Skip to main content
JARO: Journal of the Association for Research in Otolaryngology logoLink to JARO: Journal of the Association for Research in Otolaryngology
. 2003 Apr 8;4(2):264–275. doi: 10.1007/s10162-002-3033-7

Expression of Aquaporin 1 and 5 in the Developing Mouse Inner Ear and Audiovestibular Assessment of an Aqp5 Null Mutant

Michele Merves 1, Carissa M Krane 2, Hongwei Dou 1, John H Greinwald 1, Anil G Menon 3, Daniel Choo 1,
PMCID: PMC3202717  PMID: 12943377

Abstract

To examine the potential roles of aquaporins 1 and 5 (AQP1 and AQP5, respectively) in inner ear development and function, we defined their spatial and temporal expression patterns in the developing mouse inner ear and examined the morphologic and physiologic effects of loss of Aqp5 function. Standard in situ hybridization (ISH) and immunohistochemical (IHC) assays were used for expression studies with routine morphologic, behavioral, and physiologic assessments of hearing and balance in Aqp5 null mutant mice. AQP1 was first detected at embryonic day 10.5 (E10.5) in the otocyst but eventually localized to specific nonsensory portions of the inner ear and connective tissue cells surrounding the membranous labyrinth. AQP5 displayed specific cochlear expression, first detectable at E15.5 in the nonsensory epithelium and later restricted to the lateral wall of the cochlear duct near the spiral prominence. AQP5 expression continued through postnatal periods with a change of expression domain to the stria vascularis between postnatal day 7 (P7) and P14. By in situ hybridization and immunohistochemical techniques, subtle differences between transcript and protein expression patterns were noted for both AQP1 and 5. Although AQP5 is dynamically expressed in the developing mouse inner ear, adult Aqp5 knockout mice show normal hearing when tested and normal inner ear structural development. These results suggest redundant or alternative mechanisms that likely regulate water homeostasis in the developing and mature inner ear.

Keywords: aquaporin, inner ear, development, endolymph, perilymph

Full Text

The Full Text of this article is available as a PDF (489.8 KB).

Acknowledgements

The authors thank Krystyn Bourne, Maureen Luehrmann, Jennifer Towne, Ann Akeson, Bradford Mallory, Felisa Thompson, Valentina Pilipenko, and Alisa Reece for their technical assistance and/or critical review of this manuscript. This work was supported in part by the NIH DC00193 (D.C.) and NIH DE138283 (A.G.M.).

References

  • 1.Arenberg I. Results of the first 300 consecutive endolymphatic system-mastoid shunts with valve implants for hydrops. Otolaryngol. Clin. North Am. 1982;16:153–174. [PubMed] [Google Scholar]
  • 2.Beitz E, Kumagami H, Krippeit–Drews P, Ruppersberg J, Schultz J. Expression pattern of aquaporin water channels in the inner ear of the rat. The molecular basis for a water regulation system in the endoylmphatic sac. Hear. Res. 1999;132:76–84. doi: 10.1016/S0378-5955(99)00036-2. [DOI] [PubMed] [Google Scholar]
  • 3.Belyantseva IA, Frolenkov GI, Wade JB, Mammano F, Kachar B. Water permeability of cochlear outer hair cells: characterization and relationship to electromotility. J. Neurosci. 2000;20:8996–9003. doi: 10.1523/JNEUROSCI.20-24-08996.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Borgnia MJ, Kozono D, Calamita G, Maloney PC, Agre P. Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. J. Mol. Biol. 1999;291:1169–1179. doi: 10.1006/jmbi.1999.3032. [DOI] [PubMed] [Google Scholar]
  • 5.Choo D, Sanne J, Wu D. The differential sensitivities of inner ear structures to retinoic acid during development. Dev. Biol. 1998;204:136–150. doi: 10.1006/dbio.1998.9095. [DOI] [PubMed] [Google Scholar]
  • 6.Claes J, Van de Heyning PH. A review of medical treatment for Meniere's disease. Acta Otolaryngol. Suppl. 2000;544:34–39. doi: 10.1080/000164800750044461. [DOI] [PubMed] [Google Scholar]
  • 7.Corey D, Hudspeth A. Ionic basis for the receptor potential in a vertebrate hair cell. Nature. 1979;281:675–679. doi: 10.1038/281675a0. [DOI] [PubMed] [Google Scholar]
  • 8.Everett LA, Belyantseva IA, Noben–Trauth K, Cantos R, Chen A, Thakkar SI, Hoogstraten–Miller SL, Kachar B, Wu DK, Green ED. Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum. Mol. Genet. 2001;10:153–161. doi: 10.1093/hmg/10.2.153. [DOI] [PubMed] [Google Scholar]
  • 9.Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED.Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat. Genet. 199717411–422.9398842 [Google Scholar]
  • 10.Everett LA, Green ED. A family of mammalian anion transporters and their involvement in human genetic diseases. Hum. Mol. Genet. 1999;8:1883–1891. doi: 10.1093/hmg/8.10.1883. [DOI] [PubMed] [Google Scholar]
  • 11.Everett LA, Morsli H, Wu DK, Green ED. Expression pattern of the mouse ortholog of the Pendred's syndrome gene (Pds) suggests a key role for pendrin in the inner ear. Proc. Natl. Acad. Sci. USA. 1999;96:727–732. doi: 10.1073/pnas.96.17.9727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Fina M, Ryan A. Expression of mRNAs encoding alpha and beta subunit isoforms of Na, K–ATPase in the vestibular labyrinth and endolymphatic sac of the rat. Mol. Cell. Neurosci. 1994;5:604–613. doi: 10.1006/mcne.1994.1074. [DOI] [PubMed] [Google Scholar]
  • 13.Hudspeth A. The cellular basis of hearing: the biophysics of hair cells. Science. 1985;230:745–752. doi: 10.1126/science.2414845. [DOI] [PubMed] [Google Scholar]
  • 14.Juhn S, Pearce J, Guzowski J. Sodium exchange time of perilymph. Arch. Otolaryngol. 1976;212:213–214. doi: 10.1007/BF00456700. [DOI] [PubMed] [Google Scholar]
  • 15.Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjad SA, Rodriguez–Soriano J, Santos F, Cremers CW, Di Pietro A, Hoffbrand BI, Winiarski J, Bakkaloglu A, Ozen S, Dusunsel R, Goodyer P, Hulton SA, Wu DK, Skvorak AB, Morton CC, Cunningham MJ, Jha V, Lifton RP. Mutations in the gene encoding B1 subunit of H+–ATPase cause renal tubular acidosis with sensorineural deafness [see comments]. Nat. Genet. 1999;21:84–90. doi: 10.1038/5022. [DOI] [PubMed] [Google Scholar]
  • 16.Kikuchi K, Hilding D. The development of the organ of Corti in the mouse. Acta Otolaryngol. 1965;60:207–222. doi: 10.3109/00016486509127003. [DOI] [PubMed] [Google Scholar]
  • 17.Kimura R. Experimental pathogenesis of hydrops. Arch. Otolaryngol. 1976;212:263–275. doi: 10.1007/BF00453674. [DOI] [PubMed] [Google Scholar]
  • 18.Kimura RS, Lundsquist PG, Wersall J. Secretory epithelial linings in the ampullae of the guinea pig labyrinth. Acta Otolaryngol. 1963;57:517–530. doi: 10.3109/00016486409137114. [DOI] [PubMed] [Google Scholar]
  • 19.King LS, Nielsen S, Agre P. Aquaporin-1 water channel protein in lung: ontogeny, steroid-induced expression, and distribution in rat. J. Clin. Invest. 1996;97:2183–2191. doi: 10.1172/JCI118659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Knepper MA, Verbalis JG, Nielsen S. Role of aquaporins in water balance disorders. Curr. Opin. Nephrol. Hypertens. 1997;6:367–371. doi: 10.1097/00041552-199707000-00010. [DOI] [PubMed] [Google Scholar]
  • 21.Krane CM, Fortner CN, Hand AR, McGraw DW, Lorenz JN, Wert SE, Towne JE, Paul RJ, Whitsett JA, Menon AG. Aquaporin 5-deficient mouse lungs are hyperresponsive to cholinergic stimulation. Proc. Natl. Acad. Sci. USA. 2001;98:14114–14119. doi: 10.1073/pnas.231273398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Krane CM, Melvin JE, Nguyen HV, Richardson L, Towne JE, Doetschman T, Menon AG. Salivary acinar cells from aquaporin 5-deficient mice have decreased membrane water permeability and altered cell volume regulation. J. Biol. Chem. 2001;276:23413–23420. doi: 10.1074/jbc.M008760200. [DOI] [PubMed] [Google Scholar]
  • 23.Krane CM, Towne JE, Menon AG. Cloning and characterization of murine Aqp5: evidence for a conserved aquaporin gene cluster. Mamm. Genome. 1999;10:498–505. doi: 10.1007/s003359901030. [DOI] [PubMed] [Google Scholar]
  • 24.Kubisch C, Schroeder BC, Friedrich T, Lutjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell. 1999;96:437–446. doi: 10.1016/s0092-8674(00)80556-5. [DOI] [PubMed] [Google Scholar]
  • 25.Lawrence M. Introduction to inner ear (fluid) physiology. In: Paparella MM, Shumrick PA, Gluckman JL, Meyerhofff WL, editors. Otolaryngology. Philadelphia: W.B. Saunders; 1991. pp. 199–217. [Google Scholar]
  • 26.Li J, Verkman AS. Impaired hearing in mice lacking aquaporin-4 water channels. J. Biol. Chem. 2001;276:31233–31237. doi: 10.1074/jbc.M104368200. [DOI] [PubMed] [Google Scholar]
  • 27.Ma T, Song Y, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J. Biol. Chem. 1999;274:20071–20074. doi: 10.1074/jbc.274.29.20071. [DOI] [PubMed] [Google Scholar]
  • 28.Mhatre A, Steinbach S, Hribar K, Hoque A, Lalwani A. Identification of aquaporin 5 (AQP5) within the cochlea: cDNA cloning and in situ localization. Biochem. Biophys. Res. Commun. 1999;264:157–162. doi: 10.1006/bbrc.1999.1323. [DOI] [PubMed] [Google Scholar]
  • 29.Mikaelian DO. Development and degeneration of hearing in the C57/b16 mouse: relation of electrophysiologic responses from the round window and cochlear nucleus to cochlear anatomy and behavioral responses. Laryngoscope. 1979;89:1–15. doi: 10.1288/00005537-197901000-00001. [DOI] [PubMed] [Google Scholar]
  • 30.Morsli H, Choo D, Ryan A, Johnson R, Wu D. Development of the mouse inner ear and its sensory organs. J. Neurosci. 1998;18:3327–3335. doi: 10.1523/JNEUROSCI.18-09-03327.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Naftalin L, Harrison M. Circulation of labyrinthine fluids. J. Laryngol. 1958;72:118–136. doi: 10.1017/s0022215100053731. [DOI] [PubMed] [Google Scholar]
  • 32.Nielsen S, Pallone T, Smith BL, Christensen EI, Agre P, Maunsbach AB. Aquaporin-1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney. Am. J. Physiol. 1995;268(6 Pt 2):F1023–F1037. doi: 10.1152/ajprenal.1995.268.6.F1023. [DOI] [PubMed] [Google Scholar]
  • 33.Nielsen S, Smith BL, Christensen EI, Agre P. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc. Natl. Acad. Sci. USA. 1993;90(15):7275–7279. doi: 10.1073/pnas.90.15.7275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Paparella M. Pathogenesis and pathophysiology of Meniere's disease. Acta Otolaryngol. Suppl. (Stockh.) 1991;485:26–35. doi: 10.3109/00016489109128041. [DOI] [PubMed] [Google Scholar]
  • 35.Peake W, Sohmer H, Weiss T. Microelectrode recordings of intracochlear potentials. MIT Res. Lab. Electronics Q. Progr. Rep. 1969;94:293–204. [Google Scholar]
  • 36.Rubio ME, Rueda J, Prieto JJ, Merchan JA. Pilocarpine-induced changes in the saccharide composition of the tectorial membrane and interdental cells of the organ of Corti: a study with gold-labeled lectins. J. Histochem. Cytochem. 1994;42:405–416. doi: 10.1177/42.3.8308257. [DOI] [PubMed] [Google Scholar]
  • 37.Sadanaga M, Morimitsu T. Development of endocochlear potential and its negative component in mouse cochlea. Hear. Res. 1995;89:155–161. doi: 10.1016/0378-5955(95)00133-X. [DOI] [PubMed] [Google Scholar]
  • 38.Sajjadi H, Paparella MM, Williams T. Endolymphatic sac enhancement surgery in elderly patients with Meniere's disease [In Process Citation]. Ear Nose Throat J. 1998;77:975–982. [PubMed] [Google Scholar]
  • 39.Sakaguchi N, Crouch JJ, Lytle C, Schulte BA. Na–K–Cl cotransporter expression in the developing and senescent gerbil cochlea. Hear. Res. 1998;118:114–122. doi: 10.1016/S0378-5955(98)00022-7. [DOI] [PubMed] [Google Scholar]
  • 40.Schnitzer JE, Oh P. Aquaporin-1 in plasma membrane and caveolae provides mercury-sensitive water channels across lung endothelium. Am. J. Physiol. 1996;270(1 Pt 2):H416–H422. doi: 10.1152/ajpheart.1996.270.1.H416. [DOI] [PubMed] [Google Scholar]
  • 41.Schuknecht HF. Disorders of Unknown or Multiple Causes. Pathology of the Ear. Philedelphia: Lea & Febiger; 1993. pp. 499–553. [Google Scholar]
  • 42.Shah DK, Kartush JM. Endolymphatic sac surgery in Meniere's disease. Otolaryngol. Clin. North Am. 1997;30:1061–1074. [PubMed] [Google Scholar]
  • 43.Spicer SS, Schulte BA. Differentiation of inner ear fibrocytes according to their ion transport related activity. Hear. Res. 1991;56:53–64. doi: 10.1016/0378-5955(91)90153-Z. [DOI] [PubMed] [Google Scholar]
  • 44.Spicer SS, Schulte BA. The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear. Res. 1996;100:80–100. doi: 10.1016/0378-5955(96)00106-2. [DOI] [PubMed] [Google Scholar]
  • 45.Stankovic KM, Adams JC, Brown D. Immunolocalization of aquaporin CHIP in the guinea pig inner ear. Am. J. Physiol. 1995;269:C1450–C1456. doi: 10.1152/ajpcell.1995.269.6.C1450. [DOI] [PubMed] [Google Scholar]
  • 46.Steel KP. The benefits of recycling. Science. 2002;285:1363–1366. doi: 10.1126/science.285.5432.1363. [DOI] [PubMed] [Google Scholar]
  • 47.Steel KP, Kros CJ. A genetic approach to understanding auditory function. Nat. Genet. 2001;27:143–149. doi: 10.1038/84758. [DOI] [PubMed] [Google Scholar]
  • 48.Takumi Y, Nagelhus EA, Eidet J, Matsubara A, Usami S, Shinkawa H, Nielsen S, Ottersen OP. Select types of supporting cell in the inner ear express aquaporin-4 water channel protein. Eur. J. Neurosci. 1998;10:3584–3595. doi: 10.1046/j.1460-9568.1998.00360.x. [DOI] [PubMed] [Google Scholar]
  • 49.Towne JE, Harrod KS, Krane CM, Menon AG. Decreased expression of aquaporin (AQP)1 and AQP5 in mouse lung after acute viral infection. Am. J. Respir. Cell Mol. Biol. 2000;22:34–44. doi: 10.1165/ajrcmb.22.1.3818. [DOI] [PubMed] [Google Scholar]
  • 50.Towne JE, Krane CM, Bachurski CJ, Menon AG. Tumor necrosis factor-alpha inhibits aquaporin 5 expression in mouse lung epithelial cells. J. Biol. Chem. 2001;276:18657–18664. doi: 10.1074/jbc.M100322200. [DOI] [PubMed] [Google Scholar]
  • 51.Verkman AS, Matthay MA, Song Y. Aquaporin water channels and lung physiology. Am. J. Physiol. Lung Cell Mol. Physiol. 2000;278:L867–L879. doi: 10.1152/ajplung.2000.278.5.L867. [DOI] [PubMed] [Google Scholar]
  • 52.Welling DB, Pasha R, Roth LJ, Barin K. The effect of endolymphatic sac excision in Meniere disease. Am. J. Otol. 1996;17:278–282. [PubMed] [Google Scholar]
  • 53.Yamasaki M, Komune S, Shimozono M, Matsuda K, Haruta A. Development of monovalent ions in the endolymph in mouse cochlea. ORL J. Otorhinolaryngol. Relat. Spec. 2000;62:241–246. doi: 10.1159/000027753. [DOI] [PubMed] [Google Scholar]
  • 54.Zimmer K, Lehman M. Bromodeoxyuridine as a label for fetal hypothalamic whole tissue and suspension grafts. Neurosci. Prot. 1994;3:46–57. [Google Scholar]

Articles from JARO: Journal of the Association for Research in Otolaryngology are provided here courtesy of Association for Research in Otolaryngology

RESOURCES