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Abstract

Formaldehyde, the recently classified carcinogen and ubiquitous environmental contaminant, has
long been suspected of causing adverse reproductive and developmental effects, but previous
reviews were inconclusive, due in part, to limitations in the design of many of the human
population studies. In the current review, we systematically evaluated evidence of an association
between formaldehyde exposure and adverse reproductive and developmental effects, in human
populations and in vivo animal studies, in the peer-reviewed literature. The mostly retrospective
human studies provided evidence of an association of maternal exposure with adverse
reproductive and developmental effects. Further assessment of this association by meta-analysis
revealed an increased risk of spontaneous abortion (1.76, 95% CI 1.20-2.59, p=0.002) and of all
adverse pregnancy outcomes combined (1.54, 95% CI 1.27-1.88, p<0.001), in formaldehyde-
exposed women, although differential recall, selection bias, or confounding cannot be ruled out.
Evaluation of the animal studies including all routes of exposure, doses and dosing regimens
studied, suggested positive associations between formaldehyde exposure and reproductive
toxicity, mostly in males. Potential mechanisms underlying formaldehyde-induced reproductive
and developmental toxicities, including chromosome and DNA damage (genotoxicity), oxidative
stress, altered level and/or function of enzymes, hormones and proteins, apoptosis, toxicogenomic
and epigenomic effects (such as DNA methylation), were identified. To clarify these associations,
well-designed molecular epidemiologic studies, that include quantitative exposure assessment and
diminish confounding factors, should examine both reproductive and developmental outcomes
associated with exposure in males and females. Together with mechanistic and animal studies, this
will allow us to better understand the systemic effect of formaldehyde exposure.
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1. Introduction

With more than 46 billion pounds produced worldwide annually [1], most of which is
widely used in the construction, textile, furniture, medical, chemical, and pharmaceutical
industries, formaldehyde heavily impacts the everyday consumer. It is produced
endogenously in all living organisms, including humans, but exposure to ubiquitous
exogenous sources indoors, outdoors, at work, in residences, in food and medicine, poses a
significant threat to public health [2]. Exposed populations include not only adult workers,
who are exposed occupationally, but also the elderly, childbearing women, and young
children. Emerging evidence supports an association between formaldehyde exposure and
multiple adverse health effects [2]. It is increasingly being accepted by IARC [1,3], the US
NTP (12t RoC) [4], and the US EPA [5], that formaldehyde is a human carcinogen.
Although it has long been suspected, reproductive and developmental toxicity associated
with formaldehyde exposure remains inconclusive.

1.1 Previous Reviews of Formaldehyde Reproductive and Developmental Toxicity

Reproductive toxicity broadly refers to the occurrence of biologically adverse effects on the
reproductive system that may result from chemical exposure to environmental agents and is
characterized by alterations to the female or male reproductive organs, related endocrine
system, or pregnancy outcomes [6]. Likewise, developmental toxicity (also known as
teratogenicity) is the occurrence of adverse effects on the developing organism that may
result from chemical exposure prior to conception, during prenatal or postnatal development,
and may be detected at any point in the lifespan of an organism. Major manifestations
include death of the developing organism, structural abnormality, altered growth, and
functional deficiency [6].

Early reviews, of teratogenicity of formaldehyde in animals [7], and teratogenicity and
reproductive toxicity of formaldehyde in both animals and humans [8-9], concluded that the
evidence was limited and was from a small number of studies, which, in the case of the
human studies were often of poor quality, lacking accurate exposure information and
statistical power. One limitation identified in many early animal studies was that the effects
of formaldehyde were assessed indirectly through its metabolism from
hexamethylenetetramine, which is conditional. In its 2006 monograph on formaldehyde,
IARC found that existing studies of formaldehyde’s reproductive and developmental effects
in both humans and animals were inconclusive, noting that most of the epidemiological
studies reviewed were not designed to specifically evaluate formaldehyde, and that more
exposure-specific follow-up studies were required [1].

The US EPA, in a draft document reviewing formaldehyde inhalation toxicity in animals
and humans, suggests that the developing organism and the reproductive system are targets
for toxicity following formaldehyde exposure by inhalation, although these findings are
subject to revision as part of EPA’s ongoing review process [5]. The animal studies
examined demonstrated a broad range of adverse outcomes following exposure, while
highlighting the inadequacy to assess these outcomes. Since similar outcomes were also
observed in human studies, the overall data supported the human relevance of reproductive
and developmental toxicity. This review also discussed data gaps in the current literature,
such as a lack of assessment of potential reproductive effects in human males [5]. In the
most recent review of formaldehyde reproductive toxicity in 2001, Collins et al. concluded
that the reproductive impact of formaldehyde in humans was unlikely at occupational
exposure levels, despite finding evidence of increased risk of spontaneous abortion (SAB) in
a meta-analysis of 8 human population studies of formaldehyde exposed workers which
reported sufficient data [10]. Further, it was concluded that there was little evidence of
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reproductive or developmental toxicity at levels of occupational formaldehyde exposure in
the animal studies, although routes of exposure other than inhalation were disregarded.

Here, we conducted the present review to provide a comprehensive, updated assessment of
reproductive and developmental toxicity, particularly adverse pregnancy outcomes,
associated with formaldehyde exposure.

1.2 Current Approach for this Systematic Review

In this review, most of the published studies in exposed humans and experimental animals
are reviewed; findings from a new meta-analysis of human epidemiology studies are
reported; additional and relevant evidence from in vivo and ex vivo animal studies are
examined; and potential mechanisms of action of formaldehyde-induced reproductive and
developmental toxicity are discussed.

Electronic searches were performed on PubMed using keywords including: formaldehyde,
formalin, formol, reproductive toxicity, developmental toxicity, embryotoxicity,
teratogenicity, and pregnancy outcomes. Searches included case-control, nested case-
control, cross-sectional, and cohort studies in humans, as well as studies conducted via any
route of formaldehyde exposure at any dosage on any experimental animal species. We
additionally cross-referenced other formaldehyde reviews and books to generate a more
complete list of literature. Collaborators from our previous review of formaldehyde in China
[2] were able to obtain additional papers from the China National Knowledge Infrastructure,
which contains 7,426 Chinese-language journals from 1915 to the present, an otherwise
inaccessible source of information. We systematically excluded studies published in
languages other than English and Chinese, and studies pre-dating 1980 due to difficulties in
acquisition, unless the studies presented human data, for which there were already limited
resources. Studies for which full text publications were unobtainable were also excluded.
We concentrated on studies with clear and direct formaldehyde exposure, and did not
include those in which formaldehyde was a byproduct of exposure to another agent (e.g.
formaldehyde-releasing prodrugs and cosmetics, or hexamethylenetetramine and aspartame).
The study selection process is detailed in Figure 1.

2. Human Population Studies

We identified 18 human studies reporting on the reproductive effects of formaldehyde-
exposed populations. In all but 2 studies, women were chronically and/or occupationally
exposed to formaldehyde either before or after conception, and the outcomes examined
included menstrual abnormalities, infertility, spontaneous abortions, stillbirths, congenital
malformations, premature birth, and birth weight. The remaining 2 studies examined the
reproductive effects of paternal exposure to formaldehyde, with one study analyzing sperm
morphology in exposed male workers [11], and the other investigating risk of spontaneous
aborti on resulting from paternal exposure [12]. Findings from the 18 human studies are
summarized in Table 1. Studies are categorized by outcome and listed chronologically for
each outcome. Because several studies report multiple reproductive and developmental
outcomes, they are cited several times in Table 1 and throughout the text.

2.1 Reproductive Toxicity in Humans

Altered incidences of pregnancies, abnormal menstruation or abnormal sperm may each
serve as a potential indicator of reproductive toxicity in humans. In a 1975 Russian cross-
sectional study, menstrual disorders were reported 2.5 times more often in women
occupationally exposed to formaldehyde than in controls [13]. A later Danish cross-sectional
study examined menstrual irregularities in 7 mobile daycare centers in which average indoor
formaldehyde concentrations measured 0.43 mg/m3 or 0.35 parts per million (ppm) due to
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the use of urea formaldehyde in their construction [14]. Menstrual irregularities were self-
reported in 30 — 40 % of the female exposed workers, compared to none in the matched
unexposed control group. The exposed group also experienced greater vaginal irritation and
pain during micturition (urination).

A Finnish cohort study investigated the effect of formaldehyde on female fertility as
measured by fecundability density ratio (FDR) [15]. An FDR significantly below 1.0 means
delayed conception, an indicator of reduced fertility. Exposure to high levels of
formaldehyde (mean = 0.33 ppm) was significantly associated with delayed conception; the
adjusted FDR was 0.64 with 95% confidence interval (CI) 0.43-0.92 for the high exposed
group compared to the control unexposed group. This cohort study also found an increased
risk of endometriosis, with an odds ratio (OR) of 4.5 and 95% CI of 1.0-20.0, further
suggesting that formaldehyde exposure may have an adverse effect on female reproductive
affects.

In contrast to the studies in females, in the only study that examined male reproductive
effects, a Finnish cohort study, no adverse effects on sperm production, such as sperm count
and sperm morphology, were found to be statistically different between exposed and
unexposed groups [11]. However, as acknowledged by the authors, given the small size of
the exposure groups (n = 11 in each group) and the large standard errors (SE) in the control
group, the study had very low statistical power.

2.2 Developmental Toxicity in Humans

Developmental toxicity describes the ability of a substance to cause adverse effects in the
developing organism, with manifestations including spontaneous abortion, stillborn births,
congenital malformations and other structural abnormalities, low birth weight and premature
births (Table 1).

2.2.1 Spontaneous abortion—Spontaneous abortion (SAB), also known as miscarriage,
is defined as a pregnancy that typically ends naturally (not induced) during the first 7 to 28
weeks of gestation, and occurs at a rate of 15-20% in the United States and at lower rates in
most developed countries [16]. The majority of studies on SAB associated with
formaldehyde exposure examined the effect of maternal exposure, with only a single study
examining paternal exposure.

To our knowledge, the earliest study of developmental toxicity in humans was conducted in
1975, in Russia, on occupationally exposed female factory workers [13]. No difference in
the rate of abortion between exposed and unexposed workers was found in this cross-
sectional study.

A 1982 retrospective cohort study of hospital staff members in Finland found that
formaldehyde exposure at concentrations found in Finnish hospital sterilization units
(typically 0.03 — 3.5 ppm; not measured in this study specifically) was not associated with
an increase in SAB based on analysis of a small number of formaldehyde-exposed women
(n =50 exposed pregnancies) and 1100 unexposed pregnancies [17]. The adjusted rates were
8.3% for unexposed pregnancies and 8.4% for formaldehyde-exposed pregnancies. The
same research group conducted a more in-depth case-control study of Finnish hospital
nurses and reconfirmed that there was no relation between formaldehyde exposure and SAB
[18].

Axelsson et al. (1984) interviewed 745 Swedish female university laboratory workers who
had a total of 1,160 pregnancies [19]. In this cohort study, there was a slightly elevated
relative risk (RR) of miscarriage rate in women exposed to organic solvents during their first
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trimester (RR 1.31, 95% CI 0.89-1.91). Among the 10 women specifically exposed to
formaldehyde, there were 5 normal births, 2 induced abortions and 3 miscarriages, thus, the
miscarriage rate was 30%. The corresponding miscarriage rate for women who did not
conduct laboratory work while pregnant was 11.5%. Axelsson et al. found that exposure to
formaldehyde during pregnancy showed the highest miscarriage rate compared to other
volatile organic compounds but the number of cases was too small to conclude a definitive
causal relationship.

A study by the National Institute for Occupational Safety and Health (NIOSH) examined the
outcomes of 365 pregnancies in a cohort of 407 female textile workers in a facility that
fabricated men’s work pants in Kentucky and found that the miscarriage rate in those who
worked in the facility while pregnant (14%) was similar to the rate of those who worked
elsewhere during pregnancy (13%) [20]. Although these rates were similar to the rate of
miscarriage in the general population (10-25%), the SAB rate among those textile workers
who did not work outside of the home during pregnancy was only 5%.

In a French cohort study examining SAB among hospital nurses handling neoplastic drugs,
formaldehyde was assessed as a confounding exposure [21]. Data were collected by
interview from May 1985 to May 1986 in three French hospitals and in a large center for
cancer treatment. Of 139 pregnancies in nurses occupationally exposed to cytostatic agents
(which suppress cell growth and multiplication), the frequency of SAB was 25.9%
compared to only 15.1% in the 357 unexposed pregnancies (RR 1.7, 95% CI 1.2-2.5) [21].
When the pregnancies identified as being positive or unknown for previous formaldehyde
exposure (n = 113) were excluded, the results concerning cytostatics were not modified.
These data indicate that formaldehyde does not interact with cytostatic drugs to cause SABs,
but the effect of formaldehyde alone was not analyzed.

A nationwide database of medically diagnosed SAB was used to evaluate the effects of
paternal occupation and exposure on SAB risk in Finland. In a cohort of 596 pregnancies, an
adjusted OR of 1.0, 95% CI 0.8-1.4 of SAB was found for paternal exposure to moderate or
high formaldehyde concentrations [12], and an adjusted OR of 1.1 (95% CI 0.9-1.4) for low
formaldehyde exposure, showing no overall excess of SAB in women whose husbands were
exposed to formaldehyde. The authors hypothesized that if there had been any male-
mediated effects on pregnancy outcome, the only possible damage would be via genetic
damage to male germ cells or by secondary maternal exposure. Since individual exposure
could not be assessed directly, any conclusions about this study are purely suggestive. The
authors recommend that the findings of this study “need to be confirmed by studies in which
individual exposures can be assessed directly” [12].

To examine the relation between adverse pregnancy outcomes in cosmetologists who are
often exposed to a variety of chemicals, including formaldehyde-based disinfectants, a
cohort of female cosmetologists from North Carolina were surveyed, and it was found that
full-time cosmetologists who used formaldehyde-based disinfectants had a 2.1-fold (95% ClI
1.0-4.3) higher risk of SAB than those who did not use formaldehyde-based disinfectants,
when adjusted for other chemical exposures and maternal characteristics [22].

In a cohort study of French hospital workers, it was found that the rate of SAB was
significantly higher among pregnancies during which women worked in an operating room
and were exposed to formol (10% formaldehyde solution), ionizing radiation or anesthetics.
Of the 724 total pregnancies, 11.1% of the pregnancies exposed to formol resulted in SAB,
compared to only 6.9% in the unexposed group (p < 0.05) [23]. However, as discussed by
the authors, exclusion of the effects of exposure to chemicals other than formaldehyde in the
operating rooms was not possible.
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In Finland, a group of scientists identified SAB cases in a nation-wide cohort of women
working in laboratory settings. Compared to unexposed women, women who worked in
laboratories and were chronically exposed (3-5 days/week) to formalin, a 37%
formaldehyde solution, showed an increased risk for SAB (OR 3.5, 95% CI 1.1-11.2) [24].
The same group of researchers also found an increased risk for SAB (OR 3.2, 95% 1.2-8.3)
among female wood workers who were chronically exposed to formaldehyde at high levels
in a case-control study [15].

2.2.2 Congenital anomalies—Congenital anomalies, or birth defects, are characterized
by physical, metabolic or anatomic deviations from the normal pattern of development that
are apparent at birth and affect how a baby will look, function, or both. They range from
mild to fatal, and affect about 3% of all babies born in the US [25]. Very few studies have
examined congenital anomalies and formaldehyde exposure.

Ericson et al. reported a higher than expected number of infants who died neonatally and/or
had congenital malformations among births in laboratory workers compared to all other
births based on data from the 1975 Swedish census and the 1976 Medical Birth Register
[26]. In this study, no data was available on formaldehyde exposure and no specific type of
laboratory work could be identified to be more common among those with abnormal
pregnancy outcomes than the normal controls. In a small case-control study nested within
this larger study, no association was seen with formaldehyde exposure in the female
laboratory worker mothers of 26 infant singletons who had died or had malformations
compared with 50 randomly selected, age-matched controls. In this nested case-control
study, qualitative exposure data was obtained by questionnaire (i.e. subjects were asked to
list harmful substances to which they were exposed) and was therefore subject to possible
recall bias.

In the aforementioned Hemminki et al. (1985) case-control study, while SAB risk was not
increased, risk for congenital malformations was increased among children born to female
hospital nurses with formaldehyde exposure. Among the 34 cases of malformed children
three (8.8%) were born to women who reported formaldehyde exposure during their first
trimester. Among controls, 5 of 95 (5.3%) working women reported formaldehyde exposure
[18]. The authors noted that because their study had low statistical power, only very potent
effects could have been identified.

In addition to spontaneous abortion, the French cohort study conducted by Saurel-Cubizolles
also investigated birth defects in babies born to female hospital nurses with and without
formaldehyde exposure. Of 641 total pregnancies, there was a greater frequency of birth
defects in the pregnancies exposed to formol (5.2 %) than those who were unexposed (2.2
%) [23]. It was also found that formol caused the highest frequency of birth defects among
all the exposure agents, such as anesthetics and ionizing radiation, investigated in this study.
In a newer study conducted in Lithuania, it was found that residence in an area with ambient
formaldehyde > 2.4 ug/m?3 was associated with increased congenital heart malformation by
24% (OR 1.24, 95% CI 0.81-2.07) [27]. A Danish cohort study found that the adjusted
hazard ratio of high formaldehyde exposure and ‘major’ malformations was 1.5 (95% ClI
0.8-2.9) [28].

Taskinen et al. also found no increase in ORs for congenital malformations due to maternal
exposure to solvents in general through work in a laboratory, but did not examine
formaldehyde exposure specifically [24].

2.2.3 Low birth weight—A population-based non-occupational study in Lithuania
compared low birth weight (< 2500 g) rates among women residing in areas with high or
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low concentrations of formaldehyde in ambient air [29]. In this cross-sectional study, the
crude risk ratio of low birth weight babies among women residing in high formaldehyde
exposure areas (> 4.67 pg/m3) was 1.68 with 95% CI 1.24-2.27 compared with women
residing in low exposure areas (> 4.67 ug/m3). Once adjusted for potential confounders, the
OR was 1.37 (95% CI 0.90-2.09) for exposures > 3.5 ug/m3 compared to <3.5 ug/m3.
Increasing levels of formaldehyde exposure resulted in increased incidence of low birth
weight, with 48.3 per 1000, 49.5 and 81.1, in low, moderate (> 3.48 pg/m3) and high-
exposure areas, respectively. The same research group conducted a follow-up study of all
newborns born in 1998 in the city of Kaunas, Lithuania [30]. Residential exposure levels
were monitored at 12 municipal monitoring sites, one in each residential district, and logistic
regression was used to estimate the effect of pollutants on reproductive outcomes. The
adjusted OR for low birth weight (< 2500 g) at the highest ambient formaldehyde level was
OR of 2.09 (95% Cl, 1.03-4.26). This OR was adjusted for parity, maternal age, marital
status, education, season, smoking, and gestational age. The unadjusted OR was lower and
not statistically significant (1.39; 95% ClI, 0.91-2.12). In a Danish study, the adjusted OR
for low birth weight for mothers who were laboratory technicians with high formaldehyde
exposure was 1.2 (95% ClI 0.6-2.2) [28].

2.2.4 Premature birth—Shumilina et al. found that the rate of premature water breaking
was 37.23+2.41% in Russian female factory workers occupationally exposed to
formaldehyde, compared to 23.63+1.23% in the unexposed group, but no information on
significance was provided. Additionally, the threat of intra-uterine fetal asphyxiation, a
condition in which there is an extreme decrease in oxygen supply to fetuses, was more than
2 times higher in the exposed group than in the control though no actual data on oxygen
levels were reported [13]. Premature birth rates did not differ between exposed and
unexposed groups.

Maroziene and Grazuleviciene studied the effects of ambient formaldehyde and premature
birth in a cross-sectional study of 3,988 births and found that at high ambient formaldehyde
levels, the risk of premature birth was 1.37 (95% CI 0.91-2.05) [30].

The most recent epidemiology study on formaldehyde exposure and pregnancy outcomes
identified and surveyed a cohort of female laboratory workers [28]. A reduced risk of pre-
term birth, OR 0.7 (95% CI 0.3-1.7), was found for those who reported laboratory work
involving frequent and/or high formaldehyde exposure.

2.2.5 NIOSH analysis of combined adverse birth outcomes—In 1987, NIOSH was
requested to conduct a health evaluation at Rockcastle Manufacturing, a textile plant that
fabricated men’s work pants in Kentucky [20]. Employees were complaining of headaches,
nausea, vomiting, fainting, and adverse reproductive effects at the facility. Formaldehyde air
sampling results ranged from 0.32-0.70 ppm in 13 air area samples obtained throughout the
plant, lower than the current US Occupational Safety and Health Administration (OSHA)
occupational exposure limit of 0.75 ppm [31]. Additionally, fabric samples that the company
produced released 163-1430 micrograms of formaldehyde per every gram of fabric (ng/g).
Past and present employees were surveyed for health information and reproductive health
data (including miscarriage, birth defects, premature births and stillbirths) were assessed.
The response rates were 98% for current employees and only 18% for past employees. A
total of 365 pregnancies were divided into 3 categories: (1) pregnancies that occurred while
the woman was employed at Rockcastle; (2) pregnancies that occurred while the woman
worked elsewhere; (3) and pregnancies that occurred while the woman was not working
outside the home. The rates of birth defects, stillbirths and premature births combined
among workers in categories (1), (2) and (3) were 42 %, 5 % and 6 %, respectively. The RR
of having any of these adverse pregnancy outcomes in category (1) compared to those
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pregnancies in categories (2) and (3) combined was 6.9 (95% CI, 3.6-13.1, p < 0.001) [20].
The rates of miscarriage in groups 1, 2, and 3 were 14%, 13%, and 5%, respectively. The
authors noted that the rate of miscarriage in group 3 (those not working outside the home)
were 2—3 times below national averages. This low rate, combined with the lack of details
regarding the methods used, and the use of exposed women as their own unexposed
comparison group, makes the results of this study difficult to interpret.

2.3 Limitations of the Human Studies

Among the 18 human studies identified, there were more developmental studies than
reproductive toxicity studies, likely because developmental toxicity has greater and more
obvious physical manifestations, whereas reproductive toxicity effects are more difficult to
detect and determine. The studies suffer from limited design and scope, and thus do not
conclusively determine whether formaldehyde exposure causes human reproductive and
developmental toxicities. Many of the older studies relied on self-reported data, and may
suffer from reporting, recall, and selection biases. As they were predominantly retrospective
epidemiological studies, few provided levels of formaldehyde exposure because they were
not specifically designed to evaluate this. In addition, the results obtained may have been
confounded by other co-exposures. None of the studies offer a plausible biological
mechanism by which reproductive and developmental toxicity could occur.

There is an overwhelmingly larger portion of human studies examining reproductive
outcomes associated with female exposures and thus a dearth of studies assessing potential
effects of formaldehyde exposure in males. More human studies of reproductive effects
resulting from exposure in males are needed, in order to understand male initiated
mechanisms.

In summary, despite study design limitations, this brief evaluation of the previous human
studies provides at least some evidence that formaldehyde exposure may be associated with
reproductive and developmental toxicity, whether impacting one or multiple reproductive
outcomes. To further evaluate the association between formaldehyde association and these
outcomes, we conducted an updated meta-analysis.

3. Updated Meta-Analysis

3.1 Previous Results from Collins et al

To date, only one other meta-analysis has examined the relationship between formaldehyde
exposure and adverse pregnancy outcome [10]. This meta-analysis, by Collins et al.,
included 8 epidemiology studies with data on occupational formaldehyde exposure and
spontaneous abortion. Collins et al. reported a summary RR of 1.4 (95% CI 0.9-2.1), which
the authors stated “showed some evidence of increased risk”. However, the authors also
identified evidence of publication bias (i.e. the tendency of researchers and journals not to
publish smaller studies with negative or null results). Evidence of publication bias was seen
in the funnel plot of the study’s effect sizes (e.g. the OR) versus their sample sizes, in Beggs
test, and in their subgroup analyses based on study size (that is, the summary RR in the
studies with 40 or more expected cases was 0.7 (95% CI 0.5-1.0) although the analysis of
the smaller studies only included two studies. In addition, part of the reason these tests may
have shown some indication of publication bias was the inclusion of the large negative study
of paternal exposures by Lindbolm et al. [12]. The authors also raised the possibility of
recall bias and performed subgroup analyses based on whether formaldehyde exposure was
determined using self-reported data. The summary RR for the 5 studies using self-reported
exposure data was 2.0 (95% ClI, 1.4-2.8). In contrast, the summary RR for studies using
other methods of exposure assessment was lower (summary RR = 0.7; 95% CI, 0.5-1.0),
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although there were only two studies in this group. Based on the possibility of recall and
publication bias, the authors interpreted their results as negative and concluded that
occupational exposure to formaldehyde did not increase risk of spontaneous abortion. The
results were further interpreted to conclude that formaldehyde is unlikely to cause any
adverse pregnancy outcomes at occupational exposure levels.

3.2 Unique Approach in the Present Analysis

The present meta-analysis differs from the previous Collins et al. meta-analysis in several
ways. First, we performed separate meta-analyses for SAB and for all developmental
outcomes combined, whereas Collins et al. only presented results for SAB. We grouped
these outcomes together for analysis to increase the power to detect developmental
outcomes generally and because they may potentially result from effects of exposure on
similar targets or pathways during the critical preconception window, e.g. genotoxic damage
to germ cells. Second, Collins et al. combined studies of maternal and paternal exposure in
their main analyses, while our main analyses only included studies of maternal
formaldehyde exposures. Third, we included the study of operating room nurses by Saurel-
Cubizolles et al. (1994), which identified a statistically significant increase of SAB in
formol-exposed nurses (11.1% vs 6.9%, p < 0.005; calculated COR =1.68, 95% CI 1.01-
2.82). This paper, however, was not mentioned in Collins et al. Fourth, when relative risks
were given for several different levels of exposure (e.g. low, medium, and high), we used
the relative risk for the highest exposure level. In contrast, Collins et al. used the RR for all
exposure levels combined. If true associations exist, higher exposure groups are generally
associated with greater statistical power and less likelihood of important confounding [32].
Importantly, this difference only applied to one study: Taskinen et al., 1999 [15]. Fifth, we
excluded the study of SAB and antineoplastic drugs by Stucker et al., 1990 [21], which was
included in Collins meta-analysis, because of the large number of people for whom
formaldehyde exposure was unknown (50 people had known formaldehyde exposure,
whereas for 63 people the formaldehyde exposure was unknown). Finally, there were
several mostly minor differences in the methods used to calculate crude ORs and confidence
intervals when only raw 2 x 2 table data were provided.

3.3 Meta-Analysis Methods

From the 18 human studies identified, certain studies were excluded from the meta-analysis
if RRs or estimates of variance were not provided or could not be estimated [11,13-14], or if
the study did not include an independent group of unexposed controls [20], or did not
provide formaldehyde exposures for the majority of exposed subjects [21]. The excluded
studies and reasons for their exclusion are summarized in Table 2. As discussed, if different
RRs were presented for different levels of exposure, the RR for the highest exposure
category was used in the meta-analysis [15,29-30].

Meta-analyses were done for two outcomes categories: SAB and all reproductive and
developmental outcomes combined, which include SAB, birth defects or malformations, and
low birth weight. SAB was the only individual outcome with an adequate number of studies
(n=8; Table 1) to perform a meta-analysis. Several studies provided data for more than one
outcome. In order to help assure independence across studies, in the meta-analysis of all
outcomes combined, a relative risk for a single outcome was selected from each study in the
following order: SAB, birth defects/malformation, and low birth weight. SAB and birth
defects/malformations were chosen first and second because these were the first and second
most common individual outcomes assessed. All but one selected study [12] assessed
formaldehyde exposure in the mother. Separate analyses were done with and without this
study to assess its impact on overall results.
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Microsoft Excel 2008 and STATA version 11 (College Station, Texas) were used for all
calculations. Summary RR estimates were calculated using both the fixed effects inverse
variance weighting method and the random effects method [33-34]. Heterogeneity was
evaluated using the general variance-based method [35]. If heterogeneity is present, the
random effects model incorporates between-study variation into the summary variance
estimate and confidence intervals. Some authors have suggested that the random effects
model may be more conservative [35]. However, unlike the fixed effects model, where
weights are directly proportional to study precision, the random effects model weighs
studies based on a highly complex and non-intuitive mix of study precision, RR, and meta-
analysis size (i.e. the number of studies included) [33]. As a consequence, this model assigns
greater weight to smaller studies than the fixed effects model, and therefore may actually be
less conservative [36]. To avoid this problem, we used the method presented by Shore et al.
[37] and used in several subsequent meta-analyses [38—42]. In this method, the summary RR
estimate is calculated by directly weighing individual studies by their precision, while
between-study heterogeneity is only incorporated into the summary RR’s variance (i.e. the
95% CI). Funnel plots and Egger’s and Begg’s tests were used to evaluate publication bias
[43-44]. Missing confidence intervals in cohort studies were calculated using Byars
approximation [45]. All p-values are one-sided since there was a clear a priori hypothesis
that formaldehyde would increase, not decrease, reproductive and developmental outcomes.

Seven studies with data on maternal formaldehyde exposure and SAB and 12 studies with
data on all combined developmental outcomes were used in this meta-analysis. In addition,
one study of SAB and paternal formaldehyde exposure was identified [12], and this was
included with the maternal exposure studies in separate analyses. Table 1 shows the data
from all human studies, while Table 2 shows those studies excluded from the meta-analysis
and reasons for exclusion. Figure 2a and 2b show the Forest plots for the analyses of SAB
and combined pregnancy outcomes for maternal formaldehyde exposures, respectively. Of
the studies of maternal formaldehyde exposure, 5 of the 7 (71%) in the SAB analysis (Figure
2a) and 9 of the 12 (75%) in the all outcomes analysis (Figure 2b), had relative risks > 1.01.

The results of the meta-analyses are shown in Table 3. In the meta-analysis of SAB and
maternal formaldehyde exposure, the summary relative risk was 1.76 (95% CI, 1.20-2.59).
The summary relative risks for all outcomes combined for maternal formaldehyde exposure
was 1.54 (95% Cl, 1.27-1.88). In analyses limited only to those studies that assessed
formaldehyde exposure by methods other than direct self-reports, the summary relative risks
for SAB and all outcomes combined were 1.29 (95% CI, 0.52-3.21) and 1.40 (95% Cl,
1.11-1.78), respectively. In analyses limited to studies using direct self-reported
formaldehyde exposure information, the corresponding summary relative risks were higher
(SAB: RR =2.04 (95% Cl, 1.40-2.97); all outcomes: RR = 1.95 (95% Cl, 1.35-2.81)).

When the Lindbohm et al. study of paternal exposure was added to the studies of maternal
exposure the summary relative risks for SAB and all outcomes combined were 1.29 (95%
Cl, 0.94-1.76) and 1.34 (95% Cl, 1.10-1.62), respectively.

Figure 3 shows the funnel plots for publication bias for the meta-analyses of SAB (Figure
3a) and all outcomes combined (Figure 3b). Without publication bias, a funnel shape is
expected in these plots since RRs from larger studies, which have smaller standard errors
(SEs), are expected to have less dispersion due to random chance than the RRs from smaller
studies (which have larger SEs) [44]. For maternal formaldehyde exposures and SAB,
obvious publication bias was not seen in the funnel plot (Figure 3a), or in Eggers (p=0.65) or
Beggs (p= 0.45) tests. Similarly, no clear evidence of publication bias was seen in the meta-
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analysis of all outcomes combined in the funnel plot (Figure 3b) or in Eggers (p=0.25) or
Beggs tests (p=0.34).

3.5 Discussion

As a whole, the results of this meta-analysis provide some evidence that maternal
formaldehyde exposure is associated with SAB and possibly other reproductive outcomes.
Summary RRs were elevated in analyses of SAB (RR=1.76; 95% ClI, 1.20-2.59) and all
reproductive outcomes combined (RR=1.54; 95% CI, 1.27-1.88). The low p-values
associated with these summary RRs (p=0.002 and < 0.0001 for SAB and all outcomes
combined, respectively) show that the excess relative risks are unlikely due to chance. For
maternal exposure, statistically significant heterogeneity was not seen in the meta-analysis
of SAB (X2 =8.99, p=0.17) or all outcomes combined (X2 = 11.2, p=0.43). In addition, the
fact that greater than 70% of the individual RRs in both analyses were above 1.0, provides
some indication of that the positive results were fairly consistent across studies. Summary
RRs decreased somewhat for both SAB and all outcomes combined when the large
Lindbolm et al. study of paternal formaldehyde exposure was included, though no definite
conclusion can be made based on only one paternal study.

An analysis of dose-response can be an important part of assessing causal inference,
although it is not a sine qua non, and in some instances where a true association exists, a
clear dose-response relationship may not be present [34]. Six studies did provide some dose-
response data [12,15,24,28-30]. In the Lindbolm et al. study of paternal exposures, ORs for
SAB were near 1.0 in both the high (OR = 1.0) and low exposure groups (OR = 1.1). In
several studies, ORs were elevated in the highest exposure group, but not in the lower
exposure groups [24,29]. For example, Grazuleviciene et al. measured low birth weight risk
in 3 regions with different formaldehyde concentrations, and crude RR increased with higher
ambient concentration of formaldehyde from 1.0 (reference group) to 1.02 (95% CI, 0.76-
1.38) to 1.68 (95% Cl, 1.24-2.27) for exposure groups of < 1.94 pg/m3, 1.94-3.5 pg/m3,
and > 3.5 ug/m3, respectively. In other studies, ORs were higher in the exposed groups than
in the unexposed controls, but a clear monotonic dose-response relationship was not seen
[15,30]. For example, in Taskinen et al., 1999, SAB ORs were 1.0, 2.4 (1.2-4.8), 1.8 (0.8
4.0), and 3.2 (1.2-8.3) in the unexposed (reference), low, medium and high exposure groups,
respectively. Overall, few studies exhibited clear dose-response relationships. However, the
wide confidence intervals for many of the ORs reported in these studies raises the possibility
that dose-response trends might not have been evident because of small sample sizes and
insufficient statistical power to assess risks in low to moderate exposure categories.

Confounding could be responsible for some of the elevated excess RR identified in the
meta-analyses. Many of the studies involved women who were exposed to agents other than
formaldehyde, which may be linked to reproductive or developmental effects, and these
other exposures were not adjusted or controlled for in most of the relative risk estimates we
used in this meta-analysis. For example, for the Saurel-Cubizolles et al. study, we calculated
a crude odds ratio between formol exposure and SAB of 1.68 (95% Cl, 1.01-2.82), since an
adjusted OR was not provided in the article. However, many of the operating room nurses
were also exposed to anesthetic gases and ionizing radiation, two other agents linked to SAB
risk in this study. In fact, the authors reported that 52% were simultaneously exposed to all
three (formol, anesthetic gases, and ionizing radiation). The fact that these two other agents
were fairly strongly related to both the exposure (formaldehyde) and outcome (SAB) of
interest raises the concern that they may have caused important confounding. Solvents (in
laboratory workers or wood workers), chemotherapy agents (in nurses), or other agents
might have caused confounding in other studies. As a whole, few studies provided
formaldehyde relative risk estimates that were adjusted for these other agents.
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Differential recall is another bias that could falsely elevate RRs if women with reproductive
outcomes have a greater tendency to recall past exposures than women without these
outcomes. The results of our subgroup analyses, where summary relative risks were lower in
studies which did not use self-reported information on formaldehyde exposure compared to
studies that did, provide evidence that this bias is a major concern in the overall meta-
analysis results.

The results of this meta-analysis are somewhat similar to those of a previous meta-analysis
by Collins et al., which reported a summary RR of 1.4 (95% CI 0.9-2.1) for 8 studies of
SAB. The differences between this meta-analysis and Collins et al. are shown in Table 4. As
seen, a major difference between our meta-analysis and that of Collins et al. is our use of the
1994 Saurel-Cubizolles et al. study [23], which was not used by Collins et al.. Another
major difference was that Collins et al. used data from the study of chemotherapy agents by
Stucker et al. and the study of paternal formaldehyde exposure by Lindbohm et al. in their
main analysis, whereas we did not. We could not determine the source of the RR of 1.0
(95% C1 0.5-2.0) used by Collins et al. for the Stucker et al. study. In addition, Stucker et
al. did not specifically report a relative risk in a formaldehyde exposed group or the raw data
to estimate it. Importantly, both our meta-analysis and that of Collins et al. found that the
summary relative risks were lower in the studies that did not rely on self-reported exposure
data compared to the summary relative risk in those studies that did.

In summary, the elevated RRs identified in this analysis, combined with the consistency
indicated by the positive findings (RRs >1.0) seen in the large majority of the individual
studies, all provide evidence that maternal formaldehyde exposure may be associated with
SAB and possibly other reproductive outcomes. However, recall bias and confounding
cannot be ruled out at this time and may have caused at least some of the elevated RRs seen
in this meta-analysis. Further research is needed to assess these biases and confirm the
findings presented here.

To date, there have been very limited human studies on the effects of formaldehyde and
reproductive/developmental toxicity. And because it is difficult to devise ethically
acceptable experiments to test formaldehyde’s reproductive toxicity in humans, animal
toxicity studies provide the next best models to study these effects.

4. Experimental Animal Studies

We examined the findings on reproductive and developmental toxicity associated with
formaldehyde exposure in experimental animal studies for comparison with the human
findings. As the most recent review of formaldehyde’s reproductive and developmental
toxicity was performed nearly a decade ago [10], our review focuses on more recent studies,
a majority of which find reproductive, developmental, and post-natal toxicity associated
with formaldehyde exposure. These studies, summarized in Table 5, have been performed in
a range of animal species via different exposure routes at various formaldehyde exposure
levels to test formaldehyde’s toxicity. The findings are organized by study type
(reproductive toxicity, developmental toxicity, ex vivo and in vitro), study animal, type of
exposure (inhalation, injection, oral).

4.1 Exposure Routes Relevant to Human

Though it has been argued that only inhalation exposure studies are relevant to humans [10],
all routes of human exposure, including inhalation, topical, oral and injection, require
consideration, given the increasing exposure via these routes. In the past, humans were
typically exposed to formaldehyde occupationally, particularly in professions involving
embalming, laboratory work, and plastic and wood manufacturing. In recent years, human
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exposure by environmental pollution or through off-gassing in buildings has become
increasingly more common [2]. In many cases, without knowing it, people are exposed to
furniture and fabrics contaminated with formaldehyde, and consumed foods, particularly
fruits, vegetables and seafood that have been illegally preserved with a diluted form of
formaldehyde called formalin, a widespread problem in China [2]. The widely used artificial
sweetener aspartame could be also a potential exposure source as it is metabolized to
formaldehyde, and accumulates in tissues, at least in rats, following oral exposure [46]. Even
in infancy, children are exposed by injection to formaldehyde present in polio and diphtheria
vaccines preparations as a result of the manufacturing process [47]. Several therapeutics
used to treat malignancy are formulated with formaldehyde which is required for drug
activation [48], or release formaldehyde [49]. Thus, the multiple routes of formaldehyde
exposure examined in the animal studies discussed below may be relevant and applicable to
humans.

4.2 Reproductive Toxicity

Animal studies have examined the effects of formaldehyde on adult animals and their
reproductive organs and systems. The major endpoints include reproductive organ
malformation or dysfunction, as well as other physical anomalies that hinder or prevent
successful mating and copulation. Reproductive studies have been conducted only on
mammalian and avian species, and are organized by animal type and exposure source.

4.2.1 Rats—In formaldehyde inhalation studies in rats, decreased or damaged seminiferous
tubules were consistently observed [50-52]. Reduced or damaged testicular tissues [52-53]
and decreased testosterone levels [51] were also reported. Among the adverse effects
observed in formaldehyde injection studies (all intraperitoneal) in male rats were: Leydig
cell impairment [54]; decreased testicular weight and levels of serum testosterone [54-55];
decline in sperm count [55], motility [55-56] and viability [56]; increased phenotypic sperm
abnormalities, lethal mutations and reduced number of successful matings [57]; and
decreased DNA and protein content in the male testis, prostate and epididymis [56]. The
only reproductive study to orally administer formaldehyde to male rats found sperm head
abnormalities in the exposed group compared to the control group [58].

4.2.2 Mice—Four inhalation studies were conducted in male mice, in which damage to
seminiferous tubules [59], decreased number of sperm [60-61], decreased sperm survival
rate [61], increased deformity rate [61-62] and increased micronuclei frequency in early
spermatids [60], were reported. In addition, male mice exposed through inhalation displayed
decreased levels of serum testosterone and lactate dehydrogenase (LDH) [62], glutathione
peroxidase (GSH-Px) [59], glucose-6-phosphate dehydrogenase (G-6PD) and succinate
dehydrogenase (SDH) [61-62]. Exposure of female mice by inhalation resulted in
hypoplasia of the uterus and ovaries after 13 weeks of exposure at 40 ppm [63].

In the mice studies, mostly male mice were exposed through intraperitoneal (i.p.),
intravenous (i.v.), intramuscular (i.m.) and intragastric (i.g.) injection, as detailed in Table 5.
One such study found a linear relationship between sperm head DNA alkylation and
administered dosages of formaldehyde by injection (i.p. and i.v.) in male CF-1 strain mice
[64]. Several studies reported decreased sperm counts and increased rates of deformed
sperm cells [60,65-67]. DNA-protein crosslinking (DPC) was observed in the testicular cells
of formaldehyde-injected males in two studies [68—69], and one of these studies also
reported DNA breakage [68—69]. The only injection study of female mice found irregular
estrous cycles, damaged and smaller oocytes and fewer mitochondria and fibrosis in
reproductive tissue [70]. In the only oral study of formaldehyde-exposed mice, there was a
small but non-significant increase in abnormal sperm cells in male mice [11].
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4.2.3 Other animals—Reproductive toxicity studies were conducted on three bird species.
During the avian flu epidemic in 2008-2009, a study was conducted to test the effectiveness
of formalin-based avian influenza inactivated vaccines. It was found that vaccine
preparations containing 0.81% formalin injected intramuscularly significantly reduced egg
production in hens, lowered estradiol and hemaglutination inhibition antibody levels and
caused a degenerative change in ovarian follicles and the uterus [71].

Male Japanese quails that were fed formalin showed depression, lower food consumption
and body weight, as well as decreased testes weight and seminiferous tubule diameter [72].
Lowered testes volume and seminiferous tubule diameter was also observed in cockerels to
which formalin was orally administered at higher doses [73].

4.3 Developmental Toxicity

Several animal studies have focused on the effects of formaldehyde on fetal development
and health. In these studies, pregnant animals or embryos were exposed to formaldehyde and
the developing fetuses were observed for anomalies. These studies are summarized in Table
5, and organized by animal type then exposure source and outcome.

4.3.1 Rats—In 2001, Thrasher and Kilburn found that exposure of pregnant rats to
formaldehyde concentrations between 0-1.5 mg/m?3 via inhalation resulted in damaged
blastomeres, increased rate of embryo degeneration, chromosome aberrations and
aneuploidy, involution of lymphoid tissues, and hypertrophy of Kupffer’s cells in the fetus
[74]. The most recent inhalation study found a decrease in placenta and corpus luteum size,
increased fetal abnormalities, and shorter than average limbs in the newborn pups [75]. In
contrast, an earlier study found that the corpus luteum, which produces important hormones
that maintain pregnancy, and fetal weights were unaffected [76]. Saillenfait et al. concluded
that formaldehyde may be slightly toxic to the fetus based on reduced fetal weight [77].

In their 2001 study, Thrasher and Kilburn also examined the effects of exposure through
injection and oral exposure. They found that pre- and post-implantation deaths increased
twofold following exposure by i.g. injection [74]. Results following prenatal oral exposure
were inconclusive, though physical deformities were observed in the rat pups of exposed
mothers [74].

4.3.2 Mice—To the best of our knowledge, no studies of developmental toxicity in mice
following formaldehyde exposure by inhalation were conducted.

Several studies examined developmental toxicity following injection. As well as examining
the effects of formaldehyde on rat fetal development described above, in the same study,
Thrasher et al. also injected the tail veins of pregnant adult mice with 0.05 ml of 1%
formalin containing 3.5 mg of 14C-labled formaldehyde. The animals were killed at intervals
from 5 min to 48 hrs, and radioactive formaldehyde incorporation was followed by frozen
section autoradiography and liquid scintillation detection. In the first 5 minutes, more rapid
uptake of radioactive formaldehyde was observed in uterus, placenta and fetal tissues,
compared with other maternal organs. Incorporation of the labeled isotope was found to be
greater in fetal brain than the maternal brain and elimination of formaldehyde from fetal
tissues was slower than in maternal tissues [74]. Formaldehyde elimination was also shown
to be slower in fetal tissue than in maternal tissue following maternal exposure by injection,
also in the tail vein, in another study [78]. A Chinese study injected (i.g.) pregnant mice with
various concentrations of formaldehyde and found evidence of DNA breakage and damage
and DPC, with more severe effects in the fetus than in the mother [79]. Pre- and post-
implantation deaths increased significantly with paternal exposure by intraperitoneal
injection [80-81]. In a study of 34 pregnant mice who were orally exposed to formaldehyde,
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22 died before analysis was performed; however, teratogenic effects were not observed in
the fetuses of the 12 survivors [82].

4.3.3 Other animals—Exposure of pregnant rabbits to 12 ppm formaldehyde by
inhalation throughout the gestation period, resulted in abnormalities in the newborns
including meromelia (lacking limbs, 6.8%), oligodactyly (missing fingers or toes, 4.1%),
encephalocele (cranium bifidum, 6.1%), and umbilical hernia (3.4%) [83]. In two chicken
studies, embryotoxicity was examined in whole eggs exposed to formaldehyde vapor.
Margas exposed eggs at an early stage of development, between the second and fourth days
of incubation, to formaldehyde vapor for 1 hr every 12 hours, between one and six times
[84]. Intact eggs, and eggs in which a small hole was drilled in the air chamber, were tested.
Although the intact eggs did not show any particular abnormalities after exposure to
formaldehyde vapors, the perforated eggs were affected at a rate of 29:100. These
embryotoxic effects were mainly early and late prenatal deaths, extensive and limited
congenital anomalies as well as reduction deformities. Hayretdag and Kolankaya applied
pre-incubation formaldehyde fumigation to 1-day old embryos at two different
concentrations for 20 or 40 minutes and examined the effects on tracheal epithelia [85].
Transmission electron microscopy revealed shortening and loss of cilia, vascuolisation and
swelling of mitochondria and spoiling of cristae. These effects were increased with exposure
duration.

A study of topically exposed pregnant hamsters did not find significant effects of
formaldehyde on fetal weight, length or malformation, possibly due to the confounding
effects of anesthetic administration [86].

4.3.4 Post-natal exposure and developmental toxicity—The studies discussed
above examined developmental toxicity associated with prenatal formaldehyde exposure.
Several studies examined the effects of postnatal formaldehyde exposure on development in
rats. The lungs of rat pups exposed to formaldehyde by inhalation for 30 days showed
decreased tissue superoxide dismutase (SOD) activity, copper and iron levels were
decreased, and increased zinc levels, suggestive of oxidative damage in lung tissue [87].
Increased heat shock protein 70kDa (hsp70) synthesis and damaged neurons were detected
in the hippocampus of rat pups after 30 day exposure by inhalation [88]. These effects had
diminished or disappeared by by 30-60 days after cessation of exposure, suggesting that the
changes were reversible. A study that observed behavioral responses of rat pups exposed to
1 or 2.5% formalin by subcutaneous injection, found specific and non-specific pain
responses in neonatal rats, which decreased in intensity and varied by type, with age [89].

4.5 Ex vivo and in vitro Animal Studies

Ex vivo studies, examining the effects of formaldehyde exposure on rat and mouse embryos
in culture, were conducted. Harris et al. exposed mouse whole-embryos (gestation day 10—
12) to formaldehyde in culture medium and found that formaldehyde had deleterious effects
on embryo growth and viability and produced a depletion of glutathione (GSH) in the
visceral yolk sac and embryo [90]. Neuropore closure, crown-rump length and somite
number were reduced by formaldehyde. Further, GSH depletion was shown to potentiate
formaldehyde toxicity. Hansen and colleagues exposed mouse and rat embryos in culture to
formaldehyde by direct addition to the culture medium and by microinjection [91]. They
observed a dose-dependent loss in viability and significant increases in incomplete axial
rotation and neural tube closure following both exposure routes in mice but microinjection
induced these effects at the lowest concentration range tested (0.003 — 0.5 pg). Ten to 15-
fold higher concentrations were required to elicit the same decrease in viability and increase
in incomplete axial rotation in exposed rat embryos. These findings show that the visceral
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yolk sac serves a general protective role against toxicity and inherent differences in the
embryonic metabolism of formaldehyde may determine species sensitivity.

In a study designed to develop an in vitro system for testing teratogenicity, blastocyst-stage
mice embryos were removed from the uteri and the inner cell mass was isolated and
cultivated. The cell cultures were then exposed to various chemicals and a cytotoxic range
was determined for each chemical. At 440 and 690 uM, 10% and 50%, respectively, of the
cells were affected, though the researchers concluded that formaldehyde was not a
teratogenic agent [92]. An in vitro study found that directly washing ram sperm with 0.005
% formaldehyde (in phosphate buffered saline) reversibly inhibited sperm motility, while at
0.04% the effect was irreversible [93].

4.6 Key Findings

After reviewing the literature on reproductive and developmental toxicity associated with
formaldehyde exposure in animals, a few observations are noteworthy. Unlike the human
studies, reproductive toxicity was examined more frequently than developmental toxicity in
animals, and within reproductive toxicity, there were more male than female exposure
studies. This skewing towards male studies may be because effects on male reproduction are
more readily observable and require fewer invasive procedures. Despite variability in study
design and size, choice of animal types, and exposure routes, levels and durations, overall,
the studies found associations between formaldehyde exposure and reproductive toxicity in
males. Regarding route of exposure, many studies examined the effects of exposure by
inhalation and injection but few examined the effects of oral exposure to formaldehyde. In
order to improve our current understanding of reproductive toxicity associated with
formaldehyde exposure in animals, studies assessing (1) female reproductive toxicity with
particular attention to organ and tissue function, and (2) multigenerational reproductive
toxicity due to formaldehyde exposure, are crucially needed.

Developmental toxicity studies are relatively easy to conduct and the physical endpoints are
easily detected. Overall, as shown in Table 5, the majority of the published reproductive and
developmental toxicity studies conducted in animals, as well as the ex vivo and in vitro
studies, found adverse outcomes associated with formaldehyde exposure. These findings
improve and enhance our current understanding of formaldehyde and its relationship with
reproductive and developmental toxicity. However, it is possible that studies with negative
findings were unreported.

5. Potential Mechanisms of Action

Despite the fact that formaldehyde exposure may cause reproductive and developmental
toxicity, as suggested by evidence from both human and experimental animal studies, our
current understanding of the likely mechanisms of action (MOA) is very limited. To date,
few human studies have been designed to investigate possible formaldehyde MOAs, though
hypotheses have been generated from limited preliminary results obtained in recent animal
studies. Currently, the mechanisms by which formaldehyde is proposed to induce
reproductive and developmental toxicity include genotoxicity, oxidative stress, disruption of
the activity of proteins, enzymes and hormones important for the maturation of the male
reproductive system, apoptosis and DNA methylation. It should be noted that most of the
proposed mechanisms are hypothetical and require validation, particularly in reproductive
systems.

5.1 Chromosomal Damage and DNA Lesions

Formaldehyde is genotoxic, inducing chromosomal aberrations (CAs), micronuclei (MN),
sister chromatid exchanges (SCEs), DNA breakage, and DNA-protein crosslinks (DPCs) in
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nasopharyngeal and buccal cells, and possibly in blood and bone marrow cells (though this
is controversial), following inhalation in humans and rodents [1,94]. Thus, it is plausible that
formaldehyde could cause similar chromosomal damage and DNA lesions at reproductive
sites. Indeed, Lindbohm (1991) hypothesized that the MOA for SAB was genetic damage to
germ cells following paternal exposure to chemicals [12]. Evidence of such genetic damage
has been reported and was briefly described above in the animal study section. When male
mice were exposed to formaldehyde (0.2, 2.0, 20.0 mg/kg by i.p. for 5 days), increased
frequencies of MN and SCEs was observed in early spermatogenic cells [95]. A Dutch in
vitro study showed that when Chinese hamster ovary cells were treated with varying
concentrations of formaldehyde for 2 hrs, frequencies of CAs and SCEs increased with
increasing dose. All types of CAs (gaps, breaks, exchanges) were induced by formaldehyde,
and, since all of the aberrations were chromatid-type, an S-dependent mode of action was
indicated [96].

The induction of DPCs by formaldehyde is well known to occur in many cell types,
including reproductive tissues and cells. Peng and colleagues detected DPCs in the testicular
cells of Kunming mice (at 20.0 mg/kg by abdominal injection) between 6 and 18 hrs after
exposure, suggesting that formaldehyde may be responsible for reproductive damage in
these male mice [68]. After 24 hr the DPC levels were similar to those of un-exposed mice,
indicating activation of a DPC repair process between 18 hr and 24 hr treatment. The
biochemical pathways underlying DPC repair were largely uncharacterized until a recent
study demonstrated, using a yeast gene deletion screening system, a differential pathway
response to chronic versus acute formaldehyde exposure involving homologous
recombination (chronic exposure) and nucleotide-excision repair (acute exposure) [97].
Wang and colleagues detected DNA strand breakage by comet assay (also called single cell
gel electrophoresis) in testicular cells isolated from male Kunming mice that had been
exposed to formaldehyde (10-50 umol/L) in vitro, and observed both DNA breaks and
DPCs in cells exposed to a higher formaldehyde concentration (75 umol/L) [69]. Using the
same assay to analyze the liver cells of the newborns of formaldehyde-treated pregnant
female mice, DNA strand breaks and DPCs were detected at formaldehyde concentrations
over 1.0 and 2.0 mg/kg, respectively, while most fetal liver DNA formed DPCs at the
highest exposure level of 20.0 mg/kg [79]. However, both DNA breaks and DPCs reported
in the last two studies [69, 79] were measured by the same comet assay, which could
technically affect the accuracy of DPCs.

5.2 Oxidative Stress

Although formaldehyde is known to cause genotoxicity (DNA and chromosomal damage)
and cytotoxicity (cell death or apoptosis), the mechanism is unclear. Limited evidence
shows that oxidative DNA damage by reactive oxygen species (ROS) could play an
important role. It is well known that excessive ROS production can cause developmental
toxicity through oxidative damage to key cellular components such as DNA, proteins and
lipids.

Formaldehyde was shown to synergize with a water-soluble radical initiator, 2,2'-azobis-[2-
(2-imidazolin-2-yl)propane] dihydrochloride to increase cellular ROS and cell death via
necrosis in Jurkat cells [98]. ROS-mediated oxidative damage resulting from formaldehyde
exposure has been detected in distal cells and tissues, including reproductive tissues.
Rodents exposed to formaldehyde by inhalation exhibited lipid peroxidation in liver [99]
and brain [100]. Malondialehyde (MDA), a lipid peroxidation product commonly used as a
biomarker of oxidative damage [101], was significantly increased in the testicular tissues of
male mice treated with formaldehyde at 20 mg/kg [95]. Formaldehyde may exert these
oxidative stress effects in reproductive tissues indirectly, mediated by an inflammatory
response to lung damage upon inhalation. Male Wistar rats exposed to formaldehyde by
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inhalation for 30 — 90 minutes per day for 4 days exhibited local and systemic inflammatory
responses (increased leukocytes) [102]. The authors proposed that formaldehyde exposure
may affect lung resident cells, including macrophages and mast cells that could mediate the
lung inflammatory response and the systemic release of inflammatory mediators. The
inflammatory mediators may trigger systemic immune responses.

Both the induction and suppression of antioxidant enzymes by formaldehyde has been
demonstrated in male reproductive tissues. These enzymes, including glutathione peroxidase
(GSH-Px), SOD, CAT, and GSH, protect cells against oxidative damage and a change in
their activity levels may indicate the level of oxidative damage in target tissues and/or cells.
Zeng et al. found that GSH-Px levels and GSH levels were lowered in formaldehyde
exposed testicular tissue in mice, while SOD and CAT levels were significantly elevated
[59]. A more recent study found significantly reduced levels of SOD and GSH-Px and
higher amounts of MDA in the testicular tissue of male Wistar rats [101]. These studies
show that formaldehyde induces the antioxidant defense mechanism in rodent testicular
tissue and may impair its effects. Reduced amounts of the trace metals, copper and zinc,
cofactors of SOD, in the testicles of male mice [95], could contribute to the reduced SOD
activity. Activity of testicular G-6PD, an enzyme that protects red blood cells and tissues
against oxidative damage, was decreased in male dosed with formaldehyde (21, 42, and 84
mg/m3) by static inhalation for 5 days [62].

5.3 Other Possible MOAs

5.3.1 Dehydrogenases—Additional enzyme activities and protein levels and or functions
have been shown to be impacted by formaldehyde exposure in reproductive tissues/cells and
may contribute to reproductive toxicity. Lactate dehydrogenase (LDH) and succinate
dehydrogenase (SDH) are involved in the maturation of spermatogenic cells, testis and
spermatozoa and with the energy metabolism of spermatozoa. In a Chinese study of
Kunming mice, SDH activity was measured by UV spectrophometry in testicular tissue after
exposure to formaldehyde [65]. After 6 days, SDH activity decreased with increasing
formaldehyde levels (0.2, 2, 20 mg/kg injected into the stomach, once a day, for 5 days) and
was positively correlated with sperm cell counts, and negatively correlated with the
abnormal rate of sperm heads. Thus, SDH activity is a potential biomarker of damage to
testicular damage. Decreased SDH activity was also observed at all formaldehyde
concentrations in a study with a similar exposure regimen in male mice, and was proposed
to be a biomarker of effect, appearing after other observed toxic effects on germ cells [95].
Both SDH and LDH activities were decreased in male mice dosed with formaldehyde (21,
42, and 84 mg/m?3) by static inhalation for 5 days, compared with controls [62].
Additionally, one human study showed that a single nucleotide polymorphism (SNP) in the
gene encoding aldehyde dehydrogenase 2 (ALDHZ2), 504 glu/glu, was associated with
enhanced formaldehyde metabolism as evident by increased levels of formic acid in urine
[103].

5.3.2 Heat shock proteins—Increased synthesis of heat shock protein 70 (Hsp70), a
molecular chaperone involved in protein folding and repair that is rapidly induced in
response to damage resulting from physical or chemical stress [104], was detected
immunohistochemically in spermatogenic cells from the seminiferous tubules of male
Wistar rats after subchronic periods of exposure to formaldehyde (13 weeks) at cytotoxic
doses [51]. While spermatogenic cells of the testicular tissue normally synthesize Hsp70
during prophase of meiosis | [105] that can be detected by immunoreaction [106], its
increased synthesis suggests that formaldehyde induces chemical stress and subsequent
protein damage in these cells. Heat shock proteins regulate apoptosis [107], a possible fate
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of stressed cells and another potential mechanism underlying formaldehyde-induced adult
male reproductive toxicity.

5.3.3 Apoptosis—Apoptosis rate (measured by TUNEL assay) and expression of the Fas
gene (measured by histochemistry) were increased and were significantly correlated (r =
0.8832, p < 0.05), in the testicular tissue of rats exposed (by daily i.p. injection continuously
for 14 days) to 1.0 and 10.0 mg/kg/day formaldehyde. Morphological abnormalities of the
testes and an increased number of abnormal sperm were also observed in the exposed rats
[55]. The mechanisms determining the stress response of testicular cells and tissues and the
balance between repair and apoptosis/necrosis requires further clarification.

5.3.4 Epigenetic alterations—Formaldehyde-induced male reproductive toxicity could
also be mediated through aberrant DNA methylation. Abnormal DNA methylation of a key
spermatogenesis gene has been associated with male gametogenic defects [108] and
chemical exposures, e.g. acrylamide, may disrupt genomic imprinting in mitotic
spermatogonia and primary spermatocytes [109]. As a reactive methyl donor known to enter
the one-carbon metabolism (methyl) pool and interact with enzymes in the associated
pathway [110-111], formaldehyde could potentially alter DNA methylation. Additionally,
oxidative stress-related damage to sperm DNA impedes the process of methylation [112],
representing an indirect mechanism by which formaldehyde could influence DNA
methylation in sperm DNA though more epigenetic studies are warranted.

5.3.5 Sex hormones—A few studies showed that serum testosterone levels were
decreased in male mice [62] and rats [51], subjected to formaldehyde exposure by inhalation
and in male rats exposed by injection [54-55], representing another possible mechanism
through which formaldehyde could disrupt male reproductive function.

5.3.6 Hypothalamus—pituitary—adrenal gland axis—It is possible that formaldehyde
may exert adverse effects on the reproductive system without reaching it, through a stress-
induced mechanism. The multiple adverse health effects associated with chronic
formaldehyde exposure in humans [2] potentially indicates systemic stress and such
environmentally mediated systemic stress can negatively impact the reproductive system, as
previously reviewed [113]. Experimental data in animals and humans suggests that chronic
or severe stress leads to anovulation and amenorrhea in women [114] and to decrease in
sperm count, motility, and morphology in men [115]. Stress-induced reproductive toxicity
could be mediated by effects on the endocrine or other regulatory systems.

The hypothalamus—pituitary—adrenal (HPA) gland axis responds to stress such as chemical
exposures by increasing the secretion of corticotropin releasing hormone (CRH) in the
hypothalamus, adrenocorticotropin hormone (ACTH) in the anterior pituitary gland, and
adrenal corticosteroids in the adrenal gland. Altered hypothalamic-pituitary-adrenal (HPA)
axis functioning was shown to occur after repeated low-level formol exposure in a rat model
of multiple chemical sensitivity [116]. Similarly, prolonged exposure to low levels of
formaldehyde in female C3H/He mice a led to a dose-dependent increase in the number of
corticotropin releasing hormone (CRH)-immunoreactive (ir) neurons in the hypothalamus
and in the adrenocorticotropin hormone (ACTH)-ir cells and ACTH mRNA in the pituitary
[117]. Mice with allergies responded to lower levels of formaldehyde.

In the formalin test, injection of formalin into the rat paw induces a characteristic bi-phasal
finching response to the induced persistent and inflammatory pain. Sex differences in
response to the formalin test were noted and were initially attributed to estradiol effects
[118]. Later, estrogen replacement in ovariectomized female rats was found to exert an
antihyperalgesic effect on the inflammatory pain response to formalin injection, at least in
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part, by restoring the maximum serum corticotrophin response to the stress [119]. In male
rats, both male gonadal hormones and estrogen were shown to play a role in formalin-pain
responses [120]. These experiments demonstrate that the corcitotrophin response to formalin
injection, is modulated by reproductive hormones, and provide additional evidence that
formaldehyde perturbs the closely related endocrine and reproductive systems.

5.4 Comparison with Other Reproductive Toxicants

The potential mechanisms by which formaldehyde causes reproductive and developmental
toxicity may share similarities with those proposed for other suspected/known reproductive
toxicants recognized by California’s Proposition 65 (ethanol, benzene, primary and
environmental tobacco smoke) [121] or by the National Toxicology Program’s (NTP)
Center for the Evaluation of Risks to Human Reproduction (Butyl Benzyl Phthalate (BBP)
[122], Di-n-Butyl Phthalate (DBP) [123], Di-n-Hexyl Phthalate (DnHP) [124], and Di-
Isodecyl Phthalate (DIDP) [125]).

The ingestion of ethanol, of which the aldehyde, acetaldehyde, is a major metabolite
produced in the liver, can result in abnormal fetal development, including teratogenic
defects, and fetal alcohol syndrome, in humans and experimental animal models. These
effects are mediated in part by the induction of oxidative stress [126]. There is little data on
reproductive or developmental toxicity associated with other aldehydes.

Benzene has been shown to cause human and animal reproductive toxicity [127-128].
Chromosome abnormalities, specifically aneuploidies (numerical chromosomal changes),
were detected in the sperm of male workers occupationally exposed to benzene levels above
[129-132] and below [133] 1 ppm, the current U.S. Permissible Exposure Limit for benzene
(8 hr time-weighted average) set by OSHA. As with formaldehyde, benzene exerts some of
its adverse reproductive effects through the generation of ROS and oxidative stress. In one
study, benzene metabolites were shown to induce DNA double strand breaks as well as
increased homologous recombination via ROS in Chinese hamster ovary cells [134]. Using a
CD-1 mouse model, Badham and colleagues showed increased oxidative stress in fetal tissue
from embryos exposed to benzene in utero by measuring the ratios of reduced to oxidized
glutathione, and increased levels of ROS in male fetuses using flow cytometry and a ROS-
sensitive fluorescent probe [135].

Both benzene and formaldehyde are constituents of cigarette smoke, exposure to which is
associated with increased risk of infertility [136] and delayed conception [137] in women,
lowered semen quality in men [138] and a number of adverse obstetrical outcomes including
SAB [139], preterm birth [140] and low birth weight [141]. At a recent Environmental
Mutagen Society annual conference in Fort Worth, TX (2010), scientists presented new
evidence supporting smoking as a male and female germ cell mutagen in humans [142-143].

The oxidative metabolism of trichloroethylene has been associated with epididymal
damage and aberrant sperm production in mice following systemic toxicity [144]. Phthalate
esters induce male fetal endocrine toxicity and postnatal reproductive malformations in
several animal models, by disrupting androgen production and testosterone synthesis during
the sexual differentiation period of development in utero [145-146], with different potencies
reported among different phthalate compounds [147]. Data in humans is limited but possible
associations between phthalate exposure and disturbance of normal sperm function, such as
fewer motile sperm, low sperm concentration and motility, sperm malformations, and
increased DNA damage have been reported, as reviewed [146]. Lower plasma testosterone
levels were also observed in workers occupationally exposed to phthalates [148].
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While several potential mechanisms of formaldehyde reproductive toxicity exist and overlap
with mechanisms proposed for other known or suspected reproductive toxicants, the lack of
an accepted mechanism should not detract from the strength of any empirical evidence
supporting a link between formaldehyde exposure and reproductive and developmental
toxicity.

6. Current Research Gaps and Future Directions

Gaps in the data on formaldehyde exposure and reproductive/developmental toxicity require
further research. As described above, only 18 studies have evaluated these effects in
humans, and the majority has focused on developmental outcomes in females (Table 1).
These predominantly retrospective epidemiological studies were potentially limited by recall
and selection biases and inadequate exposure assessment. None of the studies offer a
plausible biological mechanism by which reproductive and developmental toxicity occurs.
Additionally, molecular epidemiological studies investigating male reproductive (sperm
study) toxicity are lacking.

Therefore, new molecular epidemiological studies are required that are designed to
investigate developmental and reproductive toxicity in both males and females. These
studies should be designed to minimize recall and selection bias, incorporate exposure
assessment including biomarkers of internal dose and exclusion of confounding exposures,
and include the collection of biospecimens (serum, sperm, etc.) to allow for the
simultaneous investigation of multiple mechanisms. For example, formaldehyde can bind
covalently to protein to form crosslinks, or with human serum albumin [149] or the N-
terminal valine of hemoglobin [150] to form molecular adducts, potential biomarkers of
formaldehyde exposure. Sperm aneuploidy could be analyzed by fluorescent in situ
hybridization and assessed as a biomarker of male reproductive toxicity. Well-designed
molecular epidemiological studies could also be leveraged to identify biomarkers of
susceptibility such as SNPs and DNA repeat sequences associated with developmental and
reproductive outcomes. The identification of such alleles could also inform mechanism.

There is a need for both animal and human studies examining the effect of formaldehyde
exposure on reproductive and developmental toxicity in the current generation as well as in
subsequent generations (transgenerational effects). Most of the current mechanistic data
comes from animal studies and it is not clear how relevant these findings are to human
outcomes. Further, the animal studies vary in study design, route and duration of exposure,
number of animals studied and length of follow-up time, all of which could influence
outcome.

Another key issue requiring further study is how formaldehyde reaches the reproductive or
closely related endocrine systems. As formaldehyde is reactive and is usually rapidly
metabolized by reduction, oxidation and reduced glutathione-dependent pathways,
determination of how it reaches distal sites is important. A single study showed that
formaldehyde and its metabolites, in 14C-labeled form, could cross the placenta and become
concentrated in fetal brain and liver of mouse from where they are eliminated more slowly
than from maternal tissue [74]. This study requires replication in the mouse as well as in
other species.

Alternatively, formaldehyde could adversely impact the reproductive system without
reaching it through stress-induced effects on the HPA gland axis, endocrine or other
regulatory systems. This hypothesis requires further investigation. As discussed above,
effects on the HPA gland axis which were demonstrated in mice following exposure to
formaldehyde should be examined in exposed people. Similarly, systemic effects of
formaldehyde on the endocrine system should be examined.
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Finally, if the association between formaldehyde exposure and reproductive/developmental
toxicity is strengthened, regulation in the workplace and the environment should be adjusted

accordingly in the interest of public health.

7. Conclusion

In this review, we comprehensively summarize human and animal studies of reproductive
and developmental toxicity associated with formaldehyde, from the literature. From our
meta-analysis, which includes data from recent epidemiological studies, our calculated
relative risk remains similar to that of Collins et al. [10]; however, the more precise
confidence intervals presented here indicate a consistently increased risk for both SAB and
all combined pregnancy outcomes. Empirical evidence from animal studies also shows a
strong association between both reproductive and developmental toxicity and formaldehyde
exposure, at multiple doses and routes of exposures, in various species. While gaps in our
understanding of the reproductive toxicity of formaldehyde need to be addressed by further
epidemiological studies, animal studies and mechanistic studies, we conclude that human
reproductive and developmental toxicities resulting from formaldehyde exposure could
potentially be a threat to human health, particularly given its widespread exposure in the
general population including its most susceptible members, women of child-bearing age and
young children.
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MDA Malondialehyde
MN Micronuclei
MOA Mechanism of Action
NIOSH National Institute for Occupational Safety and Health
NTP National Toxicology Program
OR Odds Ratio
OSHA Occupational Safety and Health Administration
ppm parts per million
RoC Report on Cancer
ROS Reactive Oxygen Species
RR Relative Risk
SAB Spontaneous Abortion
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SDH Succinate Dehydrogenase
SE Standard Error
SOD Superoxide dismutase
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Figure 1. Flow diagram of study selection process
This figure depicts the logic of the study selection process, the results of which are included

for review in this paper.
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Figure 2. Forest plot for studies of spontaneous abortion (SAB) and all reproductive outcomes
combined

These Forest plots show that ORs equal to or above 1.01 were found in (A) 5 of the 7 (71%)
studies in the SAB analysis, and (B) 9 of the 12 (75%) studies in the all outcomes analysis.
Most of the confidence intervals in the all outcomes analysis were well above 1, indicating
higher significance. *ORs in (A) were calculated from SAB dat a reported in Axelsson et al.
(1984), Hemminki et al. (1982), and Saurel-Cubizzoles et al. (1994), and recalculated from
the data provided in Hemminki et al. (1985) as described in the footnote to Table 1. ORs in
(B) were calculated from data on congenital malformations reported in Ericson et al. (1984),
and from data on SAB and congenital malformations combined in Hemminki et al. (1985) as
these outcomes were based on separate controls.
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Figure 3a
Funnel plot with pseudo 95% confidence limits
S N
7N
/ \
7/ N\
7 \
’ \
/ N
a4 ’ \
/ \
7 ° \
’ \
’ \
/ AN
°
’ \
- ’ \
/ \
bl N
°
/ \
’ ® \
// \\
i °
he y N
7 \
/ ° \
Oq -
I T T T
-1 0 1 2
logor
Figure 3b
Funnel plot with pseudo 95% confidence limits
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Figure 3. Funnel plot of studies of spontaneous abortion (SAB) and all reproductive outcomes
combined

Publication bias is not apparent in the analysis of (A) SAB and (B) all outcomes.
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