as well as typical molec-ular
dynamics parameters and compared MLE results to both. In typical SPME calculations,
there are two sources of error to consider, arising from the direct and reciprocal space parts
of the calculation, respectively. MLE uses the same direct space sum but approximates the
reciprocal space sum, introducing “coarsening” errors into the electrostatics calculation. We
define the coarsening errors as deviations in the MLE approximation away from the
equivalent SPME calculation, where the “equivalent” SPME calculation uses the same σ,
I(pm), and μ parameters as the MLE calculation and has its own degree of inaccuracy relative
to the SPME reference calculation. Fundamentally, the coarsening errors are errors in the
scalar values of the electrostatic potential at points in U(rec) (see Equation 6), which in turn
imply errors in the forces on charged particles interpolated from U(rec). We will first focus
on the errors in forces, as these are of greatest importance in molecular simulations; energies
will be discussed in another section.

In order to quantify the coarsening errors as a function of the SPME parameters, we ran
calculations on the Streptavidin test case described in Table 1 using a range of values for the
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SPME mesh spacing μ, Gaussian charge smoothing function half width σ, and interpolation
order I(pm). We then approximated the SPME results with MLE calculations using Cyz = 2,
mesh ⇋ mesh interpolation order I(mm) = 8, and a range of values for Tcut (Cyz and I(mm)

can be varied to benefit the accuracy of MLE calculations, as we will show later, but their
values were fixed for simplicity in this test). The results in Figure 4 show that the accuracy
of the MLE approximation improves exponentially with Tcut, and is also very sensitive to
the parameters of the equivalent SPME calculation, particularly σ and μ and to a lesser
extent I(pm). Though the values of μ and σ are widely varied and not thoroughly sampled,
Figure 4 establishes another important result, that MLE can be used to approximate a wide
range of different SPME calculations and, without large values of Tcut, incur less error than
the SPME calculation itself.

Although at first it appears that the accuracy of MLE is least sensitive to I(pm), this
parameter can be manipulated to great advantage in MLE calculations. Of all the
commercially or academically available molecular dynamics codes, the Desmond software
package23 is, to our knowledge, the only one to permit different settings of I(pm) in different
directions. However, we found that this is a powerful way to improve the accuracy of an
MLE approximation. As we showed in previous work, 22 setting I(pm) = 6 permits μ to be set
as much as 1.5× larger than I(pm) = 4 would allow; the result in fact applies in one, two, or
all three dimensions. Strictly in terms of the number of operations, increasing I(pm) to 6 in
only one dimension offers the most reduction in the mesh size per increase in the amount of
particle ⇋ mesh work. For example, a mesh of 903 points could be replaced by a mesh of
60 × 90 × 90 points, at the expense of mapping particles to 6 × 4 × 4 = 96 points rather than
4 × 4 × 4 = 64. In contrast, setting I(pm) = 6 in all dimensions could produce comparable
accuracy in the aforementioned problem with a mesh of 603 points, but at the expense of
mapping all particles to 216 mesh points.

We performed additional SPME and MLE calculations on the streptavidin system, this time
using the AM-BER default parameters (as described in Methods) and a variation on those
parameters using I(pm) = 6 and μ approaching 1.5Å in the  direction or in all directions. We
also performed tests on other systems described in Table 1 to confirm the accuracy of MLE
when applied to non-orthorhombic unit cells. All of these results are presented in Figure 5.
While all of the different combinations of I(pm) and μ produce comparable accuracy in the
SPME calculation, and while raising I(pm) will improve the accuracy of MLE calculations if
all μ (and σ) are held fixed, increasing μ in this manner appears to be detrimental to the

accuracy of the subsequent MLE approximation. However, if only  is raised and μx is
increased accordingly, the accuracy of the subsequent MLE approximation is improved
significantly in three out of the four cases. Anisotropic interpolation orders and a longer
mesh spacing in the  direction therefore permit significant reductions in the number of
pages Tcut that must be computed in zero-padded FFTs and transmitted between neighboring
slabs, making MLE cheaper to apply.

As can be seen in Figure 4, raising I(pm) is not the only way to compensate for an increase in
μ. Raising σ itself is another way to maintain the critical ratio of σ to μ. Larger values of σ
are obtained by using a longer direct space cutoff Lcut; many codes23,24 and specialized
hardware for running molecular simulations25 make use of longer values of Lcut in order to
reduce the size of the reciprocal space mesh. We therefore tested the accuracy of MLE
calculations if larger values of σ, rather than higher I(pm), were used in conjunction with a
larger μ. The results in Figure 6 stand in contrast to the results of Figure 5: the MLE
approximation becomes more accurate when longer μ are used, insofar as σ is increased
accordingly. When using higher σ and larger μ, anisotropic particle ⇋ mesh interpolation is
still effective at conserving the accuracy of the SPME calculation and continues to benefit
the accuracy of the MLE approximation.
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Noting that non-orthorhombic unit cells are detrimental to the accuracy of MLE (though
only to the extent that Tcut must be raised by 1 or 2), we tried MLE calculations with several
other monoclinic unit cells, each with only one of the α, β, or γ angles different from 90°.
While we had hoped that MLE might be able to give the same accuracy in monoclinic unit
cells as in orthorhombic ones if the coarsening occured in certain dimensions with respect to
the non-orthogonal unit cell vectors, the accuracy of MLE showed similar degradation no
matter which angle differed from 90° (data not shown).

As mentioned in the Theory section, the MLE approximation is tunable in the I(mm)

parameter as well as in Tcut. Knowing that high values of I(mm) are economical in terms of
the number of arithmetic operations, we tested the accuracy of MLE for orders of mesh ⇋
mesh interpolation ranging from 4 to 16. The AMBER default parameters and variants with
I(pm) = 6 were again used for this test. As shown in Figure 7, if a low order of mesh ⇋ mesh
interpolation can produce accuracy on the order of the SPME reciprocal space calculation,
raising I(mm) can improve the accuracy of an MLE approximation by an order of magnitude.

Figures 5 and 7 show that, with proper choices of Tcut and I(mm) to accomodate the
parameters of the equivalent SPME calculation, the coarsening errors in MLE calculations
can be well below the level of reciprocal space error in the equivalent SPME calculation.
However, the form of the coarsening errors themselves must be examined. As will be
discussed in the following section, the reciprocal space electrostatic forces accumulate errors
as a consequence of inaccuracies in the mesh U(rec), but because the interpolation of U(rec)

itself is done only along certain dimensions in MLE calculations the resulting errors in the
reciprocal space electrostatic forces could be expected to be somewhat anisotropic. Figure 8
shows the magnitudes of the coarsening errors acting on individual atoms of the streptavidin
system in the , , and  directions under an aggressive MLE approximation (details are
given in the figure itself). As might be expected, the coarsening errors tend to be greater in
the  and  directions, but only slightly: coarsening errors in the electrostatic forces also
have significant components in the  direction, despite the fact that no mesh coarsening was
done in . As was shown in Figure 5, use of anisotropic SPME parameters reduces the
overall error in the MLE approximation, but the individual errors in forces become even
more shifted towards the  and  directions. Conceptually, anisotropic errors are less
desirable than isotropic ones, as they might impart the wrong energetics to interactions
based on, for example, the orientation of a protein in the simulation cell. However, we stress
that this test used an aggressive MLE approximation for demonstrative purposes, and that
other MLE parameters can yield errors well below those of the equivalent SPME
calculation. We attempted the same test with more conservative parameters (data not
shown), and found the shapes of the force error histograms to be very similar to those in
Figure 5, but on an exponentially smaller scale.

4.2 Larger coarsening factors and Incorporation of Multiple Higher-Level Meshes
While there may be some advantage in being able to split the convolution Q ⋆ θ (rec) into

multiple pieces (and, if Tcut can be set as low as 0, obtain  by performing only two-
dimensional FFTs, saving some FFT work and a major data transpose operation), Cyz can be
larger than 2 to reduce the size and processing requirements of the  convolution
even further. The MLE scheme is also not limited to just one higher level mesh: the charge
mesh Q can be split into a series of meshes Qc,1, Qc,2, …, Qc,L, staged with increasing
values of Cyz,1, Cyz,2, …, Cyz,L depending on the size of the problem.

Figure 9 shows the accuracy of Multi-Level Ewald on two of the systems in Table 1 using
larger values of Cyz, demonstrating that MLE can be applied with Cyz as high as 4 to 6 for
16-36 fold reductions in the amount of data present in the coarsest mesh. However, setting
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Tcut to 4 or 6 could be very expensive in terms of the extra FFT work and communication
cost. If eight MLE slabs were used with a mesh of 64 × 96 × 96 points with Cyz set to 4 and
Tcut set to 5, each MLE slab would measure (64/8) + 2 × 5 = 18 points thick; the FFT work
needed to compute  would be more than 16 times less than that needed to compute
Q ⋆ θ (rec) in the equivalent SPME calculation, but the FFT work needed to compute the

series  would be roughly twice the original FFT burden. There would also be a
considerable burden for communicating the zero-padded regions of each MLE slab.

In order to bridge the gap between Q and Qc, we introduced another mesh with an
intermediate coarsening factor (i.e. Cyz,2 = 2). Following the nomenclature in the Theory
section, we will refer to this intermediate mesh as Qc,2 and refer to the highest level mesh,
coarsened by a high value of Cyz,3, as Qc,3. Previously we have used Tcut to describe the
extent of the reciprocal space pair potential applied to the finest mesh Q or the number of
zero-padded pages in each of its slabs. When multiple coarse meshes are involved, we refer
to the extent of the potential for the nth mesh as Tcut,n and the coarsening factor for the nth

mesh as Cyz,n. (In principle, for the lowest level mesh, Cyz,1 = 1 and for the highest level
mesh Tcut,L is not defined.) In a three-mesh scheme, convoluting the lowest and intermediate

level meshes Q and Qc,2 with an intermediate-ranged pair potential  can be
accomplished as a series of convolutions over slabs as was done for Q in previous MLE
calculations. The slabs of the intermediate coarsened mesh, much less dense than Q, could
be padded by a high value of Tcut,2 without adding greatly to the overall FFT computation or
communication burden.

The MDGX program, but not the Matlab MLE calculator, was written to accommodate more
than one level of mesh coarsening. We therefore tested the accuracy of MLE with several
three-level mesh schemes on the cubic streptavidin system, as shown in Table 2. The
performance of MLE in these three-level schemes is almost exactly what would be expected
if the errors associated with separate two-level MLE calculations using the same parameters
were combined.

4.3 Energy Conservation and Equilibrium Properties in Simulations with Multi-Level Ewald
The accuracy of forces obtained by the MLE approximation are encouraging, but we must
still test whether the type of errors introduced by MLE, which are of a different nature than
the errors in direct or reciprocal space forces arising from a standard SPME calculation, are
possibly detrimental in the context of simulations. We therefore used the MDGX program to
simulate a system of 1024 SPC-Fw water molecules in the microcanonical ensemble. Two
different MLE schemes were used, as described in Table 3, both of them with three mesh
levels. Trajectories were propagated at a 0.5fs time step for 50ns each, and the MLE or
SPME reciprocal sums were computed at every time step to provide a stringent test of
energy conservation. Coordinates were collected every 0.5ps and energies arising from
electrostatic, Lennard-Jones, and harmonic bond and angle terms were collected every
0.05ps.

The evolution of the total energy of the 1024 water system, simulated using each of the four
methods described in Table 3, is shown in Figure 10. For comparison, the energy of the
same system run using the “conservative” SPME parameters but a 1fs time step is
juxtaposed with the results at a 0.5fs time step. While all of the 0.5fs runs shown some
upward drift in the energy over 50ns, it is very slow and the time step itself clearly has a
much greater impact on the energy conservation than the choice of SPME or MLE for a
long-ranged electrostatics approximation. Neither MLE approximation, whether
“aggressive” or “conservative,” shows a visible difference when compared to the
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corresponding SPME calculation on the basis of energy conservation. Moreover, the
differences between the two SPME methods are greater than the differences between the
MLE approximations and the equivalent SPME calculations: while the axes in each panel of
Figure 10 have similar scales, the energy of the system run with aggressive SPME and MLE
parameters is somewhat higher and the fluctuation of the energy is noticeably larger. The
reason for this increase in the recorded energy can be traced to the inaccuracies inherent in
the SPME reciprocal space calculation when the σ to μ ratio becomes smaller, as explained
in the Supporting Information for our previous work on Ewald sums.22 When run with the
same aggressive SPME parameters, the MLE approximation returns similar increases in the
absolute energy and fluctuations in that energy; adding more aggressive MLE parameters on
top of the lower-quality SPME method does not seem to affect the results much further.

As shown in Table 4, the bulk properties of the SPC-Fw water are not significantly
perturbed by any of the SPME or MLE approximations. When taken in the context of a
macroscopic observable such as the heat of vaporization, the differences between the total
energy of the system measured by aggressive or conservative electrostatic parameters are
negligible.

We also investigated the microscopic structure of the water when simulated with each
approximation. One reason for choosing the flexible SPC-Fw water model was to test
whether the MLE method, which produces its lowest accuracy when computing interactions
between very nearby particles, could perturb the behavior of bonded atoms. (Although
electrostatic interactions are excluded between bonded atoms in most molecular force fields,
this exclusion is done by computing the interaction of two Gaussian-smoothed charges at the
specified distance and subtracting this from the reciprocal space sum, which necessarily
computes all interactions during the mesh convolution.) As shown in Figure 11, neither the
MLE approximation nor the quality of the SPME method has any significant effect on either
the oxygen:hydrogen bond length, the hydrogen:hydrogen distance within each water
molecule, or the radial distributions of oxygen and hydrogen atoms on different water
molecules.

The timings for these single-processor MLE runs also provide an indication of how much
more computational effort MLE would require over the standard SPME method. The fact
that simulating the 1024 water molecules requires only 6-10% longer with MLE than with
SPME indicates that most codes with well-optimized FFT routines could implement MLE
without much more computational effort than SPME. Notably, while the MLE schemes are
more costly in terms of FFT work, the majority of the extra cost actually comes from the
mesh ⇋ mesh interpolation. The FFTW libraries used by MDGX are among the fastest
available, but as shown in Table 5, many other aspects of the MDGX code are not as
efficient as their counterparts in PMEMD. (We are looking into compiler optimizations that
may make the difference, as we believe we have coded routines such as the particle ⇋ mesh
interpolation as efficiently as possible and there appears to be little difference between the
structure of our routines and those of PMEMD.) The estimates presented in Table 5 do not
include the cost of computing FFTs over zero-padded regions of each MLE slab or the
possible benefits of performing numerous FFTs over small regions rather than one large
FFT; instead, a single convolution over a single mesh is done at all levels of the calculation
in these single-processor runs. The estimates in Table 5 also neglect some possible benefits
in the case of the “aggressive” MLE parameters. Setting Tcut,1 = 0 permits convolutions of
the lowest level mesh to be completed with two-dimensional FFTs, saving roughly 1/3 of the
FFT work for that mesh level. We are continuing to develop the MDGX program to take
advantage of these optimizations.
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5 Discussion
5.1 Development of Multi-Level Ewald for parallel applications

We do not yet have a parallel version of MDGX to run Multi-Level Ewald on many
processors. However, we believe that MLE can benefit massively parallel simulations,
particularly when extremely powerful, multicore nodes must be connected by comparatively
weak networks, when other forms of network heterogeneity are involved, or when the
problem size is very large. With MLE, there are extra communication steps as the coarse
meshes must be assembled and the electrostatic potential data deposited in the zero-padded
“tails” of each slab must be passed to neighboring slabs. However, because these are all
local effects the number of messages that must be passed to create the coarse meshes and
contribute  to U(rec) is bounded, whereas the number of messages that must be passed in
a convolution involving the whole P3M reciprocal space mesh grows, at best, as the square
root of the number of processors. 26 For example, distributing the convolution for a 60 × 90
× 90 mesh in the streptavidin test case over six multicore nodes would require each node to
transmit at least 0.65MB (megabytes) of data (if data is transmitted in 32-bit precision).
With a three-level MLE scheme placing one fine mesh slab and one intermediate mesh slab
on each node and setting C2 = 2, Tcut,1 = 0, C3 = 5, Tcut,2 = 5, the total volume of data
transmission between nodes could be reduced nearly four-fold, to 0.19MB, in the
convolution step.

Several challenges remain to implementing MLE in an efficient parallel code. The most
obvious is load-balancing: MLE introduces another layer of complexity for scheduling the
completion of coarse mesh convolutions, plus the associated mesh ⇋ mesh interpolation.
Another challenge is that, while MLE can be tuned to reduce data transmission between
weakly connected processors, if many networked nodes must collaborate on each MLE slab,
the original data communication problems resurface. Whereas each of K nodes must pass 4
× sqrt(K) messages in the original P3M convolution, with MLE and P slabs with K ⪢ P the
number of messages is 4 × sqrt(K/P) + M (for nodes devoted to fine mesh calculations) or 4
× sqrt(K)/C + M (for K/C2 nodes devoted to coarse mesh calculations), where M is a small
constant for mesh ⇋ mesh interpolation. One possible extension of the MLE method may
be helpful for the case of many (multicore) nodes collaborating on each MLE slab:
subdividing the convolutions over fine mesh pages into pencils using an analogous sharp,
anisotropic splitting technique, and then applying a one-dimensional coarsening to meshes
spanning each MLE slab.

5.2 Application to Multiple Time Step Algorithms
The different mesh levels in MLE calculations may be excellent candidates for updates at
different time steps, particularly because the anisotropic splitting completely captures local
changes to a molecular system’s electrostatics in the lower charge mesh levels. In contrast,
the highest level charge mesh requires the most communication between processors devoted
to disparate regions of the simulation cell, in order to complete the global convolution. The
novel splitting approach of MLE may create its own unique types of artifacts in such
simulations, however. We have shown that the sum of contributions from all mesh levels
can recover a smooth potential, but this may be perturbed if the electrostatic potential of
each mesh level is updated at different times. With any multiple timestep method there can
be subtle resonances that affect the statistical properties of the system;27 we intend to
investigate the stability and efficiency of MLE with multiple time steps in the future.

5.3 Application to Systems With Two-Dimensional Periodicity
While periodic boundary conditions in three dimensions have been shown to be equivalent
or superior to alternative boundary conditions for many condensed-phase biomolecular
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simulations,28,29 there are classes of problems, notably membrane protein simulations, 30

that produce different results if periodicity is suppressed in one dimension. Regular Ewald
methods are available for imposing two-dimensional periodicity,31,32 but they are
prohibitively expensive for systems of many thousands of atoms. For larger systems, a
pseudo-two-dimensional periodicity may be imposed by lengthening the simulation cell in
one dimension, say , confining the system to the middle of the simulation cell along  by
some stochastic boundary condition or, more directly, by a physical set of walls such as
sheets of platinum atoms, and then running P3M calculations as usual, with three
dimensional periodicity, on the extended system.33 This approach has been further refined
by adding an electrostatic field to counteract the net dipole of the system in ,34 mirroring
the way in which modified potential functions and zero-padding have been used in plasma
physics and astrophysical gravity calculations.35

The MLE method may be suitable for systems with two-dimensional periodicity, although
membrane protein simulations run in the isothermal-isobaric (NPT) ensemble tend to require
anisotropic system rescaling which MLE cannot accomodate exactly. It is likely possible to
extend the MLE method to work in such cases by storing a small array of pre-computed
solutions of each mesh potential with different unit cell ratios and thereafter interpolating the
solution for any particular time step. Other, more general, solutions to the problem of
isolated boundary conditions are again found in Adaptive P3M methods,14,15,16,36 and the
Multilevel Summation method.37,38 In all of these approaches, the advantage for isolated
boundary conditions in one or more dimensions is that only the coarse mesh must be
evaluated in the zero-padded, empty regions of the simulation cell.

5.4 Diversity of problem decompositions for future machines
In conclusion, we have shown that, for pairwise potentials that decay as the inverse distance
between particles it is feasible to subdivide the convolution in particle ⇋ mesh calculations
sharply and anisotropically into many separate slabs without significantly adding to the
overall cost of the calculation. This technique and the many smooth splitting approaches that
already exist should be applicable to simulations on current and nextgeneration parallel
computers, where hundreds to thousands of processors must collaborate in order to deliver
longer simulation trajectories. It is worthwhile to develop a variety of these multi-level
decompositions, as future supercomputers may come in come in novel architectures that
offer huge advantages depending on the details of the parallel algorithm.
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Figure 1. A multi-level mesh-based approximation to the Ewald reciprocal space pair potential
In Ewald mesh calculations, the reciprocal space pair potential θ (rec) can be visualized in
real space. At short range, θ (rec) ~ erf(β∣r∣)/(4πε0∣r∣), where ε0 is the permittivity of free
space and erf is the error function. θ (rec) was computed for a 96Å cubic box on a mesh of
963 points; slices of the potential through the xy (or xz) planes are shown with varying
intensities of red to indicate the magnitude. The color scale is deliberately coarse to make
the potential isocontours apparent. θ (rec) varies most rapidly along paths passing directly
through the source at (0,0,0); paths that move tangentially to the source encounter much
slower variations in θ (rec). It is more feasible to approximate θ (rec) with high- and low-

resolution potentials  and  as shown, avoiding mesh ⇋ mesh interpolation along
vectors pointed at the source as much as possible.  uses double the mesh spacing along
the  and  axes, as indicated by the mesh overlay in the lower left panel, but the same

spacing as  in the  direction.  therefore presents a fine mesh spacing for
interpolating gradients of the true potential θ (rec) when the true potential varies rapidly, but
presents a coarse spacing when the true potential varies slowly.
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Figure 2. Illustration of the Multi-Level Ewald convolution procedure
In typical Smooth Particle Mesh Ewald (SPME) calculations, the charge mesh Q is
convoluted with θ (rec) to arrive at the reciprocal space electrostatic potential U(rec). In Multi-
Level Ewald (MLE), this single convolution is replaced with many smaller ones. In a basic
two-level variation of MLE, the mesh Q is split, with no interpolation, into multiple
subregions (slabs) Q1 …QL as shown. The slabs are then zero-padded, as highlighted in
green in the diagram, so that they may be convoluted with the high-resolution reciprocal

space pair potential , which is itself extracted from θ (rec) without interpolation. The
coarsened charge mesh Qc is interpolated from Q and convoluted with the coarsened
reciprocal space pair potential  (see Figure 1). An electrostatic potential at the resolution
of the fine mesh is then interpolated from the result of  to complete the
approximation of Q ⋆ θ (rec). This figure was made using an actual MLE calculation on a
32Å3 box of 4000 randomly distributed ions. The color scales are not given as the diagram is
qualitative, but in the meshes Q, Qc, and Q1 … Q4 red and blue signify negative and positive
charge, the intesity of orange signifies the intensity of the pair potential, and purple and gold
signify negative and positive electrostatic potential in the resulting . Each colored pixel
corresponds to a point in a plane cutting through the mesh in the actual MLE calculation.
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Figure 3. A three-level MLE scheme
As illustrated above, the reciprocal space pair potential mesh can be split into three (or
more) separate meshes, each with successively larger coarsening factors. Here, there are two
coarsened meshes, with coarsening factors Cyz of 2 and 4, respectively. In this scheme, the
pair potential in the lowest level mesh extends 2 pages; slabs of the lowest level charge
mesh would require 4 pages of zero-padding. The pair potential in the intermediate level
mesh has Tcut = 5, although only 6 of its pages have nonzero potential values in them (the
thickness of the nonzero region of the mesh is 2 × 5 + 1 = 11 pages). While slabs of the
intermediate-level charge mesh would require 10 pages of zero-padding, the intermediate
level mesh is much smaller than the lowest level mesh, making such a degree of padding
more economical. The color scale is not the same as that for Figure 1 because the SPME
calculation this MLE scheme approximates was not the same; the diagram is intended for
qualitative understanding only.
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Figure 4. Accuracy of MLE calculations shows dependence on the parameters of the SPME
calculation that is being approximated
SPME calculations were performed on the streptavidin test case with a range of Gaussian
charge smoothing half widths σ and mesh sizes g × g × g. In practice, SPME calculations run
with particle ⇋ mesh interpolation order I(pm) = 4 require that σ be at least 1.5× the mesh
spacing μ to produce reasonable accuracy in the forces arising from the reciprocal space
part; however, if I(pm) is set to 6, σ :μ ratios as small as 1.0 can be used. The σ :μ ratio in the
center panel is roughly 1.6, and it increases moving across the panels from left to right or top
to bottom. The σ = 1.0Å, g = 64 case is omitted because it would be far too inaccurate for
molecular simulations, no matter the value of I(pm). In each panel, horizontal dashed lines
show the accuracy of SPME calculations with the stated parameters (the “equivalent” SPME
calculations) relative to a high-accuracy reference calculation performed as described in
Methods. Solid lines with open circles depict the accuracy of MLE calculations relative to
the equivalent SPME calculations.
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Figure 5. Anisotropic mesh spacings and interpolation orders enhance the accuracy of MLE
calculations
SPME calculations were performed on four of the test cases from Table 1, this time using

the AMBER default parameters σ ~ 1.4Å, , and the smallest mesh
dimensions gx, gy, and gz such that the gx, gy, and gz were multiples of 2, 3, and 5 and the
mesh spacings μx, μy, and μz were less than 1.0Å. Accurate MLE approximations of such
SPME calculations are possible for all these systems, which include monoclinic and triclinic
unit cells in addition to the cubic streptavidin system. Modifying the SPME parameters by
increasing μx to 1.5Å and increasing I(pm) to compensate maintains the accuracy of the
SPME calculation with a smaller amount of mesh data and can also increase the accuracy of
MLE approximations. As in Figure 4, dashed lines represent the accuracy of SPME
calculations relative to a high accuracy reference, and lines with open circles represent the
accuracy of MLE calculations relative to SPME. Black, green, and blue lines correspond to
I(pm) = (4,4,4), (6,4,4), and (6,6,6), respectively. Because the SPME/MLE calculations in
each panel use different values of μx the results are plotted in terms of the physical thickness
of the padding needed for each MLE approximation, Tcut × μ.
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Figure 6. Wider Gaussian smoothing functions enhance the accuracy of MLE
Although using a larger mesh spacing μ in conjunction with isotropic 6th order particle ⇋
mesh interpolation is detrimental to the accuracy of MLE approximations, it is possible to
improve the accuracy of MLE by using a larger μ and increasing σ, the RMS of the Gaussian
charge smoothing function, to maintain the accuracy of the equivalent SPME calculation.
The accuracy of MLE approximations for the streptavidin and cyclooxygenase-2 systems is
plotted as a function of μ. For each of the equivalent SPME calculations, σ was adjusted in
proportion to μ to maintain the σ to μ ratio that would be obtained in each system by the
AMBER default parameters, roughly 1.42. As shown by the solid lines with open circles,
this approach is also effective at conserving the accuracy of the equivalent SPME
calculation, even improving it slightly as μ gets larger. The accuracies of MLE
approximations improve steadily as a function of μ. The inset legend in the lower left panel
applies to all panels.

Cerutti and Case Page 22

J Chem Theory Comput. Author manuscript; available in PMC 2011 October 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7. Higher mesh ⇋ mesh interpolation orders can benefit MLE calculations
Interpolation between the finest mesh and higher level meshes in MLE is, like the particle
⇋ mesh interpolation in standard SPME calculations, based on cardinal B-Splines; the grid
points of the finest mesh can be thought of as particles to map onto coarser meshes.
However, mesh ⇋ mesh interpolation of order I(mm) only occurs in only two dimensions
and, because of the regularity of the fine grid, the operations are separable in each dimension
leading to O(I(mm)) complexity and the possibly much higher orders of I(mm) than I(pm). The
accuracy of MLE approximations to the SPME calculations described in Figure 5 was
therefore re-evaluated as a function of I(mm) for the streptavidin test case. The results
suggest that raising I(mm) is effective if the equivalent SPME calculation makes use of a high
σ :μ ratio in the dimensions along which the mesh is coarsened (i.e.  and ). The inset
legend in the leftmost panel applies to all panels.

Cerutti and Case Page 23

J Chem Theory Comput. Author manuscript; available in PMC 2011 October 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8. Errors arising from the MLE approximation are anisotropic
Because the MLE approximation is applied in only two of the three unit cell dimensions,
errors arising from the approximation may be larger in some dimensions than others.
Electrostatic forces on atoms of the streptavidin system in Table 1 were computed using
SPME and the AMBER default parameters with the particle ⇋ mesh interpolation schemes
given in each panel. As shown by these histograms, the coarsening errors (differences
between the equivalent SPME calculation and an aggressive MLE approximation with Tcut =
0, Cyz = 2, and I(mm) = 8), are indeed more pronounced in the directions along which the
reciprocal space mesh was coarsened,  and , even if the equivalent SPME calculation

uses isotropic μ and σ parameters. Increasing μx to ~ 1.5Å and setting  reduces errors
in all directions, but the accuracy of MLE-approximated forces in the  direction shows the
most improvement by far, even exceeding the accuracy of the equivalent SPME calculation.
The frequencies of errors in the  and  directions were averaged and presented together as
they were indistinguishable in this cubic unit cell. For comparison, we also show a
histogram of the magnitudes of errors inherent in the equivalent SPME reciprocal space
calculation, as judged by a high accuracy standard. The inset legend in the leftmost panel
applies to both panels.
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Figure 9. Larger coarsening factors are available in MLE
Thus far, the results have focused on the performance of the MLE approximation for a
variety of SPME calculations, emphasizing what values of I(mm) and Tcut are necessary to
achieve accurate results with a coarsening factor Cyz of 2, but Cyz is itself a tunable
parameter of MLE. These plots show the accuracy of the MLE approximation for the
streptavidin and cyclooxygenase-2 test cases (in cubic and triclinic unit cells, respectively)
for numerous coarsening factors as shown in each diagram. The coarsening factors are
limited to common factors of the mesh sizes in the  and  directions, but we do not expect
this to be a serious limitation in practice. In these tests, I(mm) was fixed at 8. The AMBER
default SPME paramaters, or the variant with anisotropic interpolation discussed in previous
figures and the maint text, were used for the SPME calculations as indicated in each
diagram. While larger values of Cyz require larger values of Tcut to produce accurate results,
MLE with Cyz as high as 6 can imply modest additional error with Tcut as low as 7 if
anisotropic particle ⇋ mesh interpolation is used. As shown in Table 2, a third, intermediate
mesh level, typically with Cyz = 2, is helpful for reducing the computation and
communication burden of larger values of Tcut, making it possible to efficiently coarsen the
reciprocal space mesh in stages.
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Figure 10. The Multi-Level Ewald approximation yields equivalent energy conservation to
traditional Smooth Particle Mesh Ewald
Simulations of a system of 1024 SPC-Fw water molecules show that MLE is able to
conserve the system’s energy over 50 ns trajectories. Parameters for each simulation are
given in Table 3, and the length of the time step or style of Ewald summation is given in the
legend of each figure. In each simulation, the total energy of the system fluctuates because
both Ewald methods entail some degree of error as the particles move relative to the mesh
and the Lennard-Jones potential is sharply truncated at 10.5Å. The total energy is therefore
plotted as a series of mean values averaged over 200 frames each. Many investigators
consider the energy conservation yielded by a 1fs time step in systems with flexible bonds to
hydrogen atoms acceptable. Comparison of the results obtained with a 1.0fs time step
(results should be read from the y-axis on the right side of the left-hand panel) to those
obtained with a 0.5fs time step shows that the time step itself can be a more significant
contributor to the upward drift of the total system energy than many of the other parameters.
(With the 0.5fs time step, the temperature drift in each simulation is only about 0.5K over
50ns.) As the quality of the SPME calculations decreases, the fluctuation of the total system
energy increases, as evident by comparing the results for SPME simulations in each panel.
The MLE approximation also reproduces these changes in the sizes of fluctuations in the
total energy.
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Figure 11. The average structure of SPC-Fw water molecules is maintained under different
Ewald approximations
Analysis of the microscopic structure of the water molecules was performed to complement
the energy conservation studies presented in Figure 10. Radial distribution functions for
oxygen to oxygen, hydrogen to hydrogen, and oxygen to hydrogen atoms of SPC-Fw water
molecules are displayed in the top three panels. Histrograms of the oxygen-hydrogen bond
length and hydrogen-hydrogen intramolecular distance are shown in the lower two panels.
Results from simulations with all four of the Ewald approximations listed in Table 3 are
shown with solid black lines in each plot; the distributions overlap so precisely that they are
indistinguishable.
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Table 1
Test cases for the Multi-Level Ewald method

The cases presented here span a variety of simulation cell geometries. All systems are in the condensed phase
and were pre-equilibrated by molecular dynamics simulations at constant pressure.

Case Cell Dimensions
(a, b, c), Å

Cell Dimensions
(α, β, γ) Atom Count

Water 31.4 × 31.4 × 31.4 90°, 90°, 90° 3072

Streptavidin 89.7 × 89.7 × 89.7 90°, 90°, 90° 73305

Protein Crystal 71.4 × 71.4 × 75.6 90°, 90°, 120° 36414

Glycerol Solution 69.7 × 69.7 × 89.0 60°, 90°, 90° 39808

Cyclooxygenase-2 114.8 × 114.8 × 114.8 109.5°, 109.5°, 109.5° 118833
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Table 3
Parameters used in long-timescale simulations of SPC-Fw water, and the accuracy of
forces resulting from each approximation

The four simulations utilize either SPME or MLE calculations for long-ranged electrostatic interactions. While
all simulations make use of the same direct space cutoffs, the “conservative” simulations use roughly 60%
more data in Q for their SPME or MLE calculations. The “conservative” MLE scheme approximates the
SPME results much more accurately than the equivalent SPME calculation obtains the true electrostatic force
on each particle, as judged by a high-quality SPME calculation using g = (96×96×96) and I(pm) = 8. In
contrast, the “aggressive” SPME scheme is somewhat less accurate and the “aggressive” MLE scheme
introduces roughly the same amount of error as the equivalent SPME scheme. Results from the simulations are
presented in Figures 10 and 11 and Table 6.

Parameter
Conservative Aggressive

SPME MLE SPME MLE

Lcut (LJ, Å)a 10.0 10.0 10.0 10.0

Lcut (Elec, Å)b 9.0 9.0 8.0 8.0

σ, Å 1.58 1.58 1.43 1.43

g (24×36×36) (24×36×36) (21×32×32) (21×32×32)

I (pm) (6×4×4) (6×4×4) (6×4×4) (6×4×4)

I (mm) 8 8

Cyz,2, Cyz,3 (2,4) (2,4)

Tcut,1, Tcut,2 (1,5) (0,4)

⟨ΔF(dir)⟩ c 4.9×10−3 4.9×10−3 7.7×10−3 7.7×10−3

⟨ΔF(rec)⟩ d 2.3×10−3 2.5×10−3 8.9×10−3 1.3×10−2

a
Lennard-Jones potential truncation length

b
Electrostatic direct space trucation length

c
RMS error in direct space electrostatic forces with this approximation

d
RMS error in reciprocal space electrostatic forces with this approximation (including MLE approximation, if applicable)
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