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Abstract
Evidence is accumulating that small open reading frames (sORF, <100 codons) play key roles in
many important biological processes. Yet, they are generally ignored in gene annotation despite
they are far more abundant than the genes with more than 100 codons. Here, we demonstrate that
popular homolog search and codon-index techniques perform poorly for small genes relative to
that for larger genes, while a method dedicated to sORF discovery has a similar level of accuracy
as homology search. The result is largely due to the small dataset of experimentally verified sORF
available for homology search and for training ab initio techniques. It highlights the urgent need
for both experimental and computational studies in order to further advance the accuracy of sORF
prediction.

INTRODUCTION
An increasing body of evidence shows that proteins translated from small open reading
frames (sORFs; <100 codons) are involved in a variety of important functional classes.
These biological functionality includes but not limited to mating pheromones, energy
metabolism, proteolipids, chaperonins, stress proteins, transporters, transcriptional
regulators, nucleases, ribosomal proteins, thioredoxins, metal ion chelators and
transmembrane proteins [1]. For example, tarsal-less (tal) gene, a 33-nucleotide-long ORF,
is translated into 11-amino-acid-long peptide and controls gene expression and tissue folding
in the Drosophila [2]. Another sORF gene, polished rice (pri), which is of 11–32 amino
acids long, controls epidermal differentiation in Drosophila by modifying the transcription
factor Shavenbaby [3, 4]. In Bacillus subtilis, the 46-amino-acid-long Sda protein inhibits
the onset of sporulation by preventing activation of a transcription factor required for
sporulation [5]. In plants, the products of sORF protein coding genes are important
components of photosynthetic supracomplex [6]. These identified and characterized
examples indicate that sORFs are ubiquitous and play significant roles in various biological
processes.
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While some sORFs have important function, the majority of sORFs are probably
meaningless and arisen by chance. Thus, identifying functional sORFs from huge number of
fake sORFs is a daunting task for genome annotation projects. In practice, sORFs are
generally eliminated from any genome annotations (i.e., only ORFs with at least 100 codons
are annotated) [7] and the functions of proteins encoded by sORFs are largely un-explored.
Hence, it is critical to employ effective computational methods to pinpoint potentially
genuine sORFs “buried” under piles of meaningless ones [1]. Such an accurate sORF list
(narrowed down by computational methods to a practical scale) is highly desirable for
investigators to perform follow-up experimental characterization.

The most commonly used computational method for sORF discovery is BLAST (or analog
of BLAST), which identifies members of a sORF coding gene family based on protein-
sequence homology information [1, 2, 8–11]. The dependence on homologous, known
sORFs thus limits the power of BLAST in searching novel sORFs. ab initio methods, on the
other hand, goes beyond sequence similarity by finding novel sORFs based on general
features common to sORF coding genes. One widely used ab initio sORF-prediction
technique is to evaluate whether the pattern of codon usage in a potential sORF is
characteristic of genuine genes [7, 12, 13]. Others predicted coding potential of small genes
by employing sequence transformation [14], hidden Markov models (HMM) or hybrid
HMM-SVM with various sequence features [15–17], and the hexamer composition bias
between coding and non-coding sequences [18–20]. In this mini-review, we compiled two
datasets of genes with <100 and 100–150 codons for Saccharaomyces cerevisiae from
literature and made a comparative assessment of BLAST and two representative ab initio
discovery techniques (codonW [12] and sORF finder [20]) that were optimized for sORF
prediction in Saccharaomyces cerevisiae. Such an assessment is necessary in order to further
improve existing methods.

BLAST SEARCH FOR sORF PREDICTION
BLAST search is a commonly used technique to compare a query sequence with the
sequences contained in a library of known genes. It tabulates the query sequence as short
sequences (seeds), scans the database for matches, and subsequently extends the matches to
high-scoring segments [21]. There are two databases of genes: Swiss-Prot and NCBI NR
database. Swiss-Prot is a highly-curated, highly-cross-referenced, annotated non-redundant
protein sequence database [22], while NR is a more comprehensive and less curated protein
sequence database automatically compiled from GenBank CDS translations, PDB, Swiss-
Prot, PIR and PRF resources[23]. A BLASTp search of a query sequence will produce an
output file containing all homologous hits with sequence identity and an estimated
significance based on the expected value (the probability for such a match to occur purely by
chance). In this study, we delete those hits that are labeled as “hypothetical”, “putative”, or
“unnamed protein product”. Obviously, the number of predicted sORF by BLAST can be
controlled by changing the expected value (Evalue) and sequence identity. To investigate the
performance of BLAST, we group the hits at different cutoff values of sequence identity and
choose the hit based on Evalue after excluding the hits that are above a certain sequence-
identity cutoff to the query sequence. The threshold of Evalue is employed as a parameter to
control true and false positive rates.

Ab Initio sORF Prediction
CodonW—This method is based on the assumption that the codon usage of well expressed
ORF (i.e., with biological functions) is non-random, and a true sORF should possess an
optimal codon pattern [24]. Along this assumption, different codon usage indices have been
developed for coding potential evaluation [25]. codonW is a program which implemented
three popular codon usage indices to analyze the coding potential of a given ORF [12]. We
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evaluated the performance of each of the three indices, namely, CBI (codon bias index,
measuring how biased the codons in an ORF are towards highly “preferred codons” in
coding amino acids), Fop (the frequency of optimal codons) and CAI (codon adaption
index). The latter two indices measure the degree to which the codon usage of a gene has
adapted toward the usage of optimal codons. The indices optimized specifically for S.
cerevisiae are chosen for comparative studies.

sORF finder—sORF finder is a more recent program specifically designed for identifying
small open reading frames with high coding potential [18, 19]. It is based on the hexamer
composition bias between coding sequence (CDS) and non-coding sequences (NCDS). We
used the web-based sORF application tool
(http://evolver.psc.riken.jp/sORFfinder/cgi-bin/run1.html) for this study, and selected the S.
cerevisiae specific training model for CDS and NCDS. The output file assigns scores (the
greater the score is, the higher confidence it has) only to the sORFs that the program
discovered, while a score of “−100” is assigned arbitrarily to each unidentified sequence.
The sORF finder can only apply to predictions with less than 100 codons.

DATASET FOR ASSESSMENT
Assessing the accuracy of sORF computational discovery methods is difficult because there
are only a relatively small number of confirmed protein-coding sORFs (i.e., true positive,
TP), and even less for the number of confirmed meaningless sORFs (i.e., true negative, TN).
Although in some studies intron and/or intergenic regions have been used as an alternative
to meaningless sORFs for method evaluation [19], it is not clear whether the meaningless
sORFs share the same properties as these regions.

Saccharaomyces cerevisiae (budding yeast) is one of a few extensively studied model
organisms where firm evidence for a significant number of genuine sORFs and meaningless
sORFs are available. Because the 100-codon boundary is arbitrarily defined in genome
sequencing project, annotated ORFs of 100–150 codons inevitably include a fraction of
artificial ORFs [7]. We thus assess the computational ORF discovery at both ranges of <100
and 100–150 codons.

We have compiled a curated dataset of 660 positive and 657 negative ORF genes with less
than 150 codons, including 311 positive and 167 negative sORF genes with less than 100
amino acids in Saccharaomyces cerevisiae. The positive ORF set is from the annotated
ORFs by SGD team [26], including both verified ORF for which experimental evidence
exists that a gene product is produced in S. cerevisiae, and uncharacterized ORF that is
likely to encode an expressed protein. The negative sORF set comes from the dubious ORF
records curate in SGD. A Dubious ORF is one that is unlikely to encode an expressed
protein, which meet the criteria including but not exclusively that 1) the ORF is not
conserved in other Saccharomyces species, 2) there is no well-controlled, small-scale,
published experimental evidence that a gene product is produced, and 3) a phenotype caused
by disruption of the ORF can be ascribed to mutation of an overlapping gene. For data
quality control, we also made use of the existing large-scale protein expression data [13],
protein localization data [27] and gene-deletion data [1]. Specifically, from the positive set,
we filtered out the ORFs showing negative status in any of the three large-scale functional
genomics datasets. For the negative set, we filtered out the ORFs showing positive status in
any of the three large-scale functional genomics datasets.
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COMPARATIVE ASSESSMENT
We assess various methods by using Receiver Operating Characteristic (ROC) curve. A
ROC curve shows the True Positive Rate (TPR, fraction of correctly predicted positive ORF
in the total number of positive ORFs) versus the False Positive Rate (FPR, fraction of
incorrectly predicted positive ORF in the total number of negative ORFs). The area under
the ROC curve (AUC) is a measure of discrimination accuracy. All the ROC analysis is
performed by the ROCR package in R programming environment [28]. The overall
assessment of performance is shown in Table 1. As the number of sORF with 1–99 codons
is huge in any sequenced eukaryotic genome, it is highly desirable that prediction methods
can reach high true positive rate (TPR) at a low threshold of false negative rate (FPR).

To evaluate BLAST, we exclude homologous hits if it is higher than a given sequence
identity to examine its ability to detect genes in the absence of highly homologous
sequences. The expected value (Evalue) is changed to obtain the ROC curve. Swiss-Prot is a
highly curated database while NR is automatically compiled from multiple resources.
However, at low FPR threshold (e.g., 5%), the usage of more comprehensive NR database
has improved TPR over that obtained from the Swiss-Prot (Table 1). Table 1 further shows
that the AUC value for ≥100 codons is above 0.9 even after excluding homologous hits with
50% or more sequence identity to the query sequence, while is only around 0.7 for <100
codons even if only >90% homologous hits are excluded. At the 5% false positive rate, the
highest true positive rate is 91% for ≥100 codons for BLAST with 70% sequence identity
cutoff based on the NR database, while the corresponding value is only 49% for <100
codons for BLAST with 50% sequence identity cutoff based on the NCBI NR database.
Thus, as shown in Fig. (1), BLAST is a powerful search technique for searching
homologous genes with >100 codons but not for <100 codons, i.e., sORFs.

Similar performance drops between <100 codon and ≥100 codons is observed for codonW
Fig. (1). The highest AUC value is 0.82 for ≥100 codons by the CAI index but only 0.66 for
<100 codons by either the CAI or the Fop index. At the 5% false positive rate, the highest
true positive rate is 47% for ≥100 codons but only 26% for <100 codons. This suggests that
codonW is significantly less effective in ab initio prediction of sORF than in predicting
larger genes.

For sORF, the best BLAST performance (at 50% sequence-identity cutoff) is compared to
the best codonW performance with CAI index and the sORF finder, the method dedicated to
sORF. As shown in Fig. (2), sORF finder has the best performance among the three
methods. The true positive rate for sORF finder is 53% at the 5% false positive rate,
compared to 50% by BLAST. This small improvement from sORF finder may be due to the
fact that the method was specifically trained for detecting small ORF and some of positive
and negative examples are in the training set. This ~50% true positive rate at 5% false
positive rate, however, is far from satisfactory. It should be emphasized that the direct
comparison of BLAST and sORF finder is not suitable because one is a homolog-based
technique while the other is an ab initio approach. The purpose here is to demonstrate the
remaining challenges facing the detection of small open reading frames regardless of the
techniques used.

DISCUSSION AND OUTLOOK
Recent literatures have shown that proteins translated from small open reading frames are
involved in a variety of important functional classes. Because the number of sORF
candidates far exceeds the number of ORF with more than 100 codons from any eukaryotic
genome sequencing project, it is important to develop accurate computational methods to
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identity genuine sORFs. The most commonly used computational method for sORF
discovery is BLAST. However, BLAST relies on known ORFs deposited in a database and
hence is unable to discover novel sORFs. Here we showed that both BLAST and ab initio
methods based on codon patterns have significant performance drop when applied to small
ORFs. This is largely, in part, due to relative small library for verified small genes. The
development of an ab initio method dedicated to small ORFs is still at its infancy and the
initial accuracy is low.

Two ab initio techniques (codonW and sORF finder) described here are single-feature based
methods. Condon index techniques have been used by others in sORF discoveries, and
sORF finder is specifically designed for sORF prediction. They were selected as
representative here because they were also optimized for Saccharaomyces cerevisiae. There
are many other sophisticated gene prediction programs available for genes with 100 or more
codons (For recent reviews, see e.g. [29–32]). They often integrate multiple features
including nucleotide composition, transcriptional signals (e.g., promoter motifs), splicing
signals (e.g., intron splice sites), translational signals (e.g., translational start/stop sites), and
un-translated signals (e.g., polyadenylation tails). For example, GeneScan [33] is a
probabilistic model of the gene structure built on promoter, splice and translation signals
plus additional features of gene and its surrounding regions. The program was optimized for
vertebrate, Arabidopsis, and Maize only. GlimmerHMM [34] incorporates features from
introns, intergenic regions, and four types of exons into a Generalized Hidden Markov
Model. It was optimized for Arabidopsis thaliana, Coccidioides species, Cryptococcus
neoformans, and Brugia malayi, C. elegans, Danio rerio (zebrafish), and human.
Glimmer3.0 introduces a sophisticated Markov models called interpolated context models
(ICM), which can capture dependencies among adjacent nucleotides with a typical window
size of 12 [35]. It was optimized for microbial DNA, especially the genomes of bacteria,
archaea, and viruses. These complex ab initio gene prediction programs are designed to
evaluate the coding likelihood of long ORFs (>100 codons) with rich features. A direct
application of them to sORF predictions is not appropriate due to the following two
considerations. First, they are not specifically trained to discriminate true sORFs from false
sORFs. Hence their performance in sORF prediction does not reflect their genuine
capability. Second, as pointed out by previous work [7, 19, 36, 37], the gain of decreased
false-positive prediction of genes from integration of multiple features is often associated
with increased false-negative gene prediction, which is less desirable for sORF discovery
due to the very large pool of meaningless ORFs in any sequenced eukaryotic genomes.
Thus, our current assessment is limited to two ab initio methods that focus on single feature
of sORFs, and we further point out the need for reorienting those sophisticated programs for
sORF discovery.

One limitation of this assessment is the relative small number of sORF genes available. We
obtained 311 positive and 167 negative sORF (<100 codons) from SGD curation, and there
exists possibility that some of these negative sORF genes may be translated into functional
proteins. To overcome such limitation, some studies have either used ORFs within
intergenic/intron regions or randomly generated fragments from such regions as a negative
set in method development [19–20]. However, to what extent that genuine negative sORFs
share the same properties as intron and/or intergenic regions is still an interesting open
question. Thus, the availability of large set of experimentally verified sORFs (both positive
and negative genes) is crucial for a thorough assessment of prediction techniques in this
field. Previous experimental studies indicate that signals from tiling microarray might be
useful for finding novel transcribed regions including sORFs [38]. However, the accuracy of
the tiling array results is uncertain owing to concerns about high background noises due to
cross-hybridization [39], RNA-Seq, built on the massively parallel next-generation DNA
sequencing technologies, provides an unprecedented ability to screen novel transcribed
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regions including sORFs without being confounded by background noises [40]. The novel
transcribed regions, once verified to be genuine protein coding sORFs (or dismissed as non
protein-coding sORFs), will undoubtedly provide a rich resource for developing and
evaluating sORF prediction techniques.

In summary, we expect that the accuracy of sORF prediction will be likely improved when
more computational biologists armed with modern machine learning techniques are
interested in this problem and when existing state-of-the-art techniques including those
combining homology with ab initio approaches (such as TWINSCAN [41] and CONTRAST
[42]) are retooled specifically for sORF discovery. Meanwhile, a significantly larger
experimentally validated set of genuine vs. false sORFs is needed urgently in order to better
train and evaluate the computational methods.
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Fig. (1).
Significant drop in performance is observed for the popular homolog-search technique
BLAST (in Red) and ab initio predictor codonW (in Blue). The receiver operating curves are
shown for the best performed BLAST search in NR database for sORFs (excluding 50% or
more homologous sequences) and for ORFs with 100–150 codons (excluding 70% or more
homologous sequence) along with the performance of codonW for sORFs and ORFs with
100–150 codons, respectively.
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Fig. (2).
As in Fig.1 but for sORF only with an additional method called sORF finder (in Black).
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