JARO 4: 445-465 (2003)
DOI: 10.1007/5s10162-002-3013-y

Journal of the Association for Research in Otolaryngology

Protection from Acoustic Trauma Is Not a Primary
Function of the Medial Olivocochlear Efferent System

E. CHRISTOPHER KIRK,I AND Davip W. SmrtH?

"Department of Biological Anthropology and Anatomy, Duke University Medical Center, Durham, NC 27710, USA

®Hearing Research Laboratories, Division of Otolaryngology—Head and Neck Surgery, Duke University Medical Center,

Durham, NC 27710, USA

Received: 2 April 2002; Accepted: 26 March 2003; Online publication: 6 June 2003

ABSTRACT

The medial olivocochlear (MOC) efferent system is
an important component of an active mechanical
outer hair cell system in mammals. An extensive
neurophysiological literature demonstrates that the
MOC system attenuates the response of the cochlea
to sound by reducing the gain of the outer hair cell
mechanical response to stimulation. Despite a grow-
ing understanding of MOC physiology, the biological
role of the MOC system in mammalian audition re-
mains uncertain. Some evidence suggests that the
MOC system functions in a protective role by acting
to reduce receptor damage during intense acoustic
exposure. For the MOC system to have evolved as a
protective mechanism, however, the inner ears of
mammals must be exposed to potentially damaging
sources of noise that can elicit MOC-mediated pro-
tective effects under natural conditions. In this re-
view, we evaluate the possibility that the MOC system
evolved to protect the inner ear from naturally oc-
curring environmental noise. Our survey of nonan-
thropogenic noise levels shows that while sustained
sources of broadband noise are found in nearly all
natural acoustic environments, frequency-averaged
ambient noise levels in these environments rarely
exceed 70 dB SPL. Similarly, sources reporting am-
bient noise spectra in natural acoustic environments
suggest that noise levels within narrow frequency
bands are typically low in intensity (<40 dB SPL).
Only in rare instances (e.g., during frog choruses) are
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ambient noise levels sustained at moderately high
intensities (~70-90 dB SPL). By contrast, all experi-
ments in which an MOC-mediated protective effect
was demonstrated used much higher sound intensi-
ties to traumatize the cochlea (100-150 dB SPL). This
substantial difference between natural ambient noise
levels and the experimental conditions necessary to
evoke MOC-mediated protection suggests that even
the noisiest natural acoustic environments are not
sufficiently intense to have selected for the evolution
of the MOC system as a protective mechanism. Fur-
thermore, although relatively intense noise environ-
ments do exist in nature, they are insufficiently
distributed to account for the widespread distribution
of the MOC system in mammals. The paucity of high-
intensity noise and the near ubiquity of low-level
noise in natural environments supports the hypoth-
esis that the MOC system evolved as a mechanism for
‘“‘unmasking’’ biologically significant acoustic stimuli
by reducing the response of the cochlea to simulta-
neous low-level noise. This suggested role enjoys
widespread experimental support.

Keywords: cochlea, efferent protection, noise-
induced hearing loss

INTRODUCTION

Cochlear outer hair cells are mechanically active and
provide the exquisite sensitivity and frequency selec-
tivity characteristic of the mammalian auditory sys-
tem. Because outer hair cell function is modulated by
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descending, medial olivocochlear (MOC) efferent
neurons, the MOC system is an important component
of a mechanically active cochlea. While the specific
physiological and psychophysical effects of MOC ac-
tivity on audition are well documented (e.g., Brown et
al. 1983; Winslow and Sachs 1987; Kawase et al. 1993;
May and McQuone 1995; Liberman et al. 1996; Lima
da Costa et al. 1997; Smith 1998), the actual biologi-
cal role of the MOC system is less clear (cf. Guinan
1996). In this regard, the current neurophysiological
data are inconclusive, suggesting that the MOC sys-
tem could play two very different roles in mammalian
hearing.

First, a number of investigators have provided evi-
dence that the MOC system suppresses the response
of the cochlea to concurrent noise and, in so doing,
helps to “unmask’ transient acoustic stimuli (Nieder
and Nieder 1970; Winslow and Sachs 1987, 1988;
Dolan and Nuttall 1988; Kawase and Liberman 1993;
Kawase et al. 1993; Liberman and Guinan 1998).
These sources support the hypothesis that the MOC
system evolved as a means of improving the signal-to-
noise ratio and the dynamic range of the peripheral
auditory system.

Second, Rajan (1988a,b, 1995a,b, 1996, 2000,
2001a), Rajan and Johnstone (1983, 1988a,b,c), and
others (Handrock and Zeisberg 1982; Liberman and
Gao 1995; Reiter and Liberman 1995; Zheng et al.
1997) have shown that the presence and extent of
threshold shifts following intense, high-frequency
sound exposure are increased after deactivation of the
MOC system, or are decreased when the MOC system is
stimulated with either electrical stimulation of the
olivocochlear tracts or acoustic stimulation of the
contralateral ear. These results support the hypothe-
sis that the MOC system evolved as a protective
mechanism that acts to reduce receptor damage
during intense noise exposure. By contrast, several
studies using similar experimental designs have
shown no evidence for MOC-based protective effects
(Hildesheimer et al. 1990; Liberman 1991). As is
shown later in this analysis, the stimulus conditions
that failed to demonstrate efferent protection in
some studies overlap in both frequency and intensity
the stimuli that are reported to evoke efferent pro-
tection in other similar experiments, highlighting the
variability of the protective effect (cf. Guinan 1996).

In this review we evaluate the hypothesis that the
MOC system evolved to protect the inner ear from
naturally occurring environmental noise (the ‘“‘pro-
tection hypothesis’’). The reason for this test, as Gu-
inan (1996) has pointed out, is that it is currently
unknown whether or not potentially damaging envi-
ronmental noise was sufficiently common to have
influenced the evolution of the MOC system. We first
survey the available literature that describes the
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characteristics of ambient noise in different natural
acoustic environments. We then review published
reports describing the stimulus parameters necessary
to demonstrate a role for the MOC efferent system in
protecting the cochlea from noise-induced trauma.
By comparing these two sources of data, we are able
to determine whether environmental noise that is
known to occur under natural conditions may be
sufficiently intense to elicit the protective effects of
the MOC system. If such protective effects are not
induced by naturally occurring acoustic stimuli, it is
unlikely that the MOC system could have evolved to
protect the inner ear from acoustic trauma.

Distribution of the MOC system among mammals

The auditory end organs of all tetrapods (including
mammals) receive an efferent innervation (Roberts
and Meredith 1992; Fritzsch 1992, 1997). However, it
is currently unknown whether monotremes, which
lack some features of the inner ear shared by marsu-
pial and placental mammals (Ladhams and Pickles
1996), possess an MOC system. All species that have
been definitively shown to possess an MOC system are
included within four orders of placental mammals
(Primates, Chiroptera, Carnivora, Rodentia) and two
orders of marsupials (Dasyuromorphia and Didelphi-
morphia; Table 1). If one assumes that MOC systems
in these orders are inherited from a common ancestor
and retained in most descendent taxa, then it is likely
that all placental and marsupial orders share MOC
efferent innervation of cochlear outer hair cells. The
distribution of character states among known taxa
thus suggests that the MOC system is a general feature
of the mammalian auditory system that must have
arisen no later than the time of divergence between
marsupial and placental mammals (ca. 173 million
years before present; Kumar and Hedges 1998).
Furthermore, among mammals for which the
anatomy is known, the majority (21 of 24 species)
possess cochlear outer hair cells that receive MOC
innervation (Table 1). This broad distribution across
six orders and 16 families of mammals is striking; it
suggests that the MOC system has been maintained
by stabilizing selection in most mammalian groups
despite pronounced differences in habitat and ecol-
ogy. Indeed, the only mammals that are known to
lack MOC innervation of outer hair cells are the
microchiropteran bats Hipposideros and Rhinolophus
(Bruns and Schmieszek 1980; Aschoff and Ostwald
1987; Bishop and Henson 1987, 1988; Ostwald and
Aschoff 1988) and the blind mole rat Spalax ehrenbergi
(Raphael et al. 1991). Although it is currently not
known why these taxa have lost their MOC systems, all
three genera demonstrate extreme specialization of
the auditory apparatus for high-frequency (Hipposid-
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TABLE 1

Taxa known to possess medial efferent innervation of outer hair cells

Order Genus Common name (source)
Carnivora Felis Cat (Warr and Guinan 1979; Guinan et al. 1983; Liberman et al. 1990)
Canis Dog (Weber et al. 1987)
Chiroptera Pteronotus Moustached bat (Bishop and Henson 1987, 1988)
Artibeus Neotropical fruit bat (Aschoff and Ostwald 1987)
Phyllostomus Spear-nosed bat (Aschoff and Ostwald 1987)
Tadarida Free-tailed bat (Aschoff and Ostwald 1987)
Rhinopoma Mouse-tailed bat (Aschoff and Ostwald 1987)
Dasyuromorphia Sminthopsis Dunnart or Marsupial mouse (Henson and Henson, unpublished data)
Didelphimorphia Didelphis Opossum (Henson and Henson, unpublished data)
Primates Homo Human (Nadol 1983, 1990)
Pan Chimpanzee (Nadol and Burgess 1990)
Macaca Macaque monkey (Sato et al. 1997, 1999)
Saimiri Squirrel monkey (Thompson and Thompson 1986)
Otolemur Bush baby (Thompson and Thompson 1995)
Rodentia Mus Mouse (Campbell and Henson 1988)
Rattus Rat (Aschoff and Ostwald 1987, 1988; Robertson et al. 1989)
Cavia Guinea pig (Aschoff and Ostwald 1987, 1988)
Chinchilla Chinchilla (Azeredo et al. 1999)
Pachyuromys Fat-tailed gerbil (Aschoff et al. 1988)
Meriones Mongolian gerbil (Aschoff et al. 1988)

Mesocricetus

Golden hamster (Simmons et al. 1996)

eros and Rhinolophus) or low-frequency (Spalax) hear-
ing (Bruns 1976a,b; Bruns and Schmieszek 1980;
Bruns et al. 1988; Burda et al. 1989; Dannhof and
Bruns 1991; Raphael et al. 1991), and may thus be
considered atypical models for general mammalian
auditory anatomy and function.

ENVIRONMENTAL EVIDENCE:
MEASUREMENTS OF AMBIENT NOISE LEVELS

Our literature search revealed 23 sources reporting
environmental sound levels under natural or semi-
natural conditions (Table 2). ‘““Natural’’ acoustic en-
vironments are here defined as environments that
lack significant anthropogenic (human-generated)
sound sources. It is important to bear in mind that
this definition does not preclude the possibility that
some of the environmental sound levels reported in
our survey were influenced by human activity (e.g.,
through selective clearing of forests or reduction of
species densities). For instance, Table 2 includes
sources reporting ambient sound pressure levels in a
pasture (Brenowitz 1982a) and a botanical garden
(Brown and Schwagmeyer 1984). Given the compar-
ative paucity of descriptions of natural environmental
noise, however, we feel that a relatively inclusive
standard is warranted.

Only publications reporting absolute noise levels
relative to a stated reference intensity were consid-
ered for this analysis. Most of these sources

(Price 1971; EPA 1972; Rosen and Lemon 1974; Luz
and Smith 1976; Waser and Waser 1977; Brenowitz
1982ab; Tuttle and Ryan 1982; Schwartz and Wells
1983; Brenowitz et al. 1984; Ryan and Brenowitz 1985;
Odendall et al. 1986; Gerhardt and Klump 1988;
Romer et al. 1989; Paez et al. 1993; National Park
Service 1995; Aubin and Jouventin 1998; Penna
and Solis 1998) present frequency-averaged envi-
ronmental noise levels in dB A or dB SPL. Six sources,
however, present absolute noise intensity levels in
dB SPL within multiple frequency ranges (Saby and
Thorpe 1946; Morton 1975; Narins 1982; Brown and
Schwagmeyer 1984; Waser and Brown 1986; Reiman
and Terhune 1993). Of this latter group, the nu-
meric values for noise levels provided by Morton
(1975)Waser and Brown (1986), and Reiman and
Terhune (1993), as well as the maximum noise levels
reported by Narins (1982) within octave bands cen-
tered at 1 kHz (~79 dB SPL) and 2 kHz (~92 dB
SPL), are replotted in Figure 1. The environ-
mental noise levels shown in Figure 1 thus provide a
representative cross-section of the total data set
shown in Table 2. The noise levels reported by Rei-
man and Terhune (1993) represent primarily abiotic
noise in a calm, nearshore marine setting. By con-
trast, Morton (1975) and Waser and Brown (1986)
document noise levels in tropical forests and grass-
lands that are rich in biotic noise generated by birds
and insects. Narins’ (1982) peak noise levels across
a narrower frequency range represent the highest
naturally occurring noise measurements in Table 2.
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FIG. 1. Diagrammatic plot of naturally occurring noise conditions
and stimulus parameters employed in experimental studies of MOC-
mediated protection from acoustic trauma. Natural environmental
noise levels are plotted (open circles) for four studies giving absolute
acoustic measurements across a range of frequencies (Morton 1975;
Narins 1982; Waser and Brown 1986; Reiman and Terhune 1993;
see text and Table 2 for description). Frequency and intensity pa-
rameters that have been employed in studies of MOC-mediated
protection studies, from Table 3, are plotted as those sinusoidal

The recordings of natural acoustic environments
shown in Table 2 were made under a wide variety of
environmental conditions and document ambient
environmental noise generated by both biotic and
abiotic factors. In spite of this diversity of environ-
mental conditions (e.g., ground cover, vegetation,
species assemblages, etc.) and recording techniques,
the sources in Table 2 suggest that the great majority
of natural acoustic environments are characterized by
relatively modest (<70 dB SPL) ambient noise levels.
Primary sources of abiotic noise include wind, rain,
and wave action. Most wind-generated noise has a
characteristic spectrum, with the dominant power
peaks present at low frequencies (below 200-500 Hz;
Brenowitz 1982a; Brown and Schwagmeyer 1984;
Brown and Waser 1984; Ryan and Brenowitz 1985).
Water-generated noise sources have similar low-fre-
quency spectra with peaks that extend to higher fre-
quencies, though virtually all energy is contained at
frequencies below 4.5 kHz (cf Tuttle and Ryan 1982).
For example, at frequencies above 2.0 kHz, the en-
ergy present in any one particular frequency band
does not exceed 20 dB SPL in the water-generated
noise spectra figured by Tuttle and Ryan (1982).

The most intense sources of natural ambient noise,
however, are biotic (Table 2). Significant biotic noise
sources include bird-song and frog and insect cho-

stimulus conditions that yielded a protective effect (open diamonds);
those sinusoidal stimulus conditions that failed to demonstrate a
protective effect (open squares); the noise band exposures against
which the MOC demonstrated a protective effect (solid lines), and
the noise band conditions against which the MOC had no apparent
protective effect (dashed lines). All noise bands (for both environ-
mental noise and protection studies) are plotted as overall dB SPL vs.
total frequency range because insufficient details were provided to
plot these acoustic conditions in terms of spectral level.

ruses. Indeed, a number of recordings were made
with the intention of documenting the noise levels
produced by chorusing frogs (e.g., Narins 1982;
Schwartz and Wells 1983; Gerhardt and Klump 1988)
and insects (e.g., Romer et al. 1989; Paez et al. 1993).
Recordings made in the midst of frog choruses ac-
count for most of the noisiest reported environments.
As noted previously, Narins (1982) documented the
highest peak noise levels (Fig. 1) of any source in-
cluded in Table 2. Within an octave band centered at
2.0 kHz, Narins reported that noise levels in a Puerto
Rican montane rainforest vary from a minimum of
~48 dB SPL to a peak of ~92 dB SPL over a 24-h
period. Noise levels within an octave band centered at
1.0 kHz were somewhat lower, ranging from ~48 to
~79 dB SPL. Furthermore, peak sound levels between
1.4 and 2.8 kHz at this locality were maintained near
or above 80 dB SPL from 18.00 to 06.00 h. These
relatively intense but spectrally restricted noise levels
may be directly attributed to the nocturnal calling of
leptodactylid tree frogs because the frequency ranges
measured by Narins (1982) encompass the most in-
tense frequency components of the frogs’ chorus.
The unusually high and sustained noise levels re-
ported by Narins (1982), however, are not typical of
all tropical forest sites. For instance, Waser and Brown
(1986) found maximum ambient noise levels of only



Kirx AND SmiTH: Protection Not a Primary MOC Function

about 40 dB SPL at the rainforest sites of Kibale in
Uganda and Kakamega in Kenya. These maximum
values for African rainforest sites are comparable to
the minimum ambient noise levels reported by Na-
rins (1982) in Puerto Rico. Similarly, Ryan and
Brenowitz (1985) reported maximum ambient noise
levels of 64 dB SPL at a lowland tropical forest site in
Panama.

The unusually high environmental noise levels re-
ported by Narins (1982) seem, therefore, to be the
result of the distinctive frog fauna present in the
Luquillo Mountains of Puerto Rico rather than a
general characteristic of tropical rainforests. Ger-
hardt and Klump’s (1988) recording of 87 dB SPL
peak ambient noise during a chorus of green tree
frogs (made in a pond, near Savannah, Georgia)
provides further evidence of an association between
high ambient noise levels and chorusing frogs rather
than any specific environment. Indeed, maximum
ambient noise levels reported in the presence of
chorusing frogs are often in excess of 70 dB SPL,
regardless of location (e.g., 71 dB SPL, Tuttle and
Ryan 1982; 80 dB SPL, Schwartz and Wells 1983; 82
dB A, Brenowitz et al. 1984). It is important to bear in
mind, however, that in most cases these relatively
high sound pressure levels are maintained only within
the restricted area (usually a pond or watercourse)
near the chorusing frogs. As with all other point
sources of noise, the intensity of a localized frog
chorus will fall off rapidly with distance (i.e., by at
least 6 dB per doubling of the distance due to
spherical spreading, with additional attenuation due
to physical obstructions in the environment; Breno-
witz 1982a,b; Ryan and Brenowitz 1985).

Additional reports of natural acoustic environ-
ments with substantial biotic sound levels come from
Paez et al. (1993), who recorded in a Costa Rican
rainforest during a full cicada chorus (60-86 dB
SPL), from Waser and Waser (1977), who docu-
mented noise levels of 70-80 dB SPL during a cicada
chorus in the Edea coastal forest of Cameroun, and
from Aubin and Jouventin (1998), who recorded at
the periphery of a colony of king penguins (~74 dB
SPL). High peak sound levels were also reported by
Brenowitz (1982a), who collected data in a pasture
near Ithaca, New York (peak = 76 dB SPL). Brenowitz
(1982a) noted, however, that this frequency-averaged
measurement may disproportionately reflect the rel-
atively high intensity of wind-generated, low-fre-
quency background noise. Such noise falls partly
outside the range of hearing of many mammals and
may be of little import in assessing the vulnerability of
the inner ear to acoustic trauma. Conclusions based
on the data presented in Table 2 may thus be con-
sidered conservative because the frequency-averaged
measurements of background noise reviewed here
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are likely to overestimate the danger posed by natural
ambient sound pressure levels. Significantly, data
from studies for which absolute sound intensity levels
were published for specific frequency ranges dem-
onstrate that the ambient noise levels within any
specific frequency band rarely exceed 40 dB SPL
(Fig. 1).

It is important to note that under extreme envi-
ronmental conditions, noises greater than about 92
dB SPL (the highest ambient noise level shown in
Table 3) probably do occur in nature. Many such
instances, however, probably represent sound events
that are sufficiently short in duration (e.g., thunder)
that they could not activate the ‘“‘slow” MOC effect
that is thought to be responsible for MOC-mediated
protection (Liberman and Gao 1995; Reiter and
Liberman 1995). Furthermore, if sustained noise
levels greater than 92 dB SPL do occur naturally (e.g.,
perhaps at the bases of large waterfalls or during in-
tense storms), the environmental conditions repre-
sented in Table 3 are diverse enough to suggest that
any such ‘“‘extreme’” natural sound environments
must be very rare and discontinuously distributed in
both time and space.

STIMULUS CONDITIONS NECESSARY TO
DEMONSTRATE MOC-BASED PROTECTION

Criteria for inclusion of protection studies

A literature search of studies explicitly investigating
the role of the efferent tracts in protecting the ear
from trauma recovered a large number of primary
sources. Table 3 summarizes the findings of the 22
protection studies that form the basis for our subse-
quent discussion and analysis. The traumatizing
stimulus conditions employed in these studies are
also plotted in Figure 1, irrespective of their duration
(the effects of exposure duration are considered
below).

Three experimental studies were excluded from
this analysis. Two studies (Horner et al. 1998, 2001)
are not considered here because they blocked MOC
efferent function pharmacologically rather than
through surgical cutting, and may therefore have re-
sulted in deactivation of additional systems that could
affect auditory thresholds (e.g., the sympathetic
nervous system). A third study, by Chen et al. (2000),
is also excluded because the methods and data pre-
sented were confusing and inconsistent with the
conclusions given by the authors.

Lastly, although there is clearly some overlap with
the studies reviewed in this work, we will not consider
here the effect known as ‘“‘conditioning,” ‘“‘toughen-
ing,”” or “‘priming”’ (cf. Rajan and Johnstone 1988a,c;
Rajan 2001b). In the conditioning paradigm, expo-
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sure to one intense sound can reduce the suscepti-
bility of the ear to subsequent intense noise expo-
sures (Canlon et al. 1988). This effect, however, has
recently been shown to be unrelated to MOC efferent
action (Yamasoba and Dolan 1998; Yoshida et al.
1999; Yoshida and Liberman 2000).

Summary of MOC protection studies

Table 3 shows that most of the MOC efferent pro-
tection studies reviewed here (17 of 22) used high-
level pure tone stimulation to traumatize the ear.
Among these ‘“‘pure tone’’ studies, the stimulus con-
ditions in which a protective effect was demonstrated
(Fig. 1, open diamonds) ranged in frequency from
2.0 to 20.0 kHz and in intensity from 100 to 150 dB
SPL (peak level). Surprisingly, the stimulus condi-
tions that failed to demonstrate MOC protection in
similar studies (Fig. 1, open squares) are roughly
comparable, ranging from 2.0 to 10.0 kHz and from
97 to 130 dB SPL. The highly analytic, sinusoidal
signals used in these experiments differ radically
from the complex frequency spectra found in natural
environmental noise (Ryan and Brenowitz 1985; Au-
bin and Jouventin 1998), although some animal
vocalizations, such as the biosonar signals of bats (cf.
Griffin 1958) and nonhuman primate calls (cf. Green
1975; Seyfarth et al. 1980), do consist of frequency-
modulated signals that are relatively tonal in nature.

Broadband noise stimuli, which more closely ap-
proximate the spectral complexity of natural envi-
ronmental noise, have been used in four protection
studies. First, Handrock and Zeisberg (1982) studied
the ability of octave-band noise centered at 4.0 kHz to
elicit MOC protection in guinea pigs. In this study,
the MOC system appeared to reduce noise trauma at
125 dB SPL but not at 120 dB SPL exposure. Second,
Liberman and Gao (1995) studied the effects of
narrowband (500 Hz bandwidth) noise centered at
10.0 kHz on compound action potential thresholds in
guinea pigs. Ears that had been surgically de- effer-
ented had greater threshold shifts than did normal
ears when exposed to 112 dB SPL noise, but there was
no difference in threshold shifts when the ears were
exposed to 109 dB SPL noise. Third, Zheng et al.
(1997) compared the effects of 105 dB SPL broad-
band noise exposure, shaped to produce a flat
threshold shift, in chinchillas with normal and sur-
gically de-efferented ears. Evoked electrophysiologi-
cal potentials showed no differences in normal and
de-efferented ears, although otoacoustic emission
amplitudes and input/output measures (measures of
outer hair cell function) were depressed in de-effer-
ented ears as compared with normal ears. Zheng et al.
concluded that the MOC system decreases the sus-
ceptibility of the cochlea to intense noise. Fourth,
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Rajan (2001c) exposed cats to 100 dB SPL narrow-
band noise at either 1.0-6.0 kHz (40 min) or 8-13.0
kHz (15 min). To determine the relative contribution
of the crossed and uncrossed MOC tracts to the
protective phenomenon, Rajan compared threshold
shifts following noise exposure in (1) normal animals
and (2) animals in which the different MOC sub-
groups had been lesioned. The comparisons showed
a complex pattern of responses where, depending on
the frequency of the temporary threshold shift (TTS)
relative to the exposing noise band, the MOC tracts
could either protect or exacerbate the threshold shift.
The net affect of the MOC action, however, was
protective.

One additional study, by Zheng et al. (2000), used
extremely high-level [150 dB (peak level) SPL] im-
pulse noise to damage the cochleas of chinchillas.
The authors described a relative increase in inner
hair cell damage with de-efferentation but no differ-
ence in outer hair cell survival following impulse
noise exposure. Although these findings are difficult
to explain in terms of known MOC innervation pat-
terns and physiology, Zheng et al. (2000) concluded
that their data were consistent with the MOC func-
tioning to reduce susceptibility to intense noise ex-
posures.

DISCUSSION: THE MOC SYSTEM DID NOT
EVOLVE FOR A PROTECTIVE FUNCTION

Comparison of natural environmental noise and
experimental stimuli

Natural selection occurs as a result of the interaction
between an organism’s phenotype and a given envi-
ronmental parameter (sensu lato). Such environmen-
tal parameters (e.g., predation, ambient temperature,
intraspecific competition, etc.) lead to genetic and
morphological changes within populations by favor-
ing differential survival and/or reproductive success
among variant phenotypes. In other words, evolution
by natural selection is dependent upon environmen-
tal effects on organismal fitness. In order to support
the hypothesis that a specific environmental condi-
tion is either detrimental or beneficial to an organ-
ism’s fitness, one must first demonstrate that such
conditions are indeed present in the organism’s nat-
ural environment.

The protection hypothesis proposes that the
mammalian MOC system has evolved to insulate the
organ of Corti from potentially damaging environ-
mental noise. Even a cursory comparison of the data
presented in Tables 2 and 3 and represented graph-
ically in Figure 1, however, shows that the intense
sound levels (100-150 dB SPL) used to demonstrate
MOC-based protection under experimental condi-
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tions are higher (and in most cases substantially
higher) than the ambient noise levels in all docu-
mented natural acoustic environments. This finding
is contrary to the expectations of the protection hy-
pothesis and strongly suggests that the experimental
conditions necessary to evoke MOC-mediated pro-
tection of the cochlea have no analog in nature.
Furthermore, while relatively intense ambient noise
levels of about 80-90 dB SPL do occur naturally,
these exceptional noise conditions are geographically
rare and discontinuously distributed. By contrast,
comparative studies of mammalian auditory systems
suggest that MOC cochlear efferents are shared by
the great majority of placental and marsupial species,
which inhabit a diverse range of natural habitats. The
fact that a functional MOC system has evidently been
retained by most mammalian lineages for at least 175
million years despite considerable ecological differ-
ences between species suggests that the selective fac-
tors that have maintained the mammalian MOC
system must be nearly universal in natural acoustic
environments. Relatively high-intensity natural ambi-
ent noise (~80-90 dB SPL) clearly does not fit this
criterion.

Stimulus intensity and duration

Based upon the foregoing considerations, it is
tempting to reject the protection hypothesis outright.
A number of the studies listed in Table 3, however,
show protective effects at the lowest sound levels
tested, so the critical question remains: What are the
lowest sound intensities at which MOC-mediated
protection occurs? The answer to this question is
likely influenced by the species under consideration
due to significant differences in absolute hearing
thresholds among mammals (Fay 1988). Nonetheless,
Rajan and Johnstone (1988c) have provided evidence
that MOC protective effects are elicited in guinea pigs
only when the traumatizing acoustic stimulus pro-
duces a temporary threshold shift greater than 25 dB,
and that the magnitude of the protective effect is
directly proportional to the intensity of traumatic
stimulus. These results suggest that MOC-mediated
protection occurs only in response to very intense
acoustic overexposure. Furthermore, in the relatively
few species that have been well studied (i.e., cats,
guinea pigs, and chinchillas; Table 3), lower intensity
thresholds for MOC protection appear to be strongly
frequency dependent. For instance, in guinea pigs,
Handrock and Zeisberg (1982) and Hildesheimer et
al. (1990) found no MOC-mediated protection for 4.0
kHz sinusoidal or octave-band noise at 120 dB SPL,
whereas Rajan (1988a,b) and Rajan and Johnstone
(1983, 1988a,b,c) have consistently demonstrated
MOC-mediated protection for 10 kHz tones of only
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~100 dB SPL. Similarly, Rajan (1995b) has shown
that the ability to evoke MOC-mediated protective
effects at different frequencies is strongly dependent
upon both the intensity and the duration of the
traumatizing stimulus. In that analysis, lower-intensity
and lower-duration thresholds for activation of MOC
protection in cats were approximately 100 dB SPL for
15 min at 7 kHz compared with 106 dB SPL for 40
min at 3 kHz (Rajan 1995b).

Because the ability of noise to produce acoustic
trauma is dependent on both the intensity and the
duration of the traumatizing exposure, any assess-
ment of selective environmental influences on MOC
evolution must consider the duration of intense noise
sources. The majority of the studies shown in Table 3
exposed test subjects to relatively short-duration
stimuli, ranging from about 1 min to 2 h. Within
these narrow exposure parameters and across species,
experimentally demonstrated lower-intensity thresh-
olds for MOC-mediated protection are of relatively
high intensity. For instance, in guinea pigs the lowest
intensities required to activate MOC protection with
short-duration stimuli are between 120 and 125 dB
SPL at 4 kHz (Handrock and Zeisberg 1982) and
between 109 and 112 dB SPL at 10.0 kHz (500 Hz-
wide noise band; Liberman and Gao 1995). Similarly,
in cats, short-duration stimuli of 100-106 dB SPL can
activate MOC protection for frequencies ranging be-
tween 3 and 20 kHz, while broadband noise (0.5-40
kHz) of 80 dB SPL causes no acoustic trauma in ei-
ther de-efferented or efferentintact ears (Rajan
2000). These data suggest that the lower-intensity
threshold for activation of MOGC-based protection by
short-duration traumatizing stimuli lies somewhere
between 80 and 100 dB SPL for most of the cat’s
hearing range. Interestingly, for both cats and guinea
pigs, the protection threshold is 100-120 dB above
the animal’s respective absolute threshold (Fay 1988)
at any given frequency.

While most records of environmental noise have
intensities well below the lower-intensity thresholds
required for MOC protection by short-duration
stimuli (Fig. 1), the relatively high ambient noise
levels in some natural acoustic environments have
considerably longer durations than the traumatizing
noise exposures used in most MOC protection studies
(Table 3). For instance, at one woodland site in
western Australia, Rémer et al. (1989) reported am-
bient noise levels sustained slightly above 60 dB SPL
for at least 3 h due to chorusing bushcrickets (My-
galopsis). Similarly, in Kibale, Uganda, Waser and
Waser (1977) contrasted relatively low ambient noise
levels in the forest canopy (between 40 and 50 dB SPL
across a 24-h cycle), with noise levels near the ground,
which may be sustained between about 65 and 75 dB
SPL for approximately 8 h in the presence of
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chorusing cicadas. Narins’ (1982) recordings of biotic
noise in the montane rainforests of Puerto Rico,
however, provide a record of not only the most in-
tense known natural noise levels, but also the longest
sustained levels of intense noise. For nearly 12 h each
evening, noise levels between 1.4 and 2.8 kHz ranged
from slightly below 80 dB SPL to slightly above 90 dB
SPL as a result of chorusing frogs. While Narins’
(1982) measurements are unique in terms of their
intensity and duration, it is important to bear in mind
that these data represent the average peak sound lev-
els measured over 10-s intervals and sample only the
narrow frequency range that encompasses the most
intense component of the frog chorus.

These data on sustained noise in natural environ-
ments raise the question of whether noise levels that
are of lower intensity but longer duration than the
experimental conditions summarized in Table 3 may
activate the protective effects of the MOC system.
Unfortunately, very few studies of MOC protection
have been carried out at moderate sound intensities
of longer duration. This question is relevant to stud-
ies of MOC evolution because the most extreme
natural noise levels (e.g., 80-90 dB SPL caused by
chorusing frogs and insects) shown in Table 3 ap-
proach levels that could potentially result in perma-
nent acoustic trauma for some mammals with intact
MOC efferent systems. In chinchillas, for example, a
number of studies have demonstrated susceptibility
to permanent threshold shifts (PTS) as a result of
long-term (6-150 days continuous), moderate-inten-
sity (82-95 dB SPL) noise exposure (e.g., Mills 1973;
Ward et al. 1981; Bohne et al. 1987; Clark et al. 1987).
Because of their comparative susceptibility to acoustic
trauma (e.g., Mitchell 1976; Décory et al. 1992),
chinchillas may not represent the best general model
for the vulnerability of the mammalian auditory sys-
tem. Thus, any conclusions based upon chinchillas
can be regarded as conservative.

In the experimental design that perhaps best ap-
proximates an extreme natural noise environment,
Bohne et al. (1987) exposed chinchillas to 4 kHz
octave-band noise at 80-86 dB SPL for 6 h per day
over a 36-day period. Under these test conditions,
many test animals (36% at 80 dB SPL; 50% at 86 dB
SPL) showed evidence of high-frequency lesions of
the organ of Corti at the end of the experiment.
Similarly, Mills (1973) provided behavioral evidence
of moderate PTS (8-13 dB) in chinchillas exposed to
continuous 4.0 kHz octave-band noise at 86 dB SPL
for 9 days. Chinchillas exposed to 80 dB SPL noise
under the same experimental design, however,
showed no evidence of PTS. These data suggest that
80 dB SPL is probably near the lower limit at which
PTS could be expected to occur under natural con-
ditions, since permanent acoustic trauma due to
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lower sound levels would likely require exposure du-
rations that are not found in any natural acoustic
environment. Because sustained noise levels signifi-
cantly greater than 80 dB SPL are very rare in nature,
we suggest that most natural acoustic environments
would probably not cause permanent acoustic trauma
to chinchillas and, by extension, most other mam-
mals. Even if some unusual natural acoustic envi-
ronments (e.g., the Luquillo Mountains of Puerto
Rico; Narins 1982) have noise intensities that could
potentially traumatize the cochleas of MOC-intact
animals, it nevertheless remains clear that the stimu-
lus conditions known to elicit MOC protection in
experimental settings differ substantially from the
noise characteristics of all natural acoustic environ-
ments.

The effects of internally generated noise

This review has thus far considered only the external
acoustic environment, although several studies have
demonstrated that the medial efferent system can
have a significant effect on neural responses to in-
ternally generated sounds (Kawase and Liberman
1993; Kawase et al. 1993; Cazals and Huang 1996;
Popelar et al. 1997; Lima da Costa et al. 1997). Given
the extreme sensitivity of the mammalian auditory
receptor, the cochlea responds to internal acoustic
events created by blood circulation, heart contrac-
tions, respiration, body movements, and chewing.
The acoustic energy for these signals, however, is low
in frequency and intensity (cf. Cazals and Huang
1996; Lima da Costa et al. 1997), and the cochlear
response to these signals might represent a part of
the measured ‘‘spontaneous activity’’ of the auditory
nerve (Guinan and Gifford 1988; Cazals and Huang
1996). Gnathosonic measures of the sound generated
by normal dental occlusion shows that virtually all
spectral energy is found in bands below 400 Hz, with
the majority being present between 50 and 150 Hz
(Hedzelek and Hornowski 1998; Sano et al. 2002).
These findings suggest that chewing sounds are un-
likely to have a significant deleterious impact on
higherfrequency thresholds (i.e., at frequencies
where MOC efferents are present in the cochlea).
Likewise, it is theoretically possible that the MOC
system could have evolved as a protective mechanism
to counteract the deleterious effects of an animal’s
own intense vocalizations. While a detailed treatment
of this possibility is outside the scope of this review,
we feel that this scenario is unlikely for several rea-
sons. First, the mammalian auditory system is already
known to exhibit a means of reducing the effects of
internally produced vocalizations in the form of the
middle ear reflex. The middle ear reflex is activated
by vocalizations and/or speech (Carmel and Starr
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1963; Henson 1965) and can produce a significant
attenuation of an auditory signal (i.e., by as much as
10-30 dB) before it can be transmitted to the cochlea.

Second, there is little evidence for correspondence
between the frequency of an animal’s vocalizations
and patterns of MOC innervation of the organ of
Corti. For instance, in many echolocating bats (where
ultrasonic pulses reach >120 dB SPL at ~50 kHz),
MOC innervation is relatively uniform throughout
the organ of Corti (Griffin 1958; Henson 1965). If the
MOC system was necessary for protection from the
intense vocalizations produced by these species, then
greater MOC innervation at the acoustic fovea (which
includes the region of the basilar membrane re-
sponsible for transducing the dominant frequency of
the vocalization) would be expected.

Third, the ability to produce intense vocalizations
is not always associated with the presence of a func-
tional MOC efferent system. Of the three genera of
mammals currently known to lack an MOC system,
two are microchiropteran bats (Hipposideros and
Rhinolophus) that produce extremely high-intensity
vocalizations (>120 dB SPL) like many other micro-
chiropterans. It therefore seems unlikely that MOC
innervation of the cochlea would have been lost in
these two genera if the MOC system plays a role in
protecting the inner ear from trauma caused by high-
intensity vocalizations.

Finally, some species that are known to have a
highly developed MOC system do not produce in-
tense vocalizations. For example, the vocal repertoire
of domestic cats appears rather limited and may
function primarily between conspecifics at close
range. High-intensity calls that might serve to group
distant conspecifics seem to be entirely lacking
(Wemmer and Scow 1977).

If not protection, why did the MOC system
evolve?

The primary goal of this article has been to answer
one question: Did the MOC system evolve as a
mechanism to protect the cochlea from acoustic
trauma caused by high-intensity natural environ-
mental noise? Given the results of our analysis dis-
cussed above, the answer can only be ‘“‘no.” The
substantial MOC protection literature (Table 3),
however, clearly demonstrates that destruction of the
MOC system increases the cochlea’s susceptibility to
acoustic trauma from very high-intensity tones under
experimental conditions. There can be little doubt
that this protective effect is real, given the control and
repeatability of the supporting data. How then can
these data be reconciled with our conclusions?

The explanation for the repeated protection
finding can be found in the fact that the action of the
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MOC system is suppressive in nature (Fex 1967;
Konishi and Slepian 1970; Wiederhold and Kiang
1970; Buno 1978; Mountain 1980; Siegel and Kim
1982; Liberman 1989; Warren and Liberman 1989;
Kawase and Liberman 1993; Kawase et al. 1993; Cazals
and Huang 1996; Lima da Costa et al. 1997; Nuttall
et al. 1997). In general, the magnitude of the sup-
pressive action of MOC efferents on the various
cochlear responses is proportional to the intensity of
the stimulus (whether acoustic or electric) activating
the MOC system (cf. Warren and Liberman 1989).
Importantly, the magnitude of MOC-mediated sup-
pression increases with the level of afferent neural
activity (Guinan and Stankovic 1996). Guinan and
Stankovic (1996) have shown that MOC activity can
produce a reduction, in the largest case, in single-
fiber discharge rate equivalent to a 50 dB attenua-
tion of the input stimulus at BF. The attenuation,
which was greatest in low-spontaneous-rate fibers, in-
creased to stimulation levels of 50-75 dB SPL, then
decreased rapidly with further increases in stimula-
tion. In the present context, assuming that MOC ac-
tivity elicited by sound is at least qualitatively similar
to that elicited by electrical stimulation, MOC action
would have the net effect of reducing the level of the
intense noise exposure, thereby reducing the result-
ing damage.

One significant limitation of most previous inves-
tigations of the MOC efferent system is the failure to
distinguish between the actual biological role of a
system (i.e., the purpose for which the system
evolved) and the performance of the system in a
strictly controlled experimental context. Most exper-
imental studies of the MOC system refer only to its
“function” (e.g., Maison and Liberman 2000) and do
not consider the actual selective variables that may
have been involved in the evolution of the MOC sys-
tem. From the perspective of evolutionary biology,
“function” is an imprecise term that refers to the
myriad roles that may be played by a system in a va-
riety of contexts. As noted above, in order to help
delineate the biological role of a system, it is first
necessary to determine whether the stimulus condi-
tions necessary to evoke a specific function are rou-
tinely encountered in nature. In the case of the
protection hypothesis, most of the supporting evi-
dence for protection (Table 3) clearly fails this test in
light of the cumulative evidence (Table 2) that nat-
ural acoustic environments do not demonstrate sus-
tained levels of noise that are sufficiently intense to
activate experimentally demonstrated MOC protec-
tive effects. “‘Protective’ effects thought to be medi-
ated by MOC action (Table 3) may therefore
represent epiphenomena that arise from the inher-
ently suppressive role of the MOC system (cf. Borg
et al. 1995).
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These conclusions beg an additional question: If
the MOC system did not evolve to protect the inner
ear from acoustic trauma, then what is the biological
role of the MOC system in mammalian hearing? As is
clear from the data shown in Table 2 and Figure 1, all
natural acoustic environments are characterized by
noise spanning a wide range of frequencies. This
finding is particularly relevant for tropical forested
habitats, which tend to have diverse insect and ver-
tebrate faunas that rely on acoustic signals for a va-
riety of communicatory functions. The sources cited
in Table 2 further indicate that abiotic noise is a near-
ubiquitous feature of natural acoustic environments.
The combined effects of both wind and water ensure
that low-intensity, relatively broadband noise is pre-
sent in nearly all natural environments, suggesting
that the biggest problem posed by natural ambient
noise may be the masking of biologically relevant
acoustic signals. This universal distribution and pre-
dominantly low-to-moderate intensity of natural en-
vironmental noise thus supports the hypothesis that
the MOC system evolved in the context of unmasking
transient stimuli, rather than protecting the inner ear
from intense noise levels. In this context, it is not
surprising that noisy, relatively broadband signals,
like those present in natural environments, are
among the most effective in stimulating MOC effer-
ent activity (Warren and Liberman 1989). Indeed, we
expect that mammals (like most vertebrate lineages)
have experienced significant selective pressure to
segregate biologically relevant acoustic signals from
irrelevant background noise (Waser and Brown 1984;
Brown and Waser 1988; Fay and Popper 2000).

SUMMARY OF FINDINGS

Ambient noise in all natural acoustic environments is
significantly lower in intensity than the experimental
conditions that are known to evoke an MOC-based
protective effect. The very intense traumatizing stim-
uli [100-150 dB SPL (peak level), primarily sinusoidal
tones] used in all short-duration studies demonstrat-
ing MOC-mediated protection simply have no natural
analog. Although longer duration, relatively high-
intensity (~80-90 dB SPL) noise has been docu-
mented in a small number of natural acoustic envi-
ronments, these noise conditions are probably not
sufficient to activate the protective effects of the MOC
system. Even if such relatively high-intensity noise
environments can activate MOC protective effects,
the rarity of such noise environments suggests that
their role in the evolution of the mammalian MOC
system would have been small. The substantial dis-
crepancy between the characteristics of natural
ambient noise and the experimental conditions nec-
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essary to evoke MOC-based protection provides
strong evidence that the MOC system did not evolve
to protect the inner ear from acoustic trauma.
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