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Arabidopsis G-protein interactome reveals connections
to cell wall carbohydrates and morphogenesis
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The heterotrimeric G-protein complex is minimally composed of Ga, Gb, and Gc subunits. In the
classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where
the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to
cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans
and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio
plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein
complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we
detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the
core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of
the nodes were retested and validated as genuine in planta. Co-expression analysis in combination
with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel
role for G-proteins in regulating cell wall modification.
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Introduction

Heterotrimeric G-proteins couple a myriad of extracellular
signals, including light, ions, peptides hormones, neurotrans-
mitters, and protein ligands, to intracellular changes in ion flux,
enzymatic activity, protein proximities, and trafficking. Classi-
cally, the G-protein heterotrimer is activated by cell-surface
receptors (G-protein-coupled receptors, GPCRs) that trigger the
Ga-subunit of the heterotrimer to release GDP, thus enabling

the Ga-subunit to bind to GTP. GTP binding is accompanied
by structural rearrangements that disengage the Gbg inter-
action and result in heterotrimer dissociation (Sprang, 1997).
The free subunits then relay signals by interacting with
downstream proteins collectively called effectors, because they
‘effect’ the cellular changes mentioned above. G-protein
signaling is terminated after the Ga-subunit hydrolyzes GTP
to GDP and the heterotrimer re-associates. Ga proteins provide
specificity between GPCRs and effectors, amplify signal
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transduction, serve as a point of signal modulation, and act as
timing devices that control signaling lifespan.

In metazoans, there are hundreds of GPCRs as well as
dozens of effectors, modulators, and scaffold proteins that
interact with the heterotrimer or its dissociated subunits
(Temple et al, 2010). However, few, if any, of these are encoded
in plant genomes sequenced to date (Jones and Assmann,
2004). Because our understanding of G-protein signaling in
plants critically depends on knowing the constellation of
proteins operating in this network and the relationship of each
effector to each other, we chose an ab initio approach to
assemble the G-protein interactome. Presumptive roles for
G-protein signaling in several new pathways were revealed
and one was pursued here.

Results and discussion

Generation of a high-quality G-protein interactome
map using yeast two-hybrid screening

Aiming at the identification of regulators and effectors of
heterotrimeric G-protein subunits in Arabidopsis thaliana,
we performed comprehensive high-throughput yeast two-
hybrid (Y2H) screening. Nine prey cDNA libraries made from
diverse Arabidopsis tissues were screened 10 times using seven
primary baits, including the subunits of the heterotrimeric
G-proteins Ga (GPA1), Gb/Gg1 (AGB1/AGG1), Gb/Gg2 (AGB1/
AGG2), (Ullah et al, 2001, 2003; Trusov et al, 2007), and
regulator of G-protein signaling 1 (RGS1), Pirin (PRN), N-myc
downregulated-like1 (NDL1), and receptor for activated
C kinase1A (RACK1A; Chen et al, 2003, 2006; Lapik and
Kaufman, 2003; Mudgil et al, 2009). To distinguish between
potential effectors that interact with GPA1 in its active confor-
mation only, and regulators interacting with GPA1 irrespective
of its activation state, three variants of GPA1 were used as bait
constructs: a constitutive active form (Q222L), the wild-type
protein, and a mutant version with accelerated GTPase activity
(G220A). Potential false positives were excluded both by
re-cloning and retesting positive interactions, as well as
excluding known common false positives (Methods and
Supplementary Experimental Procedures). The complete data
set is available in Supplementary Table 1, in Arabidopsis
Protein Interaction Database (AtPID, ID:FDS1176001), and in a
public database dedicated to Arabidopsis G-protein signaling
(AGIdb), http://bioinfolab.unl.edu/AGIdb.

In accordance with published data, our screenings identified
AGG1, AGG2, and NDL1 as interactors of AGB1, and thylakoid
formation 1 (THF1) as an effector of the constitutive active
form of GPA1 (Huang et al, 2006; Mudgil et al, 2009). From the
total of 206 unique prey proteins from the first round of
screenings, 14 secondary baits (ANNAT1, ARD1, CDC48B,
NDL1, RACK1B, RACK1C, SYP23, TGA1, UNE16, VAP27,
AT1G05000, AT1G52760, AT4G26410, and AT5G14240) were
chosen, because these interacted with two or more of the
primary baits. Interestingly, the interaction data reveal a highly
interconnected network, with many proteins identified as
interaction partners of two or more of the bait proteins. High
local connectivity supports the close functional relationship of
the proteins involved, and proteins sharing interaction
partners have an increased probability of interacting them-

selves (Milo et al, 2002; Barabasi and Oltvai, 2004).
Furthermore, interactions within three- and four-protein-
interaction loop motifs are considered reliable and function-
ally meaningful (Spirin and Mirny, 2003; Wuchty et al, 2003;
Yeger-Lotem et al, 2004). Therefore, we focused on the bi-
connected core (two-core) of the network composed of 69
proteins interacting with at least two other proteins in the
network. Thirty-eight of these proteins were analyzed further
by individually testing all possible pair-wise combinations for
interaction in yeast. This approach led to the identification of
64 additional interactions, resulting in a highly interconnected
core network (68 nodes, 167 edges) with an average node
degree of 4.1 (Figure 1). A comparison of the gene ontology
annotations of the core network to the genome indicated
enrichment in these categories: plasma membrane, nucleus,
cytosol, endoplasmic reticulum, ribosome, protein binding,
nucleotide binding, structural molecule activity, responses to
biotic/abiotic stresses, developmental processes and cell
organization, and biogenesis (Supplementary Figure S1).
Homologous interacting protein pairs from other organisms
(interlogs) were not found.

In planta confirmation of protein–protein
interactions

We randomly selected 41 central proteins from the core network
and 8 outside the core to test 78 interactions in planta by
bimolecular fluorescence complementation (BiFC). In addi-
tion, 28 negative controls comprising both soluble and
membrane proteins were included. Seventy-four of the 78
tested protein pairs, but none of the negative control pairs,
complemented yellow fluorescent protein (YFP) fluorescence,
indicating in planta interaction, thereby corroborating the Y2H
data. The test pairs were selected after passing stringent
experimental and topological filters (Supplementary Experi-
mental Procedures). Our validation rate is higher than
expected given the previously observed detection overlap
between Y2H and orthogonal validation assays (Braun et al,
2009). This is likely due to the applied filtering of validated
interactions, although formally it cannot be excluded that use
of a larger and more diverse set of random negative controls
would detect a higher background and hence necessitate more
stringent scoring. The majority of the BiFC signals were
present in the cytoplasm and/or the cell periphery of
epidermal pavement cells. Notably, some tested interactions
seem to be restricted to the nucleus in planta, e.g., MYC2-
ARD1, AGB1-MYB, and UNE16-MYB, while others preferen-
tially take place in guard cells, e.g., RGS1-TGA1 and ARD1-
EXGT-A1 (Supplementary Figure S2).

Correlation of gene expression supports the
reliability of the G-protein interactome map

Correlated expression frequently is an indicator of co-function-
ality of genes in common pathways and processes (Persson
et al, 2005; Hirai et al, 2007; Humphry et al, 2010), and inter-
acting proteins, particularly proteins that are part of network
motifs, are often significantly co-expressed (Bhardwaj and Lu,
2009). We therefore interrogated correlation of expression of
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the gene pairs derived from our interaction analyses. To
establish a threshold of significance for this type of analysis, 69
gene pairs encoding proteins well documented to physically
interact were analyzed (‘gold standard’, Supplementary Table
S1). The thresholds were established using permutation testing
to account for multiple testing practices. The expression
profiles of the gold standard protein pairs were significantly
correlated as compared with a random selection. We then
calculated correlation of gene expression for 385 gene pairs
from the G-protein interactome across the four GENEVESTI-
GATOR categories: Anatomy, Development, Mutation, and
Stimulus. In total, 90, 15, 178, and 196 of the 385 tested pairs
across the four respective categories showed a significant
correlation of gene expression (Figure 1, Supplementary Table
S1, and AGIdb, http://bioinfolab.unl.edu/AGIdb). Overall, the
average expression correlation of the gene pairs was signifi-
cantly higher than the reliability of the G-protein interaction
network made up of the 69 previously documented gene pairs.

The core interactome points to a previously
unknown role for G-proteins in cell wall composition

The interactome provided many new leads to test a role of
G-proteins in Arabidopsis cell function, some of which are

known while many are new. For example, manual inspection
of the interactome revealed several potentially interesting
interactions between the G-protein core and proteins that may
either directly (e.g., enzymes) or indirectly (e.g., transcription
factors) regulate cell wall composition or structure (Supple-
mentary Table S1). Among the cell wall-associated enzymes
in this group, the predominant candidates have known
or predicted functions toward xylose biosynthesis or meta-
bolism. Xylose is present in plant cell walls primarily in two
polysaccharides, xyloglucan and xylan, both of which are
found in Arabidopsis tissues. Therefore, we hypothesized that
the cells lacking a functional G-protein complex would have an
altered xyloglucan and/or xylan content or structure.

We first tested for alterations in cell wall composition across
a selection of G-protein mutants using infrared microscopy,
a rapid method to detect global changes in cell wall composi-
tion (McCann et al, 2007), followed by principal component
(PC) analysis. Mutants tested included agb1, gpa1, rgs1,
suppressor of G-beta1 (SGB1), and a double mutant defective
in both GPA1 and AGB1. The gpa1–3, rgs1–2, and sgb1–2
single mutants could not easily be discriminated from Col-0
wild type. However, the agb1–2 mutant and the gpa1–4 agb1–2
double mutant could be discriminated from Col-0 at 80%
correct assignment using four PCs for the double mutant, and
78% using five PCs for the agb1 single mutant (Supplementary

Figure 1 Arabidopsis heterotrimeric G-protein core interactome. Only those proteins from the interactome data set are shown that possess at least two connections
within the network (two-core). Red nodes highlight published components of G-protein signaling in Arabidopsis that were used as primary baits in the Y2H screenings.
Proteins used as baits for the second round of screens are shown in brown. Gray lines (edges) represent interactions detected with the Y2H system. Green edges
represent interactions shown with both the Y2H system and BiFC. Orange edges represent interactions found in our Y2H screenings that were published and confirmed
by FRET analyses or co-immunoprecipitation previously (Lapik and Kaufman, 2003; Adjobo-Hermans et al, 2006; Huang et al, 2006; Mudgil et al, 2009). The AGB1-
ARD1 through ARD4 confirmations are as described in Friedman et al (2011). Thick edges indicate protein pairs with significantly correlated expression profiles
(Supplementary Table S1).

Arabidopsis G-protein interactome
K Klopffleisch et al

& 2011 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2011 3

http://bioinfolab.unl.edu/AGIdb


Figure S3A–D). The loading for PC2 indicates differences in
cell wall ester, protein content, and some carbohydrate
features between Col-0 and agb1.

As infrared microscopy does not allow unambiguous identi-
fication of the altered carbohydrates, we next analyzed wild-
type and mutant cell walls for monosaccharide content via
gas–liquid chromatography. Small but significant differences
in the mole % of one of the major cell wall pentoses, xylose,
were observed in both the agb1 mutant and gpa1 agb1 double
mutant compared with wild type. While the agb1 single
mutant exhibited a slight but statistically significant decrease
in xylose mole %, the gpa1 agb1 double mutant showed a
statistically significant increase in the proportion of cell wall
xylose (Supplementary Table S1). The opposing phenotypes
suggest that the action is primarily through GPA1, as loss of
AGB1 would increase the activated pool and loss of GPA1
would decrease it (Ullah et al, 2003). Specific increases or
decreases in xylose content alone suggest alterations in either
xylan or xyloglucan structures.

To determine more precisely the identity of the polysacchar-
ide affected by the mutations, and to gain a broader picture of

cell wall changes in the mutant plants, cell walls of wild-type
and mutant plants were quantitatively profiled for their glycan
epitope content (glycome profiling). Glycome profiling in-
volves enzyme-linked immunosorbent assay-based screening
of sequential extracts of cell walls, using a set ofB150 cell wall
glycan-directed monoclonal antibodies that resolve into 18
groups recognizing diverse epitopes present on most major
classes of plant cell wall polysaccharides (Pattathil et al, 2010).
Leaf and root tissues were isolated from gpa1 and agb1 single
mutants, the gpa1 agb1 double mutant, the gpa1 agb1 agg1
agg2 quadruple mutant, and wild-type plants. The glycome
profiles of leaf and root cell walls from mutants showed some
differences when compared with each other and to the profiles
from wild-type cell walls. The altered glycome profiles were
particularly evident in the case of the leaf cell wall extracts of
the mutants, where the binding patterns of the xylan-3 and
xylan-4 groups of antibodies varied in all of the mutants
(Figure 2A and Supplementary Table S1 and Supplementary
Figure S3E). In the gpa1 agb1 double mutant and gpa1 single
mutant, a reduced abundance of xylan-3 (P¼7.2e�12 in the
double mutant and P¼1.8e�14 in the single mutant) and

Figure 2 Glycome profiling of sequential cell wall extracts prepared from leaves (A) and roots (B) of the agb1, gpa1 mutant and wild-type (Columbia-0, Col-0) plants.
Heat maps of enzyme-linked immunosorbent assay (ELISA) data obtained by screening the sequential carbohydrate extracts with 150 glycan-directed monoclonal
antibodies (Pattathil et al, 2010). The panel on the right lists the array of monoclonal antibodies used (left-hand side) and groups them according to the principal cell wall
glycan (right-hand side) recognized by the antibodies (Pattathil et al, 2010). The reagents used for various extraction steps are identified at the bottom of each column in
the heat map. The yellow-black scale indicates the strength of the ELISA signal: bright yellow depicts strongest binding and black indicates no binding. The colored
outlines highlight the changes in the antibody binding patterns to the extracts of the mutants compared with WT. (A) The red box outlines the changes in the xylan-3 and
xylan-4 antibodies, blue box outlines the changes in the pectic backbone antibodies, and green box outlines the changes in xyloglucan-directed antibodies. (B) Green
box outlines the changes in the pectic backbone antibodies, red box outlines the changes in the RG-1/AG antibodies, and the blue box outlines the changes in the AG-1
and AG-2 antibodies. A full data set of the glycome profiles of all mutants can be found in Supplementary Figures S2 and S3.
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xylan-4 (P¼1.8e�5 in the double mutant and P¼1.1e�5 in the
single mutant) epitopes was observed in the chlorite fraction in
comparison with the corresponding fraction from wild-type
cell walls (Figure 2A). Analyses were carried out using ANOVA
models on each antibody classification group (Supplementary
Experimental Procedures), and the results are provided in
Supplementary Table S1. Additionally, the chlorite fractions
from the leaf cell walls of gpa1 and gpa1 agb1 agg1 agg2
quadruple mutants contained reduced levels of xylan-3 and
xylan-4 epitopes. Subtle changes in the glycome profiles for
some mutant cell walls were also noted in the binding patterns
of antibodies against pectic backbone and xyloglucan-directed
antibodies (Figure 2A and Supplementary Figure S3E). Over-
all, these results indicate that structural changes in the leaf cell
walls of mutants were mostly related to the structural features
of xylan or to the integration of xylan into the cell walls during
its biosynthesis.

The mutants also showed differences in their root cell wall
glycome profiles compared with that of wild-type plants,
although the dissimilarities were in different groups of
antibodies than those observed in the leaf glycome profiles.
Invariably, in all mutants, there was a notable reduction in the
levels of pectic backbone epitopes (homogalacturonan,
rhamnogalacturonan I backbone epitopes) in the oxalate and
carbonate extracts compared with the corresponding extracts
from wild-type walls. There was also a subtle reduction in the
release of pectic rhamnogalacturonan I/arabinogalactan (RG-
I/AG) epitopes in the 1 M KOH fractions of the mutants.
Additionally, altered binding patterns of the AG-1 and AG-2
groups of antibodies to the oxalate and carbonate fractions of
mutants was observed (Figure 2B and Supplementary Figure
S3F). These data suggest that the mutations in the genes
studied here also affect root cell wall structure, primarily by
altering the extractability of pectic polysaccharides.

In summary, the glycome profiles of the mutant wall extracts
indicate that mutations in heterotrimeric G-protein complex
components lead to alterations of the overall cell wall
structure, thereby resulting in changes in the extractability of
primarily xylan epitopes in leaf tissues and pectic backbone
epitopes in root tissues.

Mutants of G-protein interactors share a stomatal
density phenotype

Alterations in cell wall composition can confer anomalous
morphological features and one quantifiable anomaly is the
stomatal pattern of the epidermis (Chen et al, 2009; Guseman
et al, 2010). Previous genetic analysis revealed that GPA1 and
AGB1 antagonistically modulate stomatal density in Arabi-
dopsis (Zhang et al, 2008). To assess whether any of the newly
identified members of the G-protein interactome are co-
involved in this process of aberrant morphogenesis, we
quantified stomatal density at two different time points in
seedlings of 17 plant lines carrying mutations in genes
encoding proteins at nodes of the core interactome and
compared them to Col-0 wild type. Our data confirmed the
previously reported lower and higher stomatal density of
gpa1 and agb1 single mutants, respectively, as well as the
phenotype of the gpa1 agb1 double mutant, which was

reported to be intermediate between the agb1 mutant and
Col-0 wild type (Zhang et al, 2008). Five mutants showed
either significantly (Po0.1) elevated or reduced stomatal
density (Supplementary Table S1). These mutants relate to a
diverse set of genes with yet unknown links to cell wall
modification and/or morphogenesis.

Conclusions

We established a comprehensive protein–protein interaction
network for Arabidopsis G-protein signaling pathway elements,
greatly expanding our view of G-protein-coupled signaling.
Interactome networks derived from high-throughput interac-
tome projects have proven highly valuable for systems biology
and the functional annotation of the genomes of a number of
model organisms (Gavin et al, 2002; Li et al, 2004; Formstecher
et al, 2005; Rual et al, 2005). An unbiased, partial, plant
interactome data set (8000 by 8000 matrix) was published
during review of the present work (Arabidopsis Interactome
Mapping Consortium, 2011). In Arabidopsis, systematic protein
interaction mapping projects focused on pre-selected groups of
genes with specific structural or functional relation, such as
particular transcription factor families, membrane proteins,
virulence effectors, or proteins involved in cell cycle regulation
(Zimmermann et al, 2004; de Folter et al, 2005; Lalonde et al,
2010; Van Leene et al, 2010; Mukhtar et al, 2011). Our focused
interactome revealed G-protein interacting proteins with
different subcellular localization and cell type specificity.
A role for the G-protein interactome in cell wall biogenesis/
metabolism was deduced from the predicted functions of
identified interactors, the biochemical and immunological
phenotype of G-protein mutants, and the morphological pheno-
type of mutants defective in G-protein interactors.

Materials and methods

Y2H methods

All bait constructs used in the primary and secondary screenings were
tested for auto-activation, and the addition of 3-amino-1,2,4-triazole
eliminated residual growth on selection media. To exclude potential
screening artifacts (‘technical false positives’; Finley, 2007; Venkatesan
et al, 2009), in vivo recombination cloning of PCR products was used to
re-clone the prey cDNAs in yeast, and interactions were pair wise
reassessed with their respective baits as well as with negative controls.
Only those prey clones that were positive with the bait and negative in
the control experiment were taken into account. Preys representing
known Y2H artifacts were discarded (Supplementary Experimental
Procedures). Further details of the methods used for the interaction
screens, including the nine cDNA libraries interrogated, are provided
in Supplementary Experimental Procedures.

Arabidopsis G-Signaling Interactome Database

The protein interaction information that we obtained is publicly
available through the Web-based database: Arabidopsis G-Signaling
Interactome Database (AGIdb, http://bioinfolab.unl.edu/AGIdb).
The AGIdb currently includes information from 544 unique protein
pairs (currently 1058 interaction data obtained from different libraries
and other experimental conditions) and allows users to access and
search the entire data set. The interaction data can be downloaded
in a table format that can be imported in Cytoscape (http://www.
cytoscape.org/; Cline et al, 2007) and other network analysis software.
Details of the specifications of the database are provided in Supple-
mentary Experimental Procedures.
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Genes that show correlated expression may share cis-acting
elements in their promoters (50 regulatory regions). Known cis-acting
elements for each gene in the interactome were retrieved via a
dedicated database (AtcisDB, http://arabidopsis.med.ohio-state.edu/
AtcisDB/) and added to the interactome database. Comparative
analysis revealed sets of shared cis-regulatory elements in case of
some co-expressed interactome genes.

Bimolecular fluorescence complementation

BiFC was performed as described in Grigston et al (2008) with
modifications as indicated in Supplementary Experimental Proce-
dures. The higher extinction coefficient mediated by these
second-generation BiFC vectors enabled analyses at lower expression
levels, thus greatly lowering the false-positive rate. A positive-
transformation control was included. Leaf samples were imaged using
a Zeiss LSM710 confocal laser scanning microscope equipped with an
Apochromat � 40 (NA 1.2) water-immersion objective. The positive
control for BiFC interaction used in each replicate was the AHP2 dimer
(At3g29350). Twenty-eight negative control tests for core proteins
against both membrane and soluble proteins were included (Supple-
mentary Figure S1, panels 79–109).

Co-expression analyses

A detailed description of the methods used to determine the statistical
significance of paired gene expression patterns is provided in the
Supplementary Experimental Procedures material.

Cell wall analyses

Isolation of cell walls, FITR analysis, monosaccharide and linkage
analyses, glycome profiling, and the statistical analyses used for
glycome profiling are described in detail in the Supplementary
Experimental Procedures material.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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