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Abstract

Calpain, a calcium-dependent cysteine protease, is reportedly involved in the pathophysiology of autoimmune diseases such
as rheumatoid arthritis (RA). In addition, autoantibodies against calpastatin, a natural and specific inhibitor of calpain, are
widely observed in RA. We previously reported that E-64-d, a membrane-permeable cysteine protease inhibitor, is effective in
treating experimental arthritis. However, the exact role of the calpastatin-calpain balance in primary inflammatory cells
remains unclear. Here we investigated the effect of calpain-specific inhibition by overexpressing a minimal functional domain
of calpastatin in primary helper T (Th) cells, primary fibroblasts from RA patients, and fibroblast cell lines. We found that the
calpastatin-calpain balance varied during Th1, Th2, and Th17 development, and that overexpression of a minimal domain of
calpastatin (by retroviral gene transduction) or the inhibition of calpain by E-64-d suppressed the production of IL-6 and IL-17
by Th cells and the production of IL-6 by fibroblasts. These suppressions were associated with reductions in RORct expression
and STAT3 phosphorylation. Furthermore, inhibiting calpain by silencing its small regulatory subunit (CPNS) suppressed Th17
development. We also confirmed that overexpressing a minimal domain of calpastatin suppressed IL-6 by reducing NF-kB
signaling via the stabilization of IkBa, without affecting the upstream signal. Moreover, our findings indicated that calpastatin
overexpression suppressed IL-17 production by Th cells by up-regulating the STAT5 signal. Finally, overexpression of a minimal
domain of calpastatin suppressed IL-6 production efficiently in primary fibroblasts derived from the RA synovium. These
findings suggest that inhibiting calpain by overexpressing a minimal domain of calpastatin could coordinately suppress
proinflammatory activities, not only those of Th cells but also of synovial fibroblasts. Thus, this strategy may prove viable as a
candidate treatment for inflammatory diseases such as RA.
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Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease

characterized by symmetric polyarthritis, accompanied by joint

destruction, and is widely regarded as a systemic autoimmune

disease. Although the pathogenesis of RA is not yet fully

understood, several studies indicate that helper T (Th) cells

assume an important role. Naı̈ve CD4+ T cells differentiate into

distinct types of Th cells: IFN-c-producing Th1 cells, IL-4-

producing Th2 cells, and the recently defined IL-17-producing

Th17 cells [1,2,3]. IL-12, STAT4, and T-cell-specific T-box

transcription factor (T-bet) signals are known to be important for

Th1 development, as are IL-4, STAT6, and GATA binding

protein 3 (GATA-3) signals for Th2 development [4,5,6], and IL-

1b, TGF-b, IL-6, IL-23, STAT3, and retinoic acid-related orphan

receptor gamma t (RORct) signals for Th17 development

[1,2,7,8,9,10,11]. Although Th1 cells were formerly considered

the main effector cells for the pathogenesis of autoimmune

arthritis, we now know that Th17 cells play an essential role in

autoimmune arthritis in mice. For example, in collagen-induced

arthritis (CIA) model mice, systemic or local IL-17 gene transfer

aggravates CIA and enhances joint destruction, whereas the

administration of an IL-17-blocking antibody ameliorates CIA,

even after disease onset [12,13]. However, whether this finding

can be applied to human RA remains controversial. Two

independent groups including ours have reported that Th1 cells

are dominant while Th17 cells are scarce in the synovial tissues

and fluids of RA patients [14,15].

On the other hand, various autoantibodies such as rheumatoid

factor (RF), anti- citrullinated protein [16], anti-type II collagen

(CII) [17], and anti-glucose-6-phosphate isomerase (GPI) antibody

[18] have been proposed to have pathogenic roles in RA. In

particular, we and others have documented the presence of anti-

calpastatin (a natural specific inhibitor of calpain) antibodies in RA
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[19,20] and psoriasis [21]. The sensitivity and specificity of anti-

calpastatin antibodies for diagnosing RA are 83% and 96%,

respectively [22]. Positivity for these antibodies correlates with

serological markers of the disease activity [23,24], and their

detection is applicable to the diagnosis of early RA [25].

Furthermore, these anti-calpastatin antibodies are known to

inhibit the function of calpastatin [19,21]. Calpain, a calcium-

dependent cysteine protease, is thought to modulate various

intracellular signaling pathways [26], and may contribute to the

pathogenesis of RA. For example, calpain is reportedly up-

regulated in the synovial tissue of RA and CIA mice [27,28], and

has been shown to degrade the matrix component of articular

cartilage [29]. One report demonstrated the successful treatment

of CIA with calpain inhibitor I [30]. There are reports that calpain

is involved in LFA-1-mediated T-cell adhesion [31], as well as T-

cell proliferation via a-actinin-modification [32]. Thus, it is

conceivable that excess calpain in the joints of RA patients whose

calpastatin activity is inhibited by the presence of anti-calpastatin

antibodies could contribute to the pathophysiology of RA. In this

regard, we also reported that E-64-d, a membrane-permeable

calpain inhibitor, ameliorates anti-collagen antibody-induced

arthritis (CAIA), another animal model of RA [33]. Taken

together, these results suggest that an insufficiency of calpastatin or

an overabundance of calpain contributes to the pathogenesis of

inflammatory diseases such as RA.

In this study, we found that the calpastatin-calpain balance

modulated the fate of Th-cell development, and that inhibiting

calpain by overexpressing a minimal functional domain of

calpastatin suppressed IL-6 production and Th17 development

in primary Th cells, and the production of IL-6 by primary human

fibroblasts from the RA synovium. We also examined the

mechanisms underlying these effects.

Materials and Methods

Mice and reagents
BALB/c mice (6–10-weeks old) were purchased from Charles

River Laboratories. The mice were maintained in our animal

facility under specific pathogen-free conditions and treated in

accordance with the guidelines for animal care at Kyoto University.

All animal procedures were approved by the ethics committees of

Kyoto University (MedKyo 10142). Calpastatin cDNA was

obtained from a lgt11 cDNA library [19]. Calpain cDNA was

purchased from Open Biosystems, and E-64-d was from Peptide

Institute (Japan). Recombinant human IL-2, and murine IL-4, IL-6,

and IL-12 were purchased from PeproTech Inc.; human TGF-b
was from R&D Systems. Monoclonal antibodies to murine CD3

(2C11) and CD28 (37.51) were purchased from eBioscience and BD

Biosciences, respectively. Anti-IL-4 antibody (11B11) was purchased

from BioLegend Inc., and anti-IFN-c antibody (XMG1.2) from BD

Biosciences. Phoenix 293T cells and NIH-3T3 cells (ATCC) were

maintained in DMEM with 10% FCS, 10 U/ml penicillin, 10 mg/

ml streptomycin, 50 mM 2-ME, and 20 mM HEPES. CD4+ T cells

from mice were maintained in RPMI1640 using the supplements

listed above. All other reagents, unless stated otherwise, were

purchased from Invitrogen Corp.

Cells and cultures
Naı̈ve CD4+ T cells derived from murine splenocytes were

purified by negative selection using the Mouse CD4+ T cell

Isolation Kit, followed by positive selection using anti-mouse

CD62L MicroBeads (Miltenyi Biotec). Naı̈ve CD4+ T cells were

stimulated with 4 mg/ml plate-bound anti-CD3 monoclonal

antibodies and 2 mg/ml soluble anti-CD28 monoclonal antibodies

(eBioscience) under neutral (no cytokine) conditions, or Th1 (IL-

12, 5 ng/ml)- or Th2 (IL-4, 20 ng/ml)-promoting conditions, then

expanded with 10 U/ml human IL-2. For the Th17-promoting

condition, naı̈ve CD4+ T cells were stimulated with 1 mg/ml plate-

bound anti-CD3 monoclonal antibodies and 0.5 mg/ml soluble

anti-CD28 monoclonal antibodies in the presence of 20 ng/ml IL-

6, 5 ng/ml TGF-b, and 20 ng/ml anti-IFN-c antibody.

Human synovial tissues were obtained from RA patients

undergoing joint replacement or the subcutaneous puncture of

knee joints. Synovial tissue was dissected into small pieces with

scissors, and digested with Liberase TM Research Grade (Roche

Diagnostics). Synovial cells were then seeded into dishes, and

infected with retrovirus several days later. All human materials

were used under the approval of the Ethics Committee of Kyoto

University, and written informed consent was obtained from all

patients (E458).

Plasmid construction and retroviral transduction
The retrovirus vector (pBMN-IRES-EGFP) was kindly provided

by Dr. G. Nolan (Stanford University). The cDNAs for full-length

calpastatin or calpain were inserted into the pBMN-IRES-EGFP

vector using the EcoRI and EcoRI/NotI sites, respectively. The

minimal functional domains of calpastatin were cloned by PCR

using the following primers: sense primer 59-GAA TTC AGA TCT

GCC ACC ATG GAT GCT GCT TTG GAT-39, for domains

IABC and IAB, anti-sense primer, 59-GAA TTC GCG GCC GCC

TAG GTG AAG TCA GAT GAC AA-39, for domain IABC, 59-

GAA TTC GCG GCC GCC TAG GGT TTA GCC AAT AGT

TC-39 for domain IAB, sense primer 59-GAA TTC AGA TCT

GCC ACC ATG GAC CTC GAT GAT GCC TTG-39 for domain

IVABC and IVAB and anti-sense primer 59- GAA TTC GCG

GCC GCC TAC AGA TCT CCT GAG AGA GCA TC-39 for

domain IVABC, 59- GAA TTC GCG GCC GCC TAA TTA TCA

TCC AGG AGA TG-39 for domain IVAB. The PCR products

were cloned into a pCR4 Blunt-TOPO vector (Invitrogen) followed

by bidirectional sequencing, then subcloned into the pBMN-IRES-

EGFP vector using the EcoRI and NotI sites. Retroviral transfection

and infections were performed as previously described [5]. Naı̈ve

CD4+ T cells or NIH-3T3 cells were infected with collected viral

supernatants containing 2 mg/ml polybrene (Sigma-Aldrich).

PKH-26 labeling and ATP measurement to assay cell
proliferation

To analyze the effect of retrovirus infection on the proliferation

of Th cells, Th cells were stained with the dye PKH-26 (Sigma-

Aldrich, St. Louis, MO), according to the manufacturer’s

instructions, then stimulated with anti-CD3/28 monoclonal

antibodies. The fluorescence intensities of the infected cells were

then analyzed by FACS. To analyze the effect of retroviral

infection on the proliferation of primary fibroblasts from RA

patients, the GFP-positive cells were sorted and plated into 96-well

plates at 1000 cells/well. Forty-eight and 72 hours after plating,

ATP was measured with a CellTiter-GloH Assay kit according to

the manufacturer’s instructions (Promega Corporation).

Calpain activity assay and ELISAs
Calpain activity was assayed as previously described [19].

ELISAs for IL-6 and IL-17 using Ready-set-Go! (eBioscience),

according to the manufacturers’ protocols.

Intracellular cytokine and IkBa staining
Intracellular cytokine staining was performed as previously

described [5]. APC-conjugated anti-mouse IFN-c (XMG1.2), PE-
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conjugated anti-mouse IL-4 (11B11, eBioscience), anti-mouse IL-6

(MP5-20F3), and anti-mouse IL-17 (TC11-18H10) were used to

detect these cytokines in cells. As negative controls, APC- or PE-

conjugated isotype-matched monoclonal antibodies were used.

Intracellular staining of IkBa was performed using an anti-IkBa
antibody (sc-847) and APC-conjugated goat anti-rabbit IgG F(ab)2

antibody (sc-3846), both from Santa Cruz Biotechnology,

according to the recommended protocol of Santa Cruz Biotech-

nology. The analysis was performed on a FACS Calibur with Cell

Quest software (BD Biosciences). All reagents were purchased

from BD Biosciences unless otherwise stated.

Western blotting and densitometry
Protein extraction and Western blot analysis were performed by

standard methods as previously described [34]. Anti-m-calpain

large subunit specific antibody (#2556), anti-phosphorylated

STAT5 antibody (#9359), and the NF-kB Pathway Sampler Kit

(#9936) were purchased from Cell Signaling Technology. Anti-

calpastatin antibody (sc-20779), anti-actin antibody (sc-1616), anti-

phosphorylated STAT3 antibody (sc-8059), anti-STAT3 antibody

(sc-482), anti-STAT5 antibody (sc-835), and anti-NF-kB p65

antibody (sc-109) were purchased from Santa Cruz Biotechnology.

Anti-calpain small subunit (CPNS) antibody (826-M01) was

obtained from Abnova Corp. To analyze phosphorylated STAT3

and STAT5 in Th cells, the cells were incubated with X-VIVOTM

20 (without FCS, Lonza Walkersville, Inc.) for the last six hours

and then lysed. After SDS-PAGE and electrotransfer to a

membrane, the blotted membranes were blocked with TBS

containing 5% non-fat milk and 0.05% Tween-20, probed with

the indicated antibody, and developed using the Supersignal

Chemiluminescence kit (Pierce Chemical Co.). The chemilumi-

nescence signals were detected with BioMax Light film (Kodak) or

an ImageQuant LAS 4000 mini (GE Healthcare). After stripping,

the membranes were reprobed. The band densities on western

blots were scanned and measured using NIH Image.

Electrophoresis mobility shift assay
Nuclear extracts were prepared using NE-PER nuclear and

cytoplasmic extraction reagents (Thermo Fisher Scientific Inc.).

Electrophoresis mobility shift assays (EMSAs) were performed by

incubating nuclear extracts and biotin-labeled double strand

probes in a binding buffer (10 mM Tris, 50 mM KCl, 1 mM

DTT, pH 7.5) at room temperature for 20 min. For the NF-kB-

binding motif, the sequences of the oligonucleotides used for

EMSA were: sense, 5-biotin/AGT TGA GGG GAC TTT CCC

AGG-3; and anti-sense, 5-biotin/CCT GGG AAA GTC CCC

TCA ACT-3 (Invitrogen). Probes labeled at the 59 end with biotin

and non-labeled probes were both prepared by annealing these

two oligonucleotides. For super-shift experiments, the binding

reactions were conducted in the presence of specific antibodies to

p65 protein (sc-109, Santa Cruz). The protein–DNA complexes

were subjected to electrophoresis on 5% polyacrylamide gels in

0.56TBE and transferred onto a positive-charged nylon mem-

brane (Hybond N+, GE Healthcare). The UV cross-linked

membrane was then blocked and incubated with horseradish

peroxidase-conjugated streptavidin, and visualized with a Light-

shift chemiluminescent EMSA kit (Pierce Chemical Co.) using an

ImageQuant LAS 4000 mini (GE Healthcare). Band densities

were measured using NIH Image.

RNA interference (RNAi)
Predesigned Stealth Select siRNAs against CPNS, and negative

controls (Medium GC SUplex #2) were purchased from

Invitrogen. Transfection with siRNA was carried out using

Lipofectamine RNAiMAX (Invitrogen) according to the manu-

facturer’s instructions.

RNA isolation, cDNA synthesis, and quantitative real-time
PCR

RNA was isolated using ISOGEN (Nippon Gene). First-strand

cDNA was synthesized with reverse transcriptase (Superscript III,

Invitrogen) and random primers in 20 ml of the reaction buffer.

Synthesized first-strand cDNA was amplified by quantitative real-

time PCR performed on an ABI Prism 7500 Sequence Detection

System (Applied Biosystems), with qPCRTM Mastermix Plus for

SYBR Green I (Eurogentech) for T-bet and RORct, and

qPCRTM Mastermix Plus (Eurogentech) for hypoxanthine-gua-

nine phosphoribosyltransferase (HPRT) and 0.4 mM gene-specific

primers. The primer pairs for T-bet and HPRT used in the

quantitative real-time PCR were described before [5]. The primer

pair for RORct was: sense primer, 59-TAC CTT GGC CAA

AAC AGA GG-39; anti sense primer, 59-GAT GCC TGG TTT

CCT CAA AA-39.

Statistical analysis
The Mann-Whitney U-test was performed for two-group

comparisons. Dunnett’s (one-way ANOVA) or Steel’s (Kruskal

Wallis test) test was performed for multiple group comparisons

against a reference group. P values,0.05 were considered

statistically significant. Error bars in all figures indicate standard

errors of mean (SEM).

Results

The expressions of calpastatin and calpain are differently
regulated during Th1, Th2, and Th17 development

To investigate the roles of calpain and calpastatin in Th cell

development, we first examined their expressions over time during

Th1, Th2, and Th17 development. Anti-CD3/28 monoclonal

antibodies-stimulated naı̈ve CD4+ T cells were cultured under

neutral, Th1-, Th2-, or Th17-promoting conditions, and the

lysates were subjected to western blot analysis. As shown in

figure 1A–1B, the expression level of calpastatin consistently

declined during Th1 development, and the calpain/calpastatin

ratio in these cells eventually reached its maximum level for all the

Th conditions. In contrast, the expression level of calpastatin

gradually recovered during Th2 development after a transient

decrease on day 2. The kinetics of calpain expression during the

Th1, Th2, and Th17 developments were similar, but the degree of

the transient decline was only modest in the Th17 conditions.

Developing Th17 cells showed the smallest changes in calpain and

calpastatin expression levels. In addition, intermediate trends of

these proteins were observed in neutral conditions (Figure S1).

These data suggested that the expressions of calpastatin and

calpain were differently regulated during Th1, Th2, and Th17

development, and might modify the fate of Th development.

E-64-d selectively inhibits Th17 development
We next studied the effect of E-64-d, a membrane-permeable

calpain inhibitor, on the cytokine production in Th cells, and

found that it had an effect in Th17 cells. Naı̈ve CD4+ T cells were

cultured with or without E-64-d under neutral or Th17 conditions,

and restimulated with PMA/ionomycin for intracellular cytokine

staining. E-64-d significantly suppressed the emergence of IL-17-

positive cells under Th17 conditions in a dose-dependent manner

(Figure 1C–1D). This suppression was associated with reductions

in RORct expression and STAT3 phosphorylation (Figure 1E–

Anti-Inflammatory Functions of Calpastatin

PLoS ONE | www.plosone.org 3 October 2011 | Volume 6 | Issue 10 | e27020



1F). Although some suppression of IFN-c production by E-64-d

was also observed under neutral conditions, it was modest and not

evident under Th17 conditions (Figure 1C). These data suggested

that the calpain inhibitor selectively suppresses Th17 develop-

ment.

Retroviral overexpression of calpastatin minimum
functional domains

We found that the expression of calpastatin and calpain was

differently regulated during Th1, Th2, or Th17 development, and

that E-64-d suppressed Th17 development. However, since E-64-d

inhibits not only calpain but also cathepsin [35,36], it was possible

that E-64-d’s effect on Th17 development was a result of cathepsin

blockage. Therefore, we constructed a retrovirus system to

overexpress calpastatin, the specific inhibitor of calpain. As shown

in figure 2A, we generated mock-, calpastatin-, and calpain-

integrated retroviruses with a GFP reporter (mock-, calpastatin-,

and calpain-GRV). Anti-CD3/28 monoclonal antibodies stimu-

lated naı̈ve CD4+ T cells were cultured under neutral conditions

and infected with these retroviruses. The efficiencies of infection

were determined from the GFP expression using flow cytometry.

However, compared with the mock-GRV-infected cells, the

expression of full-length (FL) calpastatin-GRV in infected CD4+

T cells was not maintained, and the positive cells had almost

disappeared by day 7 after infection (Figure S2). As this might

have been owing to the length and/or sequence of the calpastatin

cDNA, we next cloned minimum functional domains of

calpastatin by PCR.

As shown in figure 2A, the calpastatin cDNA contains four

homologous functional domains (I to IV), and domains I and IV

have a higher calpain-inhibiting activity than domains II and III

[37]. Each inhibitory domain has three sub-domains A, B, and C:

sub-domains A and C bind to calpain, and subdomain B is crucial

for calpastatin’s inhibitory activity. Therefore, we cloned domains

I and IV, as just subdomains A and B (CS-dIAB, CS-dIVAB) or all

three subdomains (CS-dIABC, CS-dIVABC). These retrovirally

overexpressed minimum domains of calpastatin showed much

better stability in infected cells than the full-length sequence

(Figure S2).

Overexpression of calpastatin minimum functional
domains suppresses the IL-6 production from fibroblasts

To confirm the overexpression of calpastatin and calpain

proteins, we transfected the retroviruses into Phoenix 293T cells,

and then subjected the lysates of these cells to western blot analysis.

We detected the expected sizes of calpastatins and calpain proteins

Figure 1. Calpastatin and calpain expressions and the effect of E-64-d on Th cell development. (A) Naı̈ve CD4+ T cells were cultured
under Th1-, Th2-, or Th17-promoting conditions, and the lysates were subjected to western blot analysis with the indicated antibodies. Data are
representative of four independent experiments. (B) Band densities from the four independent experiments described in panel A were measured and
normalized against the density of actin, and are depicted as the percent change from the value on day 0. (C) Naı̈ve CD4+ T cells were maintained with
the indicated concentrations of E-64-d under neutral or Th17-promoting conditions. On day 4 (Th17 condition) or day 6 (neutral condition), the cells
were restimulated with PMA/ionomycin for 4 hours and subjected to ICS. Similar results were obtained in four independent experiments. (D)
Statistical analysis of the IL-17 positive rates in panel C under Th17 conditions. *p,0.05 vs. absence of E-64-d (DMSO only, n = 4). (E) Naı̈ve CD4+ T cells
were maintained with the indicated concentrations of E-64-d under Th17-inducing conditions. On day 3, total RNA was extracted and subjected to
quantitative RT-PCR analysis for RORct. Expression levels were normalized to HPRT. Data depict the average+SE of the percent change from the value
in the absence of E-64-d (DMSO only, n = 6). *p,0.05 vs. absence of E-64-d. (F) Th17 cells were cultured with the indicated concentrations of E-64-d.
On day 3, the cells were washed and maintained with X-VIVOTM 20 (without FCS), and then lysed and subjected to western blot using the indicated
antibodies on day 4. Similar results were obtained in four independent experiments. Numbers below the blots are the average relative density of
pSTAT3 to actin.
doi:10.1371/journal.pone.0027020.g001
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(Figure 2B). In addition, to check the function of the minimum

functional domains of calpastatin with different sets of subdomains

and calpain at the protein level, a casein-based calpain activity

assay was performed using lysates from calpastatin- or calpain-

overexpressing NIH-3T3 cells, as described previously [19], and

the calpain inhibitor function was confirmed for all these

constructs (data not shown).

As we previously found that E-64-d suppresses IL-6 production

in a fibroblast-like synovial cell line [33], we examined the

biological function of the calpastatins and calpain by the IL-6

production using NIH-3T3 cells. Control cells and calpastatin- or

calpain-overexpressing NIH-3T3 cells (infection efficiencies were

.95%) were stimulated with LPS (Figure 2C) or IL-17 (Figure 2D),

and the IL-6 concentration in the culture supernatants was

measured by ELISA. The IL-6 induction was significantly

suppressed in cells overexpressing all forms of calpastatin similarly,

whereas the calpain-overexpressing cells produced more IL-6 than

mock-infected cells (Figure 2C–2D). These results suggested that

the target molecule of calpain and calpastatin might lie in the

common signal pathway of IL-6 gene expression such as the NF-

kB signal rather than in the receptor level. In addition, in the

absence of LPS stimulation, the constitutive phosphorylation of

STAT3, which is an important effector of IL-6 signal transduction,

was also suppressed in calpastatin-overexpressing NIH-3T3 cells

as a result of the IL-6 suppression (Figure 2E). On the other hand,

no upregulation of phosphorylated STAT3 was observed in

calpain-overexpressing NIH-3T3 cells, probably because of the

absence of LPS stimulation.

Because of its stability and strong biological effect, we used the

dIV-ABC construct of calpastatin in further experiments (desig-

nated just as CS-dIV).

Production of IL-17 and IL-6 was suppressed in
calpastatin-overexpressing CD4+ T cells

We next investigated the effect of calpastatin and calpain

overexpression on cytokine production in Th cells. Calpastatin- or

calpain-overexpressing CD4+ T cells were cultured under neutral,

Th1-, Th2-, or Th17-promoting conditions, and cytokine

production was analyzed by intracellular cytokine staining.

Compared with mock-infected or calpain-overexpressing Th cells,

those overexpressing CS-dIV contained fewer IL-6- and IL-17-

positive cells under Th2 and Th17 conditions, respectively

(Figure 3A–3B). Furthermore, CS-dIV overexpression completely

blocked the emergence of IL-17-positive Th cells under neutral

Figure 2. Retroviral expressions of calpastatin, calpastatin domains, and calpain and effect on IL-6 production from fibroblasts. (A)
Retroviral construction and scheme of the domain structure of calpastatin. Domains I and IV are abbreviated as dI and dIV, respectively. (B)
Calpastatin- or calpain-GRV was transfected into phoenix 293T cells by the calcium phosphate method. Three days later, the lysates of these cells
were subjected to western blot analysis. The blots were probed with anti-calpastatin and anti-calpain antibodies. (C–D) Control cells, or calpastatin- or
calpain-overexpressing NIH-3T3 cells (5x105 cells/ml) were cultured with 1 mg/ml LPS (C) or 10 ng/ml IL-17 (D) for 24 hours. The culture supernatants
were collected and IL-6 concentrations were measured by ELISA. Left panel of (C) shows mock vs. calpastatins (Dunnett’s test, n = 5), and right panel
shows mock vs. calpain (Steel’s test, n = 5). Panel D shows the results of three independent experiments (Steel’s test). *P,0.05 and **p,0.01 vs. mock.
FL, full-length. (E) Control cells, calpastatin-, and calpain-overexpressing NIH-3T3 cells (infection efficiencies were .95%) were maintained without
stimulation, then lysed and subjected to western blot analysis with the indicated antibodies. Similar results were obtained in three independent
experiments. Numbers below the blots are the average relative densities of pSTAT3 to actin.
doi:10.1371/journal.pone.0027020.g002

Anti-Inflammatory Functions of Calpastatin
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conditions (Figure 3C). On the other hand, calpain-overexpressing

CD4+ T cells showed little change with regard to the production of

IFN-c and IL-4. We also checked the effect of CS-dIV

overexpression on cell proliferation using PKH26 labeling

together with GFP expression, and found no difference in the

cell-division rates between mock- and CS-dIV-infected cells

(Figure 3D). These data suggested that the overexpression of

CS-dIV suppressed IL-17 and IL-6 production without causing

cytotoxic effects.

To confirm the suppression of IL-17 production by calpastatin,

we silenced the expression of the small subunit of calpain (CPNS),

a regulatory subunit of calpain, in CD4+ T cells using an RNAi

approach. The knockdown of CPNS is known to reduce the large

subunit of both calpain I and II at the protein level and to interfere

Figure 3. Calpastatin-overexpression in Th cells resulted in decreased IL-6 and IL-17 production. (A) Naı̈ve CD4+ T cells were cultured
under neutral, Th1, Th2, or Th17 conditions. On day 1, these cells were infected with mock-GRV or calpain- or CS-dIV-GRV and expanded on day 2
with IL-2. On day 4 (Th17 conditions) or on day 6 (neutral, Th1, and Th2 conditions), the cells were restimulated with PMA/ionomycin for ICS.
Representative results for GFP+-gated cells are shown (n = 11 for IFNc, n = 10 for IL-4, n = 6 for IL-6 and IL-17). (B) Statistical analysis of the results in
panel A by Steel’s test. (C) Naı̈ve CD4+ T cells were cultured under neutral conditions and infected with mock-GRV or CS-dIV-GRV. On day 6, these cells
were restimulated with PMA/ionomycin for FACS. Representative data of GFP+, GFP2-gated cells are shown in the left panel, and the statistical
analysis is shown in the right panel (n = 3) (D) Retrovirus-infected Th cells were stained with PKH-26 dye and then stimulated with anti-CD3/28
monoclonal antibodies. The fluorescence intensity of the PKH-26 dye in infected (GFP+) and non-infected (GFP2) cells was analyzed by FACS. *p,0.05
vs. mock.
doi:10.1371/journal.pone.0027020.g003
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with calpain function [38,39]. We achieved a significant decrease,

but not complete depletion, of protein on day 7 after treatment

with the siRNA for CPNS probably because of the relatively long

half-life of calpain at the protein level (Figure 4A). We then

analyzed the IL-17 production under neutral conditions by ELISA

on day 7, and confirmed that the IL-17 production was suppressed

in Th cells treated with siRNA against CPNS (Figure 4B). We

supposed that calpain inhibition suppressed IL-17 production by

up-regulating the STAT5 signal via stabilization of the common

cytokine receptor gamma (cc) chain [40], because cytokine

signaling through the cc chain and STAT5 is critical for Th17

generation [41,42]. As shown in figure 4C, we confirmed that the

constitutive phosphorylation of STAT5 was up-regulated in the

CPNS-siRNA treated T cells, and not in control cells.

Overexpression of the minimal functional domain of
calpastatin suppresses NF-kB signaling by stabilizing IkBa

The molecular mechanism by which calpain inhibitors suppress

IL-6 production is reported to be the suppression of NF-kB

signaling by blocking calpain’s degradation of IkB [39,43,44,45].

However, it was not known whether the calpastatin minimum

functional domains have the same function as full-length

calpastatin. To test this mechanism, we first analyzed the NF-kB

signaling by electrophoresis mobility shift assay (EMSA) using

nuclear extracts from mock- and CS-dIV-overexpressing NIH-

3T3 cells. As shown in figure 5A, the CS-dIV-overexpressing

NIH-3T3 cells showed not only a suppressed peak of NF-kB

binding to the target sequence, but also a shorter duration of NF-

kB binding induced by LPS stimulation. We also confirmed that

the bands of NF-kB were specifically p65 by super shift assay. The

mean percent reduction in NF-kB binding at 1 hour after LPS

stimulation by CS-dIV overexpression was 58%, which was

statistically significant (Figure 5B). We next examined the

upstream signaling of NF-kB by western blot using cytoplasmic

extracts of the same cells. As shown in figure 5C, we confirmed

that there were no significant changes in upstream NF-kB

signaling events (the phosphorylation of p65 and IkBa) between

the mock- and CS-dIV-overexpressing NIH-3T3 cells.

We also observed an increase in the total IkBa protein in CS-

dIV-overexpressing NIH-3T3 cells at steady state (0 hours) and up

to 1 hour after LPS stimulation. To confirm the increase in total

IkBa protein in the CS-dIV-overexpressing NIH-3T3 cells more

precisely, we performed intracellular staining for IkBa, and

determined the mean fluorescence intensity (MFI) by flow

cytometry (Figure 5D–5E). We observed a significant increase in

IkBa-MFI (30%) in the CS-dIV-overexpressing NIH-3T3 cells.

These data confirmed that the overexpression of CS-dIV resulted

in increased IkBa and decreased NF-kB binding to its target DNA

in the nucleus, without decreasing their upstream signaling.

Overexpression of the minimal functional domain of
calpastatin suppresses IL-6 production in synovial
fibroblasts derived from RA patients

To confirm the anti-inflammatory effect of CS-dIV on primary

fibroblasts, we isolated synovial fibroblasts from RA patients and

infected these cells with mock- or CS-dIV-expressing retrovirus.

The infected cells were then sorted according to GFP expression

using FACS (purity .99%) (Figure 6A). These sorted cells were

then stimulated with LPS, and the IL-6 in the supernatant was

measured by ELISA. As shown in figure 6C, the overexpression of

CS-dIV suppressed not only the LPS-induced IL-6 production,

but also the basal production, completely. In addition, there was

no difference in the cell proliferation between the mock- and CS-

dIV-overexpressing synovial fibroblasts (Figure 6B). All of these

data suggested that the inhibition of calpain by a minimal

functional domain of calpastatin elicits a coordinated anti-

inflammatory effect by the inhibition of both IL-6 and IL-17

from not only T cells but also synovial fibroblasts.

Discussion

Calpain is known to be present in the synovial fluid of RA

patients [27,29,46] and in the arthritic joints of CIA mice [28].

Because calpain has proteoglycanase activity [29,47], it causes

cartilage damage in the joints of RA patients [28,46], and is

concomitantly involved in osteoclastic bone resorption [48]. In

addition, autoantibodies against calpastatin, a natural and specific

inhibitor of calpain, are widely observed in RA and psoriasis

patients [19,20,21], and positivity for anti-calpastatin antibodies is

known to correlate with serological markers of the disease activity

[23,24]. These findings strongly suggest that an insufficiency of

calpastatin or dominance of calpain contributes to the pathogen-

esis of inflammatory processes such as RA. In fact, we previously

Figure 4. Silencing of the calpain small subunit suppressed the
IL-17 production from Th cells. (A) Naı̈ve CD4+ T cells were cultured
under neutral conditions, and treated with siRNA against calpain small
subunit (CPNS). This experiment was carried out using two siRNAs
(CPNS1; C1 and CPNS2; C2). On day 3 and 7, these cells were lysed and
subjected to western blot analysis. NC; negative control. (B) On day 6,
the cells in panel A were washed 3 times and restimulated with an anti-
CD3 antibody for 48 hours. The culture supernatants were then
collected, and IL-17 was measured by ELISA. Statistical analysis of eight
independent experiments is shown (Steel’s test). (C) On day 6, the cells
in panel A were incubated with X-VIVOTM 20 (without FCS) for the last
6 hours, then lysed and subjected to western blot analysis with the
indicated antibodies. Similar results were obtained in three indepen-
dent experiments. The band densities of pSTAT5 were measured and
normalized to that of total STAT5, then the percent change from NC
was calculated. Statistical analysis of three independent experiments is
shown in the right panel. *p,0.05 vs. NC.
doi:10.1371/journal.pone.0027020.g004
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Figure 5. Overexpression of the minimal functional domain of calpastatin suppressed NF-kB signaling via stabilization of IkBa. (A)
Nuclear extracts from mock (M)- and CS-dIV (C)-overexpressing NIH-3T3 cells stimulated with LPS were subjected to EMSA. P, probe only; Co,
competition by preincubation with non-labeled probe; SS, super shift by preincubation with an anti-p65 antibody; NS, non-specific bands. Similar
results were obtained in six independent experiments. (B) Bands densities of NF-kB were measured and statistical analysis was performed. (C)
Cytoplasmic extracts from the same cells used in panel A were subjected to western blotting with the indicated antibodies. Similar results were
obtained in three independent experiments. (D) Mock- or CS-dIV-overexpressing NIH-3T3 cells were stained with IkBa antibodies intracellularly and
analyzed by flow cytometry. Similar results were obtained in six independent experiments. (E) Statistical analysis of the MFI of IkBa shown in panel C.
**p,0.01 vs. mock. endo-CS; endogenous calpastatin.
doi:10.1371/journal.pone.0027020.g005
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reported that the administration of E-64-d ameliorates the arthritis

in CAIA mice via decreased IL-1b and IL-6 production in synovial

cells [33]. However, E-64-d is not a specific inhibitor of calpain; it

also inhibits cathepsins. Therefore, a more specific experimental

system for inhibiting calpain function was required to clarify its

effect on inflammatory cells. Moreover, little is known about the

effect of the calpain-calpastatin balance on Th cells.

In the present study, we established a system for overexpressing

calpastatin subdomains in primary cells and in cell lines, using a

retroviral expression system, and a CPNS knock-down system

using siRNA to achieve the specific loss of calpain function.

Notably, we generated a minimal functional domain of calpastatin

(CS-dIV) that was stably expressed in both cell lines and primary

cells, even though full-length calpastatin only showed short-term

expression. There might be some sequences in the full-length

calpastatin cDNA that are incompatible with the retrovirus vector,

or its length might simply be the problem. It is also possible that

the overexpression of full-length calpastatin has some toxic effects

on cells, while the minimal functional domain of calpastatin does

not. In fact, no toxicity was observed when CS-dIV was

overexpressed in either primary Th cells or fibroblasts. In any

case, these properties of CS-dIV were advantages for its use in

analyzing the gain of calpastatin function in vitro.

Using CS-dIV overexpression to obtain the specific loss of

calpain function in vitro, we demonstrated that it suppressed IL-6

production by reducing NF-kB signaling via the inhibition of IkBa
degradation, without affecting the upstream signals of NF-kB, in

NIH-3T3 cells. Several reports have shown that IkB is a substrate

Figure 6. Calpastatin overexpression in the synovial fibroblasts of RA patients efficiently suppressed IL-6 production. (A) Synovial
fibroblasts derived from RA patients were subjected to mock- or CS-dIV-GRV infection, and the infected cells were sorted by FACS. Sorting purity was
.99%. (B) The sorted GFP+ cells in panel A were seeded into 96-well plates at 1000 cells/well. Forty-eight and 72 hours after seeding, ATP was
measured using a CellTiter-GloH Assay kit. Summarized data from three independent experiments are shown. (C) The cells used in panel B were
stimulated with the indicated concentration of LPS for 24 hours, and IL-6 in the culture supernatant was measured by ELISA. Similar results were
obtained in three independent experiments.
doi:10.1371/journal.pone.0027020.g006
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of calpain, and anti-calpain compounds block IkB’s degradation,

consequently reducing NF-kB signaling [44,45,49,50,51]. Because

all of these reports utilized calpain inhibitors that are not specific

for it, the results may include effects caused by inhibiting molecules

other than calpain. Although two other reports showed similar

findings using a calpastatin overexpression system, these were

performed in cell lines [39,43]. In the present study, we confirmed

that the overexpression of CS-dIV suppressed IL-6 production by

not only NIH-3T3 cells but also primary Th cells and fibroblasts

derived from the joints of RA patients. IL-6 is recognized as a

major proinflammatory cytokine responsible for the pathophysi-

ology of inflammatory diseases such as RA; the IL-6 level in

synovial fluids correlates with disease activity [52]. Moreover, an

anti-IL-6 receptor antibody suppresses RA in human patients

[53,54,55]. Notably, we found that the overexpression of CS-dIV

completely blocked the constitutive production of IL-6 from

inflammatory fibroblasts derived from RA patients. This result

supports the clinical application of directly overexpressing CS-dIV

in inflammatory sites such as the joints of RA patients.

NF-kB signaling is essential for IL-6 production, and IL-6 plays

a crucial role in IL-17 development [11]. Furthermore, NF-kB is

known to be activated in the synovium of patients with RA

[56,57,58]. Therefore, the inhibition NF-kB signaling is a

promising strategy for controlling inflammatory diseases. Howev-

er, although many inhibitors to NF-kB are aggressively under

development, their specificity and toxicity are common problems

[59]. In the present study, we observed that only a moderate

increase in IkBa (+30%) had a relatively large impact on the

suppression of NF-kB signaling (258%) in NIH-3T3 cells. This

finding suggests that strategies such as increasing IkBa or

protecting it from degradation by calpain may efficiently inhibit

NF-kB. In fact, our results of CS-dIV overexpression in primary

fibroblasts derived from the joints of RA patients showed that CS-

dIV had a strong suppressive effect on the spontaneous production

of IL-6.

We next demonstrated that the inhibition of calpain activity by

overexpressing a minimal functional domain of calpastatin or by

CPNS-siRNA suppressed not only IL-6 but also IL-17 production

by Th cells. We supposed this effect resulted from the inhibition of

Th17 development via upregulation of the STAT5 signal, rather

than from the direct suppression of IL-17 expression. This scenario

is consistent with previous reports [40,41,42]. We also tested the

effect of calpain inhibition by CPNS-siRNA on other STAT

signals (STAT1, STAT4, and STAT6), and observed no obvious

changes (data not shown).

These data suggested that the calpain-calpastatin balance

specifically moderates STAT5 signaling, and suppresses Th17

development preferentially. Although Th17 cells are believed to

assume significant roles in inflammatory disease, controversy

remains over whether this is true in human RA [12,13,60]. To

address this issue, we and another group reported that the

synovial tissues and fluids of RA patients contain predominantly

IFN-c producing CD4+ T cells, and that the emergence of Th17

cells is neither increased in RA nor correlated with disease

activity [14,15]. However, more recently, Leipe et al., using

samples from very early active and treatment-naı̈ve RA patients,

reported that the percentage of Th17 cells correlates strongly

with the activity of RA, and concluded that Th17 cells play an

important role in human RA [61]. Furthermore, anti–IL-17A

antibodies (such as AIN457) are currently being investigated for

the clinical treatment of autoimmune diseases, including RA,

psoriasis, and Crohn’s disease, and therapeutic effects are

starting to be reported [62]. Therefore, the suppression of both

Th17 development and IL-6 production by T cells and non-T

cells, through overexpressing the calpastatin subdomain could be

a sophisticated strategy for treating inflammatory diseases such

as RA.

In conclusion, the inhibition of calpain function by calpastatin

overexpression suppresses Th17 development via an upregulation

of STAT5 signaling, and reduces IL-6 production via a repression

of NF-kB signaling in both T cells and non-T cells (for example,

synovial fibroblasts and macrophages). Not only does calpain have

immunological functions, but it also degrades the matrix

component of articular cartilage; therefore, the blockade of

calpain function could be a promising strategy for treating

inflammatory diseases such as RA. Because CS-dIV is a relatively

small polypeptide, coupling it with cell penetrating peptide (CPP)

will not be difficult. If CPP-coupled CS-dIV can be synthesized

efficiently, it will be a novel candidate for the therapeutic control

of RA-associated joint inflammation, because it can be injected

locally and will penetrate inflammatory cells, in which it will

function as both an NF-kB and an IL-17 inhibitor, without the risk

of systemic effects.

Supporting Information

Figure S1 The expressions of calpastatin and calpain
under neutral conditions in Th cells over time. Naı̈ve

CD4+ T cells were cultured under neutral conditions, and the

lysates were subjected to western blot analysis with the indicated

antibodies. Data are representative of three independent experi-

ments.

(TIF)

Figure S2 Retrovirally transfected proteins in naı̈ve T
cells over time. Naı̈ve CD4+ T cells obtained from the

splenocytes of BALB/c mice were infected with mock-, calpasta-

tin-, calpain-, or modified calpastatin-GRV, and the infection

efficiency was determined from the GFP expression using flow

cytometry. Data are representative of seven independent exper-

iments.

(TIF)

Acknowledgments

We thank Naho Takeda and Kaszynski Richard for technical assistance.

Author Contributions

Conceived and designed the experiments: MI-H TU. Performed the

experiments: MI-H TU. Analyzed the data: MI-H TU TM. Contributed

reagents/materials/analysis tools: MI-H TU HY MS SK YI KM AS NY

DK TN KO TF TM. Wrote the paper: MI-H TU TM.

References

1. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, et al. (2005)

Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct

from the T helper type 1 and 2 lineages. Nat Immunol 6: 1123–1132.

2. Park H, Li Z, Yang XO, Chang SH, Nurieva R, et al. (2005) A distinct lineage of

CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat

Immunol 6: 1133–1141.

3. Usui T (2007) [Transcription factors that regulate helper T cell differentiation].

Nihon Rinsho Meneki Gakkai Kaishi 30: 419–427.

4. Nishikomori R, Usui T, Wu CY, Morinobu A, O’Shea JJ, et al. (2002) Activated

STAT4 has an essential role in Th1 differentiation and proliferation that is

independent of its role in the maintenance of IL-12R beta 2 chain expression

and signaling. J Immunol 169: 4388–4398.

Anti-Inflammatory Functions of Calpastatin

PLoS ONE | www.plosone.org 10 October 2011 | Volume 6 | Issue 10 | e27020



5. Usui T, Nishikomori R, Kitani A, Strober W (2003) GATA-3 suppresses Th1

development by downregulation of Stat4 and not through effects on IL-

12Rbeta2 chain or T-bet. Immunity 18: 415–428.

6. Usui T, Preiss JC, Kanno Y, Yao ZJ, Bream JH, et al. (2006) T-bet regulates

Th1 responses through essential effects on GATA-3 function rather than on

IFNG gene acetylation and transcription. J Exp Med 203: 755–766.

7. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, et al. (2006) The

orphan nuclear receptor RORgammat directs the differentiation program of

proinflammatory IL-17+ T helper cells. Cell 126: 1121–1133.

8. Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, et al.

(2006) Transforming growth factor-beta induces development of the T(H)17

lineage. Nature 441: 231–234.

9. Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, et al. (2007)

STAT3 regulates cytokine-mediated generation of inflammatory helper T cells.

J Biol Chem 282: 9358–9363.

10. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F (2007)

Interleukins 1beta and 6 but not transforming growth factor-beta are essential

for the differentiation of interleukin 17-producing human T helper cells. Nat

Immunol 8: 942–949.

11. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, et al. (2006) Reciprocal

developmental pathways for the generation of pathogenic effector TH17 and

regulatory T cells. Nature 441: 235–238.

12. Lubberts E, Joosten LA, Oppers B, van den Bersselaar L, Coenen-de Roo CJ,

et al. (2001) IL-1-independent role of IL-17 in synovial inflammation and joint

destruction during collagen-induced arthritis. J Immunol 167: 1004–1013.

13. Lubberts E, Koenders MI, Oppers-Walgreen B, van den Bersselaar L, Coenen-

de Roo CJ, et al. (2004) Treatment with a neutralizing anti-murine interleukin-

17 antibody after the onset of collagen-induced arthritis reduces joint

inflammation, cartilage destruction, and bone erosion. Arthritis Rheum 50:

650–659.

14. Yamada H, Nakashima Y, Okazaki K, Mawatari T, Fukushi JI, et al. (2008) Th1

but not Th17 cells predominate in the joints of patients with rheumatoid

arthritis. Ann Rheum Dis 67: 1299–1304.

15. Ito Y, Usui T, Kobayashi S, Iguchi-Hashimoto M, Ito H, et al. (2009) Gamma/

delta T cells are the predominant source of interleukin-17 in affected joints in

collagen-induced arthritis, but not in rheumatoid arthritis. Arthritis Rheum 60:

2294–2303.

16. Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, et al. (2003) Functional

haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase

4, are associated with rheumatoid arthritis. Nat Genet 34: 395–402.

17. Cho YG, Cho ML, Min SY, Kim HY (2007) Type II collagen autoimmunity in

a mouse model of human rheumatoid arthritis. Autoimmun Rev 7: 65–70.

18. Schaller M, Burton DR, Ditzel HJ (2001) Autoantibodies to GPI in rheumatoid

arthritis: linkage between an animal model and human disease. Nat Immunol 2:

746–753.

19. Mimori T, Suganuma K, Tanami Y, Nojima T, Matsumura M, et al. (1995)

Autoantibodies to calpastatin (an endogenous inhibitor for calcium-dependent

neutral protease, calpain) in systemic rheumatic diseases. Proc Natl Acad

Sci U S A 92: 7267–7271.

20. Despres N, Talbot G, Plouffe B, Boire G, Menard HA (1995) Detection and

expression of a cDNA clone that encodes a polypeptide containing two

inhibitory domains of human calpastatin and its recognition by rheumatoid

arthritis sera. J Clin Invest 95: 1891–1896.

21. Matsushita Y, Shimada Y, Kawara S, Takehara K, Sato S (2005)

Autoantibodies directed against the protease inhibitor calpastatin in psoriasis.

Clin Exp Immunol 139: 355–362.

22. Iwaki-Egawa S, Matsuno H, Yudoh K, Nakazawa F, Miyazaki K, et al. (2004)

High diagnostic value of anticalpastatin autoantibodies in rheumatoid arthritis

detected by ELISA using human erythrocyte calpastatin as antigen. J Rheumatol

31: 17–22.

23. Lackner KJ, Schlosser U, Lang B, Schmitz G (1998) Autoantibodies against

human calpastatin in rheumatoid arthritis: epitope mapping and analysis of

patient sera. Br J Rheumatol 37: 1164–1171.

24. Yasuhiko Kanazawa YK, Masayo Sawa, Hidekata Yasuoka, Takaki Nojima,

Yasuo Ohosone, Tuneyo Mimori (2000) Domain reactivity of autoantibodies to

calpastatin in patients with systemic rheumatic diseases. Modern Rheumatology

10: 38–44.

25. Vittecoq O, Salle V, Jouen-Beades F, Krzanowska K, Menard JF, et al. (2001)

Autoantibodies to the 27 C-terminal amino acids of calpastatin are detected in a

restricted set of connective tissue diseases and may be useful for diagnosis of

rheumatoid arthritis in community cases of very early arthritis. Rheumatology

(Oxford) 40: 1126–1134.

26. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system.

Physiol Rev 83: 731–801.

27. Fukui I, Tanaka K, Murachi T (1989) Extracellular appearance of calpain and

calpastatin in the synovial fluid of the knee joint. Biochem Biophys Res

Commun 162: 559–566.

28. Szomor Z, Shimizu K, Fujimori Y, Yamamoto S, Yamamuro T (1995)

Appearance of calpain correlates with arthritis and cartilage destruction in

collagen induced arthritic knee joints of mice. Ann Rheum Dis 54: 477–483.

29. Suzuki K, Shimizu K, Hamamoto T, Nakagawa Y, Murachi T, et al. (1992)

Characterization of proteoglycan degradation by calpain. Biochem J 285:

857–862.

30. Cuzzocrea S, McDonald MC, Mazzon E, Siriwardena D, Serraino I, et al.

(2000) Calpain inhibitor I reduces the development of acute and chronic
inflammation. Am J Pathol 157: 2065–2079.

31. Stewart MP, McDowall A, Hogg N (1998) LFA-1-mediated adhesion is

regulated by cytoskeletal restraint and by a Ca2+-dependent protease, calpain.
J Cell Biol 140: 699–707.

32. Selliah N, Brooks WH, Roszman TL (1996) Proteolytic cleavage of alpha-actinin

by calpain in T cells stimulated with anti-CD3 monoclonal antibody. J Immunol

156: 3215–3221.

33. Yoshifuji H, Umehara H, Maruyama H, Itoh M, Tanaka M, et al. (2005)
Amelioration of experimental arthritis by a calpain-inhibitory compound:

regulation of cytokine production by E-64-d in vivo and in vitro. Int Immunol
17: 1327–1336.

34. Usui T, Wakatsuki Y, Matsunaga Y, Kaneko S, Koseki H, et al. (1997)

Overexpression of B cell-specific activator protein (BSAP/Pax-5) in a late B cell

is sufficient to suppress differentiation to an Ig high producer cell with plasma
cell phenotype. J Immunol 158: 3197–3204.

35. Sasaki T, Kishi M, Saito M, Tanaka T, Higuchi N, et al. (1990) Inhibitory effect

of di- and tripeptidyl aldehydes on calpains and cathepsins. J Enzyme Inhib 3:
195–201.

36. Tamai M, Matsumoto K, Omura S, Koyama I, Ozawa Y, et al. (1986) In vitro

and in vivo inhibition of cysteine proteinases by EST, a new analog of E-64.
J Pharmacobiodyn 9: 672–677.

37. Emori Y, Kawasaki H, Imajoh S, Minami Y, Suzuki K (1988) All four repeating
domains of the endogenous inhibitor for calcium-dependent protease indepen-

dently retain inhibitory activity. Expression of the cDNA fragments in
Escherichia coli. J Biol Chem 263: 2364–2370.

38. Hayakawa M, Hayakawa H, Matsuyama Y, Tamemoto H, Okazaki H, et al.

(2009) Mature interleukin-33 is produced by calpain-mediated cleavage in vivo.
Biochem Biophys Res Commun 387: 218–222.

39. Li C, Chen S, Yue P, Deng X, Lonial S, et al. (2010) Proteasome inhibitor PS-

341 (bortezomib) induces calpain-dependent IkappaB(alpha) degradation. J Biol

Chem 285: 16096–16104.

40. Noguchi M, Sarin A, Aman MJ, Nakajima H, Shores EW, et al. (1997)
Functional cleavage of the common cytokine receptor gamma chain (gammac)

by calpain. Proc Natl Acad Sci U S A 94: 11534–11539.

41. Letavernier E, Dansou B, Lochner M, Perez J, Bellocq A, et al. (2011) Critical
role of the calpain/calpastatin balance in acute allograft rejection. Eur J Immunol

41: 473–484.

42. Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, et al. (2007)

Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation.
Immunity 26: 371–381.

43. Chen F, Demers LM, Vallyathan V, Lu Y, Castranova V, et al. (2000)

Impairment of NF-kappaB activation and modulation of gene expression by
calpastatin. Am J Physiol Cell Physiol 279: 709–716.

44. Chen F, Lu Y, Kuhn DC, Maki M, Shi X, et al. (1997) Calpain contributes to

silica-induced I kappa B-alpha degradation and nuclear factor-kappa B

activation. Arch Biochem Biophys 342: 383–388.

45. Milligan SA, Owens MW, Grisham MB (1996) Inhibition of IkappaB-alpha and
IkappaB-beta proteolysis by calpain inhibitor I blocks nitric oxide synthesis. Arch

Biochem Biophys 335: 388–395.

46. Yamamoto S, Shimizu K, Suzuki K, Nakagawa Y, Yamamuro T (1992)
Calcium-dependent cysteine proteinase (calpain) in human arthritic synovial

joints. Arthritis Rheum 35: 1309–1317.

47. Suzuki K, Shimizu K, Hamamoto T, Nakagawa Y, Hamakubo T, et al. (1990)

Biochemical demonstration of calpains and calpastatin in osteoarthritic synovial
fluid. Arthritis Rheum 33: 728–732.

48. Hayashi M, Koshihara Y, Ishibashi H, Yamamoto S, Tsubuki S, et al. (2005)

Involvement of calpain in osteoclastic bone resorption. J Biochem 137: 331–338.

49. Liu ZQ, Kunimatsu M, Yang JP, Ozaki Y, Sasaki M, et al. (1996) Proteolytic
processing of nuclear factor kappa B by calpain in vitro. FEBS Lett 385:

109–113.

50. Schaecher K, Goust JM, Banik NL (2004) The effects of calpain inhibition on

IkB alpha degradation after activation of PBMCs: identification of the calpain
cleavage sites. Neurochem Res 29: 1443–1451.

51. Lee FY, Kim DW, Karmin JA, Hong D, Chang SS, et al. (2005) mu-Calpain

regulates receptor activator of NF-kappaB ligand (RANKL)-supported osteo-
clastogenesis via NF-kappaB activation in RAW 264.7 cells. J Biol Chem 280:

29929–29936.

52. Brozik M, Rosztoczy I, Meretey K, Balint G, Gaal M, et al. (1992) Interleukin 6

levels in synovial fluids of patients with different arthritides: correlation with local
IgM rheumatoid factor and systemic acute phase protein production.

J Rheumatol 19: 63–68.

53. Choy EH, Isenberg DA, Garrood T, Farrow S, Ioannou Y, et al. (2002)
Therapeutic benefit of blocking interleukin-6 activity with an anti-interleukin-6

receptor monoclonal antibody in rheumatoid arthritis: a randomized, double-

blind, placebo-controlled, dose-escalation trial. Arthritis Rheum 46: 3143–3150.

54. Nishimoto N, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, et al. (2009)
Study of active controlled tocilizumab monotherapy for rheumatoid arthritis

patients with an inadequate response to methotrexate (SATORI): significant
reduction in disease activity and serum vascular endothelial growth factor by IL-

6 receptor inhibition therapy. Mod Rheumatol 19: 12–19.

55. Nishimoto N, Hashimoto J, Miyasaka N, Yamamoto K, Kawai S, et al. (2007)

Study of active controlled monotherapy used for rheumatoid arthritis, an IL-6

Anti-Inflammatory Functions of Calpastatin

PLoS ONE | www.plosone.org 11 October 2011 | Volume 6 | Issue 10 | e27020



inhibitor (SAMURAI): evidence of clinical and radiographic benefit from an x

ray reader-blinded randomised controlled trial of tocilizumab. Ann Rheum Dis
66: 1162–1167.

56. Han Z, Boyle DL, Manning AM, Firestein GS (1998) AP-1 and NF-kappaB

regulation in rheumatoid arthritis and murine collagen-induced arthritis.
Autoimmunity 28: 197–208.

57. Handel ML, McMorrow LB, Gravallese EM (1995) Nuclear factor-kappa B in
rheumatoid synovium. Localization of p50 and p65. Arthritis Rheum 38:

1762–1770.

58. Benito MJ, Murphy E, Murphy EP, van den Berg WB, FitzGerald O, et al.
(2004) Increased synovial tissue NF-kappa B1 expression at sites adjacent to the

cartilage-pannus junction in rheumatoid arthritis. Arthritis Rheum 50:
1781–1787.

59. Gupta SC, Sundaram C, Reuter S, Aggarwal BB (2010) Inhibiting NF-kappaB

activation by small molecules as a therapeutic strategy. Biochim Biophys Acta

1799: 775–787.

60. Nakae S, Nambu A, Sudo K, Iwakura Y (2003) Suppression of immune

induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 171:

6173–6177.

61. Leipe J, Grunke M, Dechant C, Reindl C, Kerzendorf U, et al. (2011) Role of

Th17 cells in human autoimmune arthritis. Arthritis Rheum 62: 2876–2885.

62. Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, et al. (2010) Effects of

AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid

arthritis, and uveitis. Sci Transl Med 2: 52–72.

Anti-Inflammatory Functions of Calpastatin

PLoS ONE | www.plosone.org 12 October 2011 | Volume 6 | Issue 10 | e27020


