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It has been debated whether human induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs)
express distinctive transcriptomes. By using the method of weighted gene co-expression network analysis, we
showed here that iPSCs exhibit altered functional modules compared with ESCs. Notably, iPSCs and ESCs
differentially express 17 modules that primarily function in transcription, metabolism, development, and im-
mune response. These module activations (up- and downregulation) are highly conserved in a variety of iPSCs,
and genes in each module are coherently co-expressed. Furthermore, the activation levels of these modular genes
can be used as quantitative variables to discriminate iPSCs and ESCs with high accuracy (96%). Thus, differential
activations of these functional modules are the conserved features distinguishing iPSCs from ESCs. Strikingly,
the overall activation level of these modules is inversely correlated with the DNA methylation level, suggesting
that DNA methylation may be one mechanism regulating the module differences. Overall, we conclude that
human iPSCs and ESCs exhibit distinct gene expression networks, which are likely associated with different
epigenetic reprogramming events during the derivation of iPSCs and ESCs.

Introduction

Induced pluripotent stem cells (iPSCs) produced from
somatic cells by overexpressing key transcription factors clo-

sely resemble embryonic stem cells (ESCs) in many aspects,
including cell morphology, chromatin modifications, and dif-
ferentiation potency [1–6]. Human iPSCs have become a pow-
erful tool for biomedical research and may provide a promising
alternative for cell-replacement therapies [7–9]. However, re-
gardless of parental cell lineages or reprogramming techniques,
several studies have shown that iPSCs are different from ESCs at
the level of RNA transcription, leading to a debate regarding
whether iPSCs are truly similar to ESCs [10–14].

It is suggested that transcriptome changes between
human ESCs and iPSCs arise from different culture con-
ditions or different laboratory practices [1–2,10–12]. This
hypothesis is supported by cluster analysis of gene ex-
pression profiling from different research groups [11,12],
in which iPSCs and ESCs derived from individual re-
search labs tend to be clustered together into a lab-specific
pattern [11,12]. However, these analyses simply merged
gene expression data generated from different labs
without removing batch effects, which may significantly
mislead the conclusions derived from independently
measured microarray data [15]. These lab-specific gene

expression patterns between iPSCs and ESCs may need
more thorough re-examination.

Several studies have attempted to identify individual
genes differentially expressed between iPSCs and ESCs. One
study reported a total of 294 differentially expressed genes
between human iPSCs and ESCs, suggesting that iPSCs have
a unique expression signature [13]. However, these 294
individual gene signatures are not conserved in different
iPSCs after independently re-examining the same database
by several groups [11,12,14]. This suggests that unique and
reliable gene expression signatures distinguishing iPSCs and
ESCs still remain elusive.

In contrast to individual gene expression signatures that
are less conserved in various iPSCs as discussed above, certain
functional groups have been consistently found to be altered
between ESCs and iPSCs [16,17]. For example, functional groups
involved in development, transcription, immune response,
and enzyme activities for metabolism have been frequently
found in recent studies [16,17]. Functional groups (modules)
are believed to be stable units in systems biology because
the overall function of a module can remain the same, whereas
individual gene expression can be changed or replaced by other
genes with similar redundant functions. Potentially, functional
modules can more effectively reveal consistent differences
between iPSCs and ESCs than individual gene signatures.
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Here, we utilized a systems biology method, weighted
gene co-expression network analysis (WGCNA), to analyze a
large set of genome-wide gene expression profiles of typical
human iPSCs and ESCs. Our analysis revealed that iPSCs are
inherently different from ESCs at the module level. In par-
ticular, we identified 17 functional modules primarily func-
tioning in transcription, development, immune response,
and metabolism that distinguish iPSCs from ESCs. We fur-
ther demonstrated that differentially expressed functional
modules are associated with different DNA methylation
profiles between human iPSCs and ESCs.

Materials and Methods

Microarray data

Microarray data for iPSCs and ESCs were gathered from
previously published data deposited in GEO (www
.ncbi.nlm.nih.gov/geo/). The collected database includes
data of various iPSCs such as those derived from different
sets of gene combinations and different cells, even different
species, human and mouse. Concerning the well-known
data variations derived from different microarray platform,
we focused on data generated by Affymetrix platform.
However, for validation, we also include one set of data
from Illumina microarray platform. The following data sets
were extracted, including human genome U133 Plus 2.0 ar-
ray, GSE12390, GSE14711, GSE15176 GSE15148, GSE16093,
GSE16654, and GSE9865; Affymetrix Mouse Genome Array,
GSE 14012, GSE10806, GSE10871, and GSE15267; and Illu-
mina, GSE16062. Three new available datasets were also
included: GSE27280, GSE26455, and GSE23583.

DNA methylation profiling with Illumina
Infinium assays

Human Methylation DNA Analysis BeadChip from Illu-
mina, Inc. (San Diego, CA), was used to interrogate 26,837
highly informative CpG sites over 14,152 genes for 10 samples,
5 iPSCs (hNPC8iPS, hNPC9iPS, hNPC10iPS, CCD1079iPS,
and IMR90iPS), and 5 ESCs (HSF6, H1, H9, HSF1, and Hues7).
The experiment was performed following procedures based
on the manufacturer’s instructions, including bisulfite con-
version of genomic DNAs, hybridization, and extraction of
raw hybridization signals. BeadStudio software from Illumina,
Inc., was used to analyze the methylation data.

Gene expression data analysis

The microarray data were analyzed using R (www
.r-project.org/), the preliminary array quality assessment
with affyQCReport package, the background adjustment and
normalization with affy package, and the gene expression
values estimation with limma package. Because these mi-
croarray data were generated by different research groups,
the batch effect should be filtered out before combining these
microarray datasets. An algorithm called ComBat [15], which
runs in R environment and uses parametric and nonpara-
metric empirical Bayes frameworks to adjust microarray data
for batch effects, was used to adjust the final gene expression
values for all datasets.

After filtering the outlier chips by the preprocessing
function from our network software, WGCNA [18], we had a

total of 47 chips for network analysis: 34 iPSCs and 13 ESCs.
These 34 remaining iPSCs samples were generated by the
most stringent methods and their biological properties close
to human ESCs.

Network construction and module identification

The network was constructed by using WGCNA as we
previously described [18]. Briefly, WGCNA measure any
gene pair (i,j) similarity Sij as defined below [19–22].

S
signed
i, j ¼ 1þ cor xi, xjð Þ

2

where xi and xj as the gene expression of genes i and j across
multiple microarray samples.

The similarity was measured continuously with a power b
as a weight to obtain the weighted adjacency ai,j for any gene
pair as

ai, j¼ Sb
i, j

where b can be chosen using the scale-free topology criterion.
Since log(aij) = b · log(sij), the overall network adjacency is
linearly correlated with the co-expression similarity on a
logarithmic scale. The adjacency matrix A = [ai,j] constructs a
weighted network.

The network modules are defined as cluster branches
derived from hierarchical clustering based on the network
proximity as input. The proximity is defined by the topo-
logical overlap measure [18,20–22] of connection strengths of
all possible gene pairs collected in the adjacency matrix A
described above.

The network and module membership

The network membership is measured by the network
eigengene based connectivity, Ki [23–26]

Ki¼ cor Xi, Eð Þ

where xi is the expression profile of the gene i and E is the
eigengene of the network as defined below.

E¼V1

where V1 is the singular vector in V below corresponding to
the largest absolute singular value in D below

X¼UD Vð ÞT

where X is the n · m matrix of standardized expression
profiles of the n genes in the network/network-module
across m samples, U is an n · m matrix with orthogonal
columns, D is an m · m diagonal matrix of singular val-
ues, and V is an m · m orthogonal matrix of singular
vectors.

Key node identification

The connectivity considers both the network topology and
the eigengene-based connectivity as our previously reported
[26,27] and as defined below.
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score¼di=dmaxþ 2�cor ðxi, Ej Þj

where di represents the ith node degree that measures the
total connectivity of the ith node, and dmax represents the
maximum degree of a node in the network. jCor(xi, E)j is
the absolute value of Pearson correlation coefficient, where xi

is a vector of gene expression of ith node, and E eigengene of
the network. We put twice weight on eigengene-based con-
nectivity because our network is highly connected in topol-
ogy and our data showed almost equal importance on first
and second components.

Support vector machines. Support vector machines (SVMs)
[28] are a set of related machine learning methods for clas-
sifying datasets based on hyperplanes in a high or infinite
dimensional space in which samples of a cluster can be
separated with the largest distance to others. The R package
e1071 was used to train our datasets and predict the accuracy
of module-based separations in this study. We used 70%
samples as training set, and the rest (30%) as test data. The
accuracy was calculated by measuring both average per-
centage and kappa value (a value for measuring agreement)
after randomly sampling 3,000 times for each module com-
bination. The module combination starts with 1 module to 2
modules, 3 modules until 17 modules in 17 module set (Table 1,
Fig. 3C), and begins from 1 module to 2 modules, until 4
modules in 4 super-module set (Fig. 3D).

Results

Human iPSCs and ESCs exhibit distinctive
transcriptional profiles

Recent studies reported that distinctive iPSC expression
profiles are lab-specific patterns [11,12]. However, these
analyses did not take into account of experimental batch
effects that may confound the conclusions. To determine if
these profiling are intrinsic properties in various iPSCs or
random across different conditions, we analyzed available
iPSC and ESC gene expression datasets deposited in the
GEO database (www.ncbi.nlm.nih.gov/geo/) [7,29–31]
(Materials and Methods section). These datasets include
data of various iPSCs resources such as virus-integrating-
iPSCs, vector-free iPSCs, and protein-directed reprogram-
ming iPSCs (Materials and Methods section). These iPSCs
generated by stringent methods are well characterized and
show similar biological properties to human ESCs [7,30].
To compare all collected gene expression datasets gener-
ated from different labs, we first filtered potential outliers
based on low inter-array correlation, followed by global
normalization, and finally batch effect removal (Materials
and Methods section). Therefore, the different gene ex-
pression patterns expressed between these iPSCs and ESCs
should represent typical profiling variations between iPSCs
and ESCs.

Table 1. Total 17 Modules Differently Expressed in Human Induced

Pluripotent Stem Cells and Embryonic Stem Cells

Module no. Module color P_value Nodes Annotation IPS

2 Blue 2.50E-28 110 Gene expression and RNA metabolism Down
11 Lightyellow 4.12E-21 13 RNA binding/lysosomal lumen acidification Down
8 Grey 4.01E-20 30 ubiquitin-dependent protein catabolic

process, glycine dehydrogenase
(decarboxylating) activity

Down

3 Brown 8.50E-20 99 transferase activity, signaling transduction Down
9 Lightcyan 1.67E-18 15 catalytic activity/nucleoside triphosphate

adenylate kinase activity
Down

10 Lightgreen 8.91E-16 14 peptide antigen-transporting
ATPase activity

Down

7 Greenyellow 3.74E-15 37 glutathione transferase activity,
myeloid progenitor cell differentiation

Down

16 Turquoise 1.82E-13 163 DNA repair, transcription Down
12 Midnightblue 2.95E-13 15 acetyltransferase activity,

enoyl-[acyl-carrier-protein] reductase activity
Down

6 Green 3.72E-13 40 cGMP-stimulated cyclic-nucleotide
phosphodiesterase activity,
negative regulation of lymphocyte
differentiation

Down

4 Cyan 1.68E-24 32 RNA splicing, vitamin B6 metabolic process Up
15 Tan 2.88E-21 22 acute inflammatory response/

membrane organization and biogenesis
Up

13 Pink 4.68E-17 30 regulation of cell growth Up
17 Yellow 9.04E-17 41 Cell surface/regulation of developmental process Up
1 Black 1.04E-14 57 mediator complex/regulation of

adenosine receptor signaling pathway
Up

14 Salmon 1.19E-14 20 glycoprotein-N-acetylgalactosamine-3-
beta-galactosyltransferase activity

Up

5 Darkred 6.99E-13 12 catalytic activity, single-stranded DNA
specific endodeoxyribonuclease activity

Up
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Without removing batch effects, cluster analysis of these
expression data shows lab-specific groupings (Fig. 1A) as
previously reported; however, the same analysis with re-
moved batch effects revealed cell-type-specific profiling (Fig.
1B). In other words, ESCs are mostly separated from iPSCs
regardless of lab origin; only 2 ESC samples were mis-
grouped (Fig. 1B). To determine whether the misgrouped
samples were caused by computational limitations of cluster
analysis, we applied between-group analysis, a high sensi-
tivity multivariate analysis [32], to discriminate the samples.
Consistently, between-group analysis of the same samples
revealed 2 clearly separated groups after batch effect re-
moval (Fig. 1C, right panel). This indicated that batch effects
caused the lab-specific groupings, and that iPSCs indeed
show distinct gene expression profiles compared with ESCs.

Gene networks are differentially expressed
in iPSCs and ESCs

Because individual gene signatures distinguishing
iPSCs and ESCs could not be extracted [11,12], we

turned to gene network analysis to examine consistent
functional module differences between iPSCs and ESCs
by employing WGCNA [18] (see Materials and Methods
section).

WGCNA analysis of the differentially expressed genes
(Materials and Methods) produced a network significantly
altered between iPSCs and ESCs (Fig. 2, P < 3.505E-08).
This network contains 751 nodes (genes), 79,159 edges
(interactions), and 17 primary modules (Fig. 2A–C,
Table 1). Of note, 10 out of 17 modules (537 genes) were
downregulated, whereas only 214 genes distributed in 7
modules were overexpressed in iPSCs (Table 1). Based on
Gene Ontology (GO, www.geneontology.org), these
modules primarily function in transcription (M2, M11,
M12, and M16), development (M6, M7, M13, and M17),
immune response (M15), metabolism (M4, M5, and M14),
and enzyme activities for broad bioprocesses primarily
including metabolism (M3, M8, M9, M10) (Table 1). We
thereafter refer these primary functional modules as meta-
modules (transcription, development, immune response,
and metabolism).
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FIG. 1. Human iPSCs ex-
press distinctive transcriptomes
compared with ESCs. Typical
iPSCs and ESCs gene expres-
sion profiles were analyzed by
both cluster analysis and be-
tween-group. Lab-specific pat-
terns were gone after removing
batch effects. Cluster analysis
(A, B) of samples before (A)
and after (B) removing batch
effects. (C) Between-group
analysis of same samples and
before (left panel) and after (right
panel) removing batch effects.
Samples were labeled by GEO
deposited number. iPSCs, in-
duced pluripotent stem cells;
ESCs, embryonic stem cells.
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Genes of network modules are coherently
co-expressed and can be used as variables
to distinguish iPSCs from ESCs

Genes in our 17 identified differentially expressed mod-
ules are consistently co-expressed (Fig. 3A) and coherent
(Fig. 3B). To determine whether these modules can be used
as variables to distinguish iPSCs and ESCs, we added 3 in-
dependent datasets (Supplementary Table S1; Supplemen-
tary Data are available online at www.liebertonline.com/
scd; Materials and Methods section) and quantified these

modules by calculating the module eigengene (see definition
in Materials and Methods section). The quantitative values
were used to train discriminative models and to predict the
accuracy of our models in discriminating iPSCs from ESCs.
SVMs [28] were employed here for classifying samples and
the accuracy was measured by calculating both correct pro-
portion and kappa value (Materials and Methods section).
Based on the 17 modules (Table 1, Fig. 1) and 4 meta-
modules (transcription, metabolism, immune response, and
development), we used re-iterative random sampling (of
3,000 times) on 70% samples as training set and the rest as

FIG. 2. Gene networks are differentially expressed in human iPSCs and ESCs. (A) An overview of 17 network modules
identified by weighted gene co-expression network analysis (Table 1 for detail). (B) An example of a module (light green)
shows network component connections. Node color denotes differential expression level (iPSCs/ES), green for down-
regulation, and red for upregulation. Node size represents the importance of a node; bigger size indicates more importance.
Edge denotes interaction strength, thicker for stronger interactions. (C) A holistic view of all 17 modules. Ten and 7 out of
total 17 modules are downregulated (green nodes) and upregulated (red nodes) in iPSCs, respectively. The same illustration
strategy was used in all network figures in this study. Color images available online at www.liebertonline.com/scd
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FIG. 3. Differential activations of functional modules in iPSCs and ESCs are inversely correlated with DNA methylation and
can be used for annotation of iPSCs and ESCs. (A) We use the heatmap of M2, blue module (Table 1) as an example to show
gene co-expression in iPSCs (blue) and ESCs (red). In the heatmap, each row represents a gene, and each column denotes a
sample. Red and blue represent up- and downregulated genes, respectively. (B) Gene expression in a module is all differ-
entially regulated in the same pattern across all observed conditions (ie, coherently expressed). (C–E) Predictive model using
SVMs. Accuracy represents the mean of 3,000 random samplings for every possible module permutation with sample size
from 1 to 17 modules (C) or 1 to 4 meta-modules (D). (E) SVM plot visualizing the classification of iPSCs and ESCs based on 2
meta-modules, transcription and metabolism. ‘‘X’’ denotes support vectors and ‘‘O’’ with corresponding color represents
classified true groups (iPSCs/ESCs). The colored background visualizes the predicted group regions. (F) Density dot plot
showing overall inverse correlation between gene expressions and DNA methylation based on all genes in total 17 modules.
Darker blue indicates higher density of genes. SVMs, support vector machines. Color images available online at www.lie-
bertonline.com/scd
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testing dataset, and found that the overall accuracy reached
96% (kappa 0.90) and 95.9% (kappa 0.90), respectively
(Fig. 3C, D). Even with 2 meta-modules, transcription and
metabolism, iPSCs and ESCs can be classified with an ac-
curacy of 94% (kappa 0.85) (Fig. 3E). This indicated that the
modules identified in this study can be used as quantitative
variables to discriminate these 2 cell types.

The expression level of modular genes is inversely
correlated with DNA methylation

To explore the mechanisms underlying the functional
module differences between iPSCs and ESCs, we compared

genome-wide DNA methylation profiling of iPSCs and ESCs
by performing an independent microarray experiment on 5
iPSCs and 5 ESCs (Materials and Methods section). If DNA
methylation plays a role in regulating gene expression, we
expect genes with lower expressions to have higher levels of
methylation at their promoters. After correlating methylation
profiles with gene expression data used for building the
network (751 genes total), we found an overall inverse cor-
relation between gene expression and DNA methylation in
the network (Fig. 3F). However, a large fraction of genes do
not show methylation changes (middle in Fig. 3F), indicating
that DNA methylation only partially accounts for the gene
expression differences between iPSCs and ESCs.

The network modules are conserved across
in various iPSCs

To investigate the conservation of network modules across
different types of iPSCs, we examined the network module
membership of 3 types of iPSCs (ie, virus-integrating-iPSCs,
factor-free iPSCs through the cre/loxP system, and vector-
free iPSCs with episomal-vectors) by measuring the network
module eigengene-based connectivity [26] (Materials and
Methods section). We first calculated the total network
module membership and then calculated the network mod-
ule membership of each type of iPSCs separately. We then
correlated the total network module membership with each
type of iPSCs (Materials and Methods section). The module
memberships of these 3 types of iPSCs are highly correlated
with total modules (rho 0.78–0.92; Fig. 4). The slight differ-
ence in correlation coefficient between cell types from 0.92,
0.85, to 0.78 may result from sample sizes in different subsets
of above 3 types of iPSCs and biological experiment varia-
tions, but overall they are very similarly correlated to total
network. Therefore, our data indicate that the network
modules identified above are overall conserved in different
types of iPSCs.

To determine the extent of functional module conservation
in different species, we investigated the conservation of these
functional modules in mouse iPSCs. Global analysis of
mouse iPSC and ESC datasets available in GEO database
from different microarray platforms revealed that the pri-
mary human functional modules, including transcription,
development, metabolism, and immune response, are con-
sistently conserved in all mouse datasets (Fig. 5, Supple-
mentary Fig. S1A–C). Together, our data demonstrate that
distinctively expressed functional modules are highly con-
served molecular features distinguishing iPSCs and ESCs.

Analysis of hub genes in the network

The highly connected hub genes may play crucial roles in
a network; we searched for such hub genes by ranking the
genes based on the network connectivity that considers both
the network topology and the eigengene-based connectivity
(Materials and Methods section) [26,27]. We selected the top
35 hub genes (Table 2, Supplementary Table S2), which
represents *5% of total genes in this network, including the
eukaryotic translation initiation factor 2-alpha kinase 1 (EI-
F2AK1, P value < 2.0e-19). In silico knockout [33] of these top
genes resulted in significant perturbations in network di-
ameter compared with random simulation (Supplementary
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FIG. 4. Network module membership in subtypes of iPSCs.
Correlation of total network module membership (x-axis)
and module membership of specific subtypes of iPSCs (y-
axis). Three subtypes of iPSCs were presented here, factor-
free iPSCs (rho = 0.85), iPSCs with nonintegrating episomal
vectors (rho = 0.92), and retrovirus-integrating iPSCs (rho =
0.78).
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Fig. S2A), further indicating that these genes contribute sig-
nificantly to the network structure. These key genes are
found in large modules with high connectivity, such as
module M1, M3, M6, and M16 (Supplementary Fig. S2B),
and exhibit highly coherent expression with their modules
(Fig. 6A), indicating that they are central genes within their
modules. Surprisingly, the top genes show similar expres-
sion across different iPSCs (Fig. 6B–D), indicating that they
are consistently important for all iPSCs.

While relatively little is known about most of these hub
genes, a few genes with known functions can be classi-
fied into the following functional groups: cell development
and differentiation (HMGB3, RORB), immune response and
translation initiation (EIF2AK1 and ABHD2), transcription
(TCEB3), metabolism (GRIN2D), magnesium ion binding

and enzyme activity (RPS6KA2,GRIN2D,B4GALT6), and
calcium-dependent phospholipid binding(ANXA11). This
indicated that functional differences for these 2 cell types are
still primarily in transcription, development, metabolism,
and immune response, consistent with our finding observed
above. Thus, our data uncovered top genes that regulate
their corresponding protein module expression and poten-
tially contribute to functional differences between iPSCs and
ESCs.

The largest and most significantly altered module
primarily functions in transcription

After viewing the global properties of the entire network,
we next examined details of particular modules. We first

Metabolism

Transcription

Immune response

Development

FIG. 5. Different functional modules are conserved in mouse iPSCs and ESCs. Gene ontology analysis showed functional
modules are conserved in mouse iPSCs versus ESCs comparisons, similar to human iPSCs and ESCs. Presented here are the
functional module annotations of mouse iPSCs versus ESCs extracted from GEO number GSE16062 as measured by Illumina
microarray platform. Larger node size represents the higher density of genes, and dark node color represents greater
significance (adjusted P value < 0.05). For illustration purposes, we grouped all modules with similar functions into a meta-
module and labeled it with their corresponding functions. Similar functional conservations were observed in Affymetrix
mouse datasets (Supplementary Fig. S1). Color images available online at www.liebertonline.com/scd
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explored the most significantly altered module M2 (blue,
P < 2.5e-28), which is downregulated in iPSCs with 110 nodes
and also the second largest module in terms of gene number
(Fig. 7A, Table 1). Based on gene ontology and network to-
pology, this module primarily contained 2 protein complexes
functioning in transcription (Fig. 7B, Supplementary Fig. S3),
and immune response (Fig. 7C). Genes in the gene expression
complex were enriched with transcription factors, especially
zinc finger proteins (Fig. 7B), including MYST2, MED1,
GTF3C4, ZNF818P, EIF2AK1, DDX18, EXOSC6, RBM8A,
CUGBP1, RNASEH1, AKAP1, FXR1, GTF2H2, ZNF792,
SMYD1, H2AFJ, ZNF626, ADNP2, ZNF747, SAP130, and
ETV1. The whole transcription complex was centered at EI-
F2AK1 and was strongly connected with other components
(Fig. 7B). EIF2AK1 strongly interacts with MED1 (mediator
complex subunit 1), a subunit important for efficient tran-
scription initiation. EIF2AK1 is functionally involved in an
array of bioprocesses, such as regulation of translation, ap-
optosis with FXR1, and viral immune response, indicating
that translation and programmed cell death also strongly
interact with transcription machinery in the complex. The
immune response module (Fig. 7C) includes 2 genes (inter-
feron induced transmembrane protein, IFITM3, IFITM2)
feathered with broad functions in immune response to
stimuli, leading to transcription initiation. This indicates that

the whole module (M2, blue) primarily functions in medi-
ating gene expression.

We next decomposed the most predominant module
(M16, turquoise; Table 1 and Supplementary Fig. S4) with
163 genes and 12,692 interactions, downregulated in iPSCs.
Because most genes in the module have unknown functions,
we focus on genes with known functions to discuss the pri-
mary functions of this module.

The majority of key proteins, 17 of 35 crucial genes iden-
tified in the network, are located in this module (Fig. 8A).
These genes strongly interact with each other (Fig. 8A) and it
is therefore difficult to determine the most important gene.
Key genes with known functions are associated with tran-
scription (including RORB and TCEB3), indicating that
transcription is the primary process mediated by the key
genes in the entire network differentially expressed between
iPSCs and ESCs.

Two other primary functional protein complexes were
found in the modules DNA repair (Fig. 8B) and immune
response (Fig. 8C). The DNA repair complex consists of 6
genes centered around EXO1 and RECQL5 (Fig. 8B), in-
cluding EXO1, FLJ35220, RECQL5, WRNIP1, EME2, and
FAH, whereas immune response complex contains 9 genes
centered around EXO1 and TREM1, including EXO1,
IGHG1, CDC42, IL17A, LST1, ANXA11, TIRAP, TREM1,
and TCF12. These 2 groups overlapped very well both in
interactions and in key genes like EXO1 (Fig. 8D), suggesting
that the overall function of these 2 complexes is immune
response to DNA damage. Together, our module data sug-
gest that the differences in transcription and immune re-
sponse between iPSCs and ESCs are primary molecular
features distinguishing these 2 cell types.

Discussion

A critical question we must answer before applying iPSCs
in regenerative medicine is how close iPSCs resemble ESCs
and whether there are any features distinguishing them.
Here, we reveal that iPSCs generated to date still inherently
express distinctive transcriptome compared with ESCs, and
that these 2 cell types can be distinguished by several basic
biological modules.

Experimental conditions such as cell culture, cell handling,
and treatment conditions have been proposed as factors that
contribute to stochastic variations in iPSCs transcriptome
[1–2,10]. This seemed true after observing lab-specific iPSC
transcriptome profiling [11,12]. However, these lab-specific
patterns were drawn from microarray analyses without ad-
justing for batch effects, which is notorious for misleading
microarray data interpretation [15]. In addition, these pat-
terns [11,12] were generated from cluster analysis that has
low sensitivity for discriminating samples with high di-
mensions. In this study, we removed the batch effects from
all datasets and employed between-group analysis [32] to re-
analyze the iPSC samples. Between-group analysis uses a
standard conversion method such as correspondence analy-
sis to calculate an ordination of sample groups rather than
that of individual microarray samples and thus it has a
discriminating power compatible to artificial neural network
with high sensitivity. Our analysis revealed that the lab-
specific iPSC profiling is a consequence of batch effects
in microarray data (Fig. 1A, C right panel) and that, after

Table 2. Top 35 Hubs

ID Gene symbol Total score

1557215_at AK056212 2.74
206778_at CRYBB2 2.70
206777_s_at CRYBB2 2.66
229155_at BF508891 2.65
229026_at BE675995 2.65
217736_s_at EIF2AK1 2.61
227785_at SDCCAG8 2.61
228727_at ANXA11 2.54
226253_at LRRC45 2.49
216098_s_at HTR7 2.45
202818_s_at TCEB3 2.42
213489_at MAPRE2 2.42
229883_at GRIN2D 2.41
1569191_at ZNF826 2.41
230499_at AA805622 2.41
207036_x_at GRIN2D 2.41
225337_at ABHD2 2.38
225601_at HMGB3 2.38
1558333_at C22orf15 2.37
240997_at AA455864 2.37
220870_at NM_018503 2.36
228160_at LOC400642 2.34
204906_at RPS6KA2 2.33
229378_at STOX1 2.33
229939_at AA926664 2.33
240071_at AI800790 2.32
243027_at IGSF5 2.32
1564359_a_at LOC339260 2.32
227732_at ATXN7L1 2.32
242385_at RORB 2.32
207818_s_at HTR7 2.31
235333_at B4GALT6 2.31
237709_at AI698256 2.28
230439_at LOC389458 2.28
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removing batch effects, we find iPSCs are clearly separated
from ESCs (Fig. 1B, C right panel). This indicates that human
iPSCs inherently express distinctive transcriptome compared
with ESCs.

Here, we employed systems biology approaches based on
WGCNA to systematically investigate the system-wide bio-
logical picture between these 2 cell types and revealed con-
served molecular features distinguishing these 2 cell types.
Our analysis revealed a network containing 17 modules
differentially expressed in iPSCs and ESCs (Fig. 2, Table 1).
These modules can be grouped into meta-modules based on
functions and they primarily function in transcription, me-
tabolism, development, and immune response. Strikingly,
the functional modules are highly conserved in various
iPSCs (Fig. 4). This conservation relationship was measured
by the module membership correlation based on the network
eigengene scores, which uses the principle component of

high dimension data and thus captures the maximum in-
formation that may explain the natural relationship of the
variables.

The modules identified in this study can be used as
quantitative variables to classify samples and to predict the
new samples (Fig. 3). By employing SVMs, our module-
based models successfully discriminate these 2 cell types
with a very high accuracy, *96% for models based on both
17 modules and 4 meta-modules (transcription, metabolism,
immune response, and development). Even with 2 meta-
modules (transcription and metabolism), our model
reaches a 94% accuracy (Fig. 3C–E). Together, coherent co-
expression, conservation, and discriminating powers of these
modules suggest that these functional modules identified
here serve as inherently conserved features distinguishing
iPSCs and ESCs. This further suggests that these 2 cell types
exhibit the distinctive differences in fundamental biological

1

1 1
1

1

1 1 1
1

1
1

1

1
2

2
2 2

2

2
2

2
2

2 2
2

2
3

3 3 3

3

3 3
3

3 3

3

3
3

4

4
4 4 4

4 4

4 4 4
4 4 4

5 5
5 5 5

5

5
5 5 5 5 5 5

6 6 6 6 6 6 6

6
6 6 6

6
6

7 7 7
7

7 7 7
7

7 7

7 7 7

8 8
8

8 8 8
8

8
8 8 8 8 8

9
9 9 9

9

9 9 9
9

9 9
9

9

0

0

0 0 0
0 0

0 0 0
0

0 0

6
7

8
9

10

E
xp

re
ss

io
n 

le
ve

l

1 1
1

1
1

1 1
1

2
2 2 2

2 2 2 2

3 3 3 3
3

3
3

3

4 4 4 4

4
4 4 4

5
5 5 5 5

5
5 5

6 6 6 6 6 6 6 6
7 7

7 7
7 7 7

7

8 8
8

8

8
8 8 8

9 9
9

9
9

9 9
9

0 0 0
0

0
0

0
0

1 1
1

1 1
1

1 1
1 1 1 1 1 1 1

1

2 2
2

2
2 2

2 2 2 2 2 2 2 2 2
2

3
3 3 3

3 3 3
3 3 3 3 3

3 3 3 3

4 4 4 4 4 4
4

4
4 4 4

4
4

4 4 4

5 5 5 5 5 5 5 5
5

5
5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

7 7 7 7
7

7 7 7 7 7 7 7 7 7 7
7

8 8 8 8
8

8
8

8
8 8 8

8 8 8 8
8

9 9
9 9 9 9

9 9 9
9

9 9 9 9
9 9

0 0 0 0 0 0 0 0 0 0 0 0
0

0

0 0

Expression of top 10 genes in 
nonintegrating-episomal-vectors-iPSCs

Expression of top 10 genes
infactor-free iPSCs

A B

C D
Expression of top 10 genes in

virus-integrating-iPSCs 

6
7

8
9

10

6
7

8
9

10

E
xp

re
ss

io
n 

le
ve

l (
lo

g2
)

0 10 20 30 40
Sample

0 10 20 30 40
Sample

0 10 20 30 40
Sample

0 10 20 30 40
Sample

Coherent expression of top hubsand
 modulecomponents(M16) 

Key node

Module

FIG. 6. Coherent expression of top key genes in the network. (A) An example of the coherent expression pattern between
the turquoise module and 17 key genes located inside turquoise module. (B–D) Gene expression patterns of top key genes are
conserved in different subtypes of iPSCs, for example, those derived from nonintegrating episomal vectors iPSCs (B), virus
integrating iPSCs (C), and factor-free iPSCs (D). For clear illustration, only top 10 genes were shown. Color images available
online at www.liebertonline.com/scd
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functions such as in transcription and metabolism. Con-
sistently, recent studies have observed improvements in
transcription and metabolism during iPSC production by
adjusting transcription factor composition and hypoxia
condition [34], adding microRNAs [35], and other factors like
vitamin D [36]. Furthermore, enzyme activity differences in
metabolism between iPSCs and ESCs may explain the recent
observations showing that modified culture medium en-
hances the iPSCs generation [36]. Therefore, iPSCs have un-
ique distinguishing features to ESCs.

Altered expression of functional modules may be modu-
lated by many mechanisms, including epigenetic and genetic
factors. Our data uncovered an overall inverse correlation
between module expression and DNA methylation level (Fig.
3). We observed a similar trend even when we expanded our
data set with 67 samples (unpublished data), suggesting that
DNA methylation may serve as one epigenetic mechanism
underlying functional module differences. Our present result
on DNA methylation differences parallels the most current
observations showing that iPSCs retain DNA methylation

Blue module (M2)

B C Immune response complex

A

Transcription complex

FIG. 7. Network structure of M2 module (blue). (A) Gene interaction network in the entire module. (B) Genes and their
interactions form a complex functionally enriched for transcription (B) and immune response (C).
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patterns from original somatic cells [10,37], and that iPSCs
differentially express a panel of DNA methylation sites
compared with ESCs [38–40]. Further biological experiments
and bioinformatics algorithms are needed to fully under-
stand the role of DNA methylation in regulating these
modules. Recently, copy number variations are uncovered in
iPSC compared with the parental somatic cells, suggesting
that genetic changes can also take place in iPSC derivation
[41,42]. Thus, we cannot rule out that genetic changes may
also contribute to functional differences of human iPSCs and
ESCs.

Our study systematically reveals inherent functional
modules that are uniquely activated in iPSCs. Our findings
provide an avenue to guide the further efforts on over-
coming the barriers of transcriptional differences between
iPSCs and ESCs.
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