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Abstract

The discovery of regulatory T cells almost 15 years ago initiated a new and exciting research area. The

growing evidence for a critical role of these cells in controlling autoimmune responses has raised expect-

ations for therapeutic application of regulatory T cells in patients with autoimmune arthritis. Here, we

review recent studies investigating the presence, phenotype and function of these cells in patients with

RA and juvenile idiopathic arthritis (JIA) and consider their therapeutic potential. Both direct and indirect

methods to target these cells will be discussed. Arguably, a therapeutic approach that combines multiple

regulatory T-cell-enhancing strategies could be most successful for clinical application.
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Introduction

RA and juvenile idiopathic arthritis (JIA) are autoimmune

diseases characterized by destructive joint inflammation.

In the chronic phase of the diseases, a non-remitting

activation of cells and expression of soluble mediators

of especially the innate immune system dominates the

inflammatory process. The resulting synovial inflammation

is characterized by non-specific infiltration of both

lymphocytes and innate immune cells, such as synovio-

cytes, macrophages and neutrophils. The importance of

this innate immune activation in chronic arthritis is under-

scored by the success of interventions with biologicals

that target non-specific effector mediators such as

TNF-a. In contrast, interventions directed against CD4+

T cells have been disappointing. This has led to the as-

sumption that T cells are of less importance in the chronic

phase of RA and JIA [1].

Data obtained over the last years, however, have shed

new light on the role of T cells in regulation of the inflam-

matory response. This line of research started almost

15 years ago with the discovery of so-called regulatory

T cells (Treg) [2]. This exciting discovery raised expect-

ations for novel ways of treating arthritis by targeting

these Treg. Their presence and function in RA and JIA,

and the questions still surrounding their potential thera-

peutic application will be discussed in this review.

Treg

Treg are capable of suppressing effector cell proliferation

and cytokine production, and play an important role in

immune homeostasis. Several subtypes of CD4+ Treg

have been identified that can be either naturally occurring,

derived from the thymus or induced in the periphery.

These subtypes of Treg are depicted in Table 1 together

with their supposed mechanism of action. Natural Treg

constitutively express the IL-2 receptor (CD25) and re-

quire IL-2 for their survival and function [2, 3]. These

cells are further characterized by the transcription factor

FOXP3, which controls the development and suppressive

function of the cells [4–6]. CD25+FOXP3+ Treg can sup-

press via multiple mechanisms, probably depending on

the context in vivo [7]. These cells are critical in preventing

autoimmune disease in animal models [3], which is con-

firmed in humans by the fact that patients with mutations

in the FOXP3 gene suffer from immunodysregulation,

polyendocrinopathy, enteropathy, X-linked syndrome

(IPEX), characterized by autoimmune disease in multiple

organs [8, 9]. More recently, it has been established in

both mice and humans that Treg can also be induced in
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the periphery upon antigen encounter. These cells can be

not only FOXP3+ [10–13], but also FOXP3�, such as

T regulatory 1 (Tr1) cells that depend on IL-10 for their

development and function [14, 15] and T helper 3 (Th3)

cells, producing TGF-b [16]. CD25+FOXP3+ Treg are

highly important in the control of autoimmune arthritis

both in experimental models [17–19] and in human disease

[20]. Therefore, we will further refer to this specific

CD25+FOXP3+ subset by the term Treg and we will discuss

the potential of these cells as a target for immune interven-

tion in arthritis.

Presence, phenotype and function of
Treg in arthritis patients

Given the convincing evidence that Treg play a critical role

in preventing experimental autoimmune arthritis, numer-

ous groups have studied the presence, phenotype and

function of Treg in patients with RA and JIA (summarized

in Table 2) [20–28]. When analysing these data, it should

be kept in mind that several studies were performed

before FOXP3 was identified as a marker for Treg. In

these studies, Treg were identified based on (high) CD25

expression, which is a less definitive marker for Treg com-

pared with FOXP3. In addition, FOXP3 can also be

up-regulated in effector cells during activation [29] and

this makes it difficult to distinguish Treg from activated

effector T cells in patients with ongoing autoimmune

inflammation.

Nevertheless, the majority of studies suggest that

Treg numbers in the periphery are not reduced in arthritis

patients compared with healthy controls [22, 23, 26, 28].

Instead, Treg are enriched at the site of inflammation,

since increased levels of these cells are found in the SF

compared with peripheral blood [20, 21, 24–26, 28]. These

SF-derived Treg show enhanced expression of FOXP3

mRNA, cytotoxic T lymphocyte antigen 4 (CTLA-4), gluco-

corticoid-induced tumor necrosis factor receptor (GITR),

HLA-DR, CD69 and OX40 [20, 25, 26, 28] and are more

efficient in inhibiting effector cell activation [20, 25, 26].

In contrast, reduced suppressive function has been re-

ported for peripheral blood-derived Treg from RA patients

in some [22, 23, 27], but not all studies [24, 26]. Thus,

there is still conflicting evidence on the suppressive func-

tion of Treg in arthritis, which can result from the different

test systems used to analyse the suppressive function of

the cells.

For obvious technical reasons, all the above

studies investigated Treg-mediated suppression in vitro.

However, in vivo the local pro-inflammatory environment

can interfere with the suppressive function of the cells.

High levels of pro-inflammatory cytokines are present in

the inflamed synovium of RA and JIA patients, including

IL-6, IL-7, IL-15 and TNF-a [30–32]. In addition, human

CD25hi cells express the TNF receptor, TNF receptor II

(TNFRII) and expression of this receptor is up-regulated

on cells from RA patients [27]. As a result, TNF-a can act

directly on Treg and, in line with this, it was shown

that pre-incubation of Treg with TNF-a reduces FOXP3

expression and abrogates suppression [27]. Other

pro-inflammatory cytokines, IL-6, IL-7 and IL-15, can

also interfere with Treg function [25, 33, 34], or even

worse facilitate the conversion of Treg into IL-17 produ-

cing effector cells [35–37]. Finally, monocytes and dendrit-

ic cells from the site of inflammation express elevated

levels of CD80, CD86 and CD40 [34, 38] and this

enhanced expression of co-stimulatory molecules might

also interfere with Treg-mediated suppression [34]. Thus,

though Treg function in patients with RA and JIA is still

incompletely understood, data from both animal models

and human disease indicate that Treg play an important

role in controlling autoimmune arthritis. As such, these

cells form a promising treatment option for arthritis

patients. Here, we will discuss several strategies to

target these cells, both directly and indirectly.

Direct approaches to enhance Treg
function

There are several methods available to directly target Treg

for the treatment of autoimmune disease. These include

expansion and induction of Treg in vitro followed by rein-

fusion into the patient, or in vivo by immunomodulatory

compounds.

Ex vivo expansion of Treg

Treg can be isolated and expanded ex vivo by anti-CD3/

anti-CD28 stimulation in the presence of IL-2 [39, 40]. With

this protocol up to 3000-fold expansion can be reached

without loss of suppressive function. Moreover, the cells

have a higher inhibitory potential compared with directly

isolated Treg, even in co-cultures with pre-activated

effector cells [39]. Therefore, expanded Treg could have

enhanced suppressive capacity in ongoing immune

TABLE 1 Subtypes of CD4+ Treg and supposed mechanism of action

Term Markers Origin Mechanism of action

Natural Treg CD25 FOXP3 Thymus Cell–cell contact and suppressive cytokines

CTLA-4 GITR

Adaptive Treg CD25 FOXP3 Induced in the periphery Cell–cell contact and suppressive cytokines
CTLA-4 GITR

Tr1 – Induced in the periphery IL-10 production

Th3 – Induced in the periphery TGF-b production

www.rheumatology.oxfordjournals.org 1633

Treating arthritis by immunomodulation



responses in vivo and be useful in the treatment of auto-

immune disease. In favour of this argument, it has been

shown that in vitro expanded Treg survive upon transfer

in vivo and reverse pathology in new-onset diabetic mice

[41]. Similarly, in experimental lupus, adoptive transfer of

expanded Treg delayed the progression to severe renal

disease, resulting in prolonged survival [42].

However, a potential hazard with expanding Treg for

therapeutic purposes is the outgrowth of contaminating

effector cells, since it is difficult to distinguish Treg from

activated effector cells. This risk can be reduced by

adding rapamycin to expansion cultures, which selectively

allows for regulatory T-cell proliferation and survival, while

depleting effector cells [43, 44]. Still, expanded Treg can

also convert into effector cells themselves. Using the

same protocol as described before, Hoffmann et al. [39],

discovered that, although FOXP3 purity at the start of

culture was almost 100%, subpopulations of Treg lost

FOXP3 expression and suppressive capacity. Further-

more, these cells started to produce effector cytokines,

such as IL-2 and IFN-g. Only cells that co-expressed

CCR7 and CD62L after expansion showed a stable Treg

phenotype and these cells could be generated by select-

ing the CD45RA+CD4+CD25high subpopulation for Treg

expansion [45]. In addition, Tran et al. [46] identified

latency-associated peptide and IL-1 receptor type I/II

(CD121a/CD121b) as markers to purify stable Treg after

expansion in vitro. However, under certain circumstances,

FOXP3+ Treg can also convert into effector cells, after

transfer in vivo [47]. This could pose a risk for worsening,

instead of dampening inflammation, especially in autoim-

mune disease [48]. Therefore, the stability of ex vivo

expanded Treg should be further investigated and

conditions reinforcing this stability need to be thoroughly

determined. In addition, expansion of antigen-specific

Treg can enhance efficacy [41] and reduce general

immune suppression and this approach should, therefore,

be explored in humans as well. Altogether, standardized

protocols have to be developed to allow for reliable ex-

pansion of Treg with compliance to the Good Manufactur-

ing Practices approved by the US Food and Drug

Administration. Only then will clinical application in a

large cohort of patients become feasible.

In vitro induction of Treg

In addition to expansion of already existing Treg, Treg can

also be induced in vitro from non-Treg. This method cir-

cumvents the difficulty of obtaining high numbers of nat-

ural Treg required for expansion. Treg induction works well

in mice in which CD4+CD25� cells activated in the pres-

ence of TGF-b develop into FOXP3-expressing cells with

suppressive capacity that is maintained after transfer

in vivo [11]. However, TCR stimulation of human

CD4+CD25� cells can also result in transient expression

of FOXP3 [49]. Furthermore, activation-induced expres-

sion of FOXP3 in humans does not confirm a regulatory

phenotype and can even coincide with IL-2 and IFN-g pro-

duction [50]. Therefore, in vitro induction of Treg is far more

complicated in humans compared with mice and it stillT
A

B
L

E
2

P
re

s
e
n
c
e
,

p
h
e
n
o

ty
p

e
a
n
d

fu
n
c
ti
o

n
o

f
T

re
g

in
a
rt

h
ri
ti
s

D
is

e
a

s
e

M
a

rk
e

rs
u

s
e

d
to

id
e

n
ti

fy
T

re
g

P
e

ri
p

h
e

ra
l

b
lo

o
d

S
F

R
e

fe
re

n
c

e
P

re
s
e

n
c

e
P

h
e

n
o

ty
p

e
F

u
n

c
ti

o
n

P
re

s
e

n
c

e
P

h
e

n
o

ty
p

e
F

u
n

c
ti

o
n

J
IA

C
D

4
+
C

D
2
5

h
ig

h

E

F
O

X
P

3
m

R
N

A
=

N
A

E!
F

O
X

P
3

m
R

N
A

E!
H

L
A

-D
R

M
F

I,
C

T
L
A

-4
M

F
I,

G
IT

R
M

F
I

C
D

6
9
+
!

!
[2

0
]

J
IA

C
D

4
+
C

D
2
5

+
a

C
D

4
+
C

D
2
5

+
C

D
2
7

+
b

N
A

N
A

N
A

!
F

O
X

P
3

m
R

N
A
!

!
[2

5
]

R
A

C
D

4
+
C

D
2
5

h
ig

h
N

A
N

A
N

A
!

N
A

–
[2

1
]

R
A

C
D

4
+
C

D
2
5

h
ig

h
=

N
A

E

N
A

N
A

N
A

[2
2
]

R
A

C
D

4
+
F

O
X

P
3

h
ig

h
a

C
D

4
+
C

D
2
5

+
C

D
1
2
7

lo
w

b
=

C
T

L
A

-4
M

F
IE

E

N
A

N
A

N
A

[2
3
]

R
A

C
D

4
+
C

D
2
5

h
ig

h
E

a
rl
y

a
c
ti
v
e

R
A

E

s
ta

b
le

R
A

=
N

A
=

!
N

A
N

A
[2

4
]

R
A

C
D

4
+
C

D
2
5

+

E

C
D

6
9
+

H
L
A

-D
R

+
O

X
4
0
+

G
IT

R
+

=
C

T
L
A

-4
M

F
I

=

E!
C

D
6
9
+

H
L
A

-D
R

+
,

O
X

4
0
+

G
IT

R
+

,
C

T
L
A

-4
M

F
I!

!
[2

6
]

R
A

C
D

4
+
C

D
2
5

h
ig

h
N

A
F

O
X

P
3

m
R

N
A

E

T
N

F
R

II
+

G
IT

R
+

E

C
D

6
9
+

=

E

N
A

N
A

N
A

[2
7
]

R
A

C
D

4
+
C

D
2
5

+
=

N
A

N
A

!
C

T
L
A

-4
+

G
IT

R
+

,
O

X
4
0
+

C
D

6
9
+

E!
–

[2
8
]

a
U

s
e
d

fo
r

p
h
e
n
o

ty
p

in
g

.
b
U

s
e
d

fo
r

fu
n
c
ti
o

n
a
l
a
s
s
a
y
s
.

c
S

u
p

p
re

s
s
iv

e
,

b
u
t

fu
n
c
ti
o

n
a
lit

y
n
o

t
c
o

m
p

a
re

d
w

it
h

p
e
ri
p

h
e
ra

l
b

lo
o

d
.

=
:

n
o

t
c
h
a
n
g

e
d

;

E:
in

c
re

a
s
e
d

;

E

:
d

e
c
re

a
s
e
d

,c
o

m
p

a
re

d
w

it
h

p
e
ri
p

h
e
ra

l
b

lo
o

d
o

f
h
e
a
lt
h
y

c
o

n
tr

o
ls

;
!

:
in

c
re

a
s
e
d

c
o

m
p

a
re

d
w

it
h

p
a
ir
e
d

p
e
ri
p

h
e
ra

l
b

lo
o

d
o

f
p

a
ti
e
n
ts

;
N

A
:

n
o

t
a
n
a
ly

s
e
d

;
M

F
I:

M
e
a
n

F
lu

o
re

s
c
e
n
c
e

In
d

e
x
;

+
:p

e
rc

e
n
ta

g
e

o
f

p
o

s
it
iv

e
c
e
lls

.

1634 www.rheumatology.oxfordjournals.org

Ellen J. Wehrens et al.



needs to be established which culture conditions reinforce

stable FOXP3 expression and suppressive function.

In vivo expansion and induction of Treg with
immunomodulatory compounds

Next to expanding and inducing Treg in vitro, several

immunoactive agents can be used to enhance Treg

function in vivo. The most extensively studied Treg-

enhancing agents will be discussed in this section and

are summarized in Table 3.

Anti-CD3 antibodies. The immunosuppressive efficiency

of mAbs against CD3 was initially established in the trans-

plantation field, where they prevented allograft rejection.

After humanizing the antibodies into non-Fc-receptor-

binding antibodies that are not mitogenic, application in

the treatment of autoimmune disease was tested as well

[51]. In new-onset Type 1 diabetes patients, treatment

with humanized CD3 antibodies led to preserved b-cell

function and reduced insulin need [52, 53]. Also in rheum-

atic disease, efficacy of anti-CD3 treatment was

confirmed: in a Phase I/II trial in patients with PsA, admin-

istration of huOKT3g1 led to a 75% improvement in the

number of inflamed joints in six out of seven patients [54].

Studies in experimental diabetes further elucidated

the mechanisms involved in immune suppression by

anti-CD3 antibodies. These studies revealed that

short-term disease improvement was achieved by elimin-

ation of pathogenic effector cells and Th2 polarization.

However, long-term beneficial effects depended on a

non-depleting, Treg-inducing activity of the antibody [55,

56]. Thus, CD3-specific antibodies are capable of indu-

cing Treg and have already been proved to be safe and

effective in patients with autoimmune disease. As such,

they may provide a valuable treatment option for RA and

JIA as well, which should be further investigated.

Neuropeptides. Vasoactive intestinal peptide (VIP), an

immune-regulatory neuropeptide, has been shown to

have suppressive effects in experimental autoimmune dis-

ease, including CIA. This suppressive effect was accom-

panied by inhibition of pro-inflammatory cytokines and

chemokines and immune deviation towards Th2 re-

sponses [57, 58]. However, similarly to the CD3-specific

antibodies, it has become clear that VIP is capable of

enhancing Treg numbers and suppressive function as

well [59], presumably via the induction of tolerogenic den-

dritic cells [60–62]. In CIA, administration of VIP increased

both the absolute number and percentage of Treg, leading

to lower arthritis scores [63]. Another neuropeptide, uro-

cortin, also reduced disease severity in this model via the

induction of Treg [64]. Although clinical trials in human

autoimmune disease are still awaiting, neuropeptides

could be of therapeutic value, due to their Treg-enhancing

capacity.

TABLE 3 Immunoactive compounds with Treg-enhancing capacity

Compound Effect on Treg
Results in experimental

autoimmune disease
Results in human

autoimmune disease

Anti-CD3 antibodies Treg induction Complete and sustained remission in
recent-onset diabetic NOD mice [56]

Long-term improved insulin
production in new-onset Type
1 diabetes [52, 53]

Short-term improvement in the
number of inflamed joints in
PsA [54]

Neuropeptides Treg induction, expansion
and enhanced function

VIP reduces development of CIA and
established disease in DBA/1J mice
[57, 63]

–

Urocortin reduces severity of
established CIA in DBA/1J
mice [64]

Retinoic acid Treg induction Reduced incidence of diabetes in NOD
mice with established insulitis [70]

–

Improved bodyweight and reduced
colon inflammation in
TNBS-induced colitis [71]

Reduced severity and incidence of
CIA in DBA/1J mice [72]

HDAC inhibitors Enhancement and stabil-
ization of FOXP3
expression leading to
enhanced function

TSA and SAHA prevent bodyweight
loss and histological damage in
DSS-induced colitis [80, 81]

–

TSA reduces development of renal
pathology in lupus-prone NZB/W
F1 mice [82]

VPA reduces the incidence and
severity of CIA in DBA/1J mice [83]

NOD: non-obese diabetic; TNBS: trinitrobenzene sulfonic acid; DSS: dextran sodium sulphate.
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Retinoic acid. All-trans retinoic acid (ATRA) is an active

metabolite of vitamin A that regulates various cellular

functions, including lymphocyte proliferation and differ-

entiation. Recently, several research groups have found

that ATRA induces Treg, while simultaneously inhibiting

Th17 development [65–68]. Therefore, ATRA might be

able to restore the balance between Treg and pathogenic

Th17 cells that is thought to be disturbed in autoimmune

pathology [69]. In experimental models of diabetes [70]

and colitis [71], ATRA treatment improved clinical out-

come by inducing Treg. ATRA-mediated induction of

Treg has not been investigated in arthritis models; how-

ever, ATRA administration has been shown to reduce se-

verity and incidence of CIA. This beneficial effect was

accompanied by a decrease in pro-inflammatory cyto-

kines and collagen-specific antibodies [72]. Given the

therapeutic effects of ATRA in experimental arthritis and

its potent Treg-enhancing capacity, it would be valuable

to further explore this mechanism for the treatment of

arthritis. In addition, Treg induced in vitro in the presence

of ATRA are resistant to conversion into FOXP3� cells [73]

and Treg expanded in the presence of ATRA have

enhanced suppressive capacity [74]. Therefore, ATRA

can also be used to optimize protocols for the in vitro ex-

pansion and induction of Treg.

Histone deacetylase inhibitors. The FOXP3 gene is sub-

ject to epigenetic modifications, including acetylation

mediated by histone acetyltransferases (HAT) that

increases the negative charge of histones in the nucleo-

some. This leads to an open chromatin structure, allowing

for gene transcription [75]. The described induction of

Treg by ATRA probably depends on this modification,

since acetylation of the FOXP3 promotor is enhanced

in ATRA-treated cells [76]. Acetyl groups can also be

removed by histone deacetylases (HDACs), introducing

a positive charge that leads to tight DNA binding and

reduced transcription [75]. In addition, FOXP3 can directly

interact with HAT and HDAC at the protein level [77] and a

very recent study shows that hyperacetylation of FOXP3,

reciprocally controlled by the acetyltransferase p300 and

the HDAC SIRT1, prevents poly-ubiquination and subse-

quent proteasomal degradation of the protein [78]. Agents

counteracting HDAC activity, so-called HDAC inhibitors,

can therefore both increase FOXP3 gene transcription and

prevent protein degradation, thereby enhancing and

stabilizing FOXP3 expression.

Two HDAC inhibitors, MS-275 and suberoylanilide

hydroxamic acid (SAHA), have been shown to induce

FOXP3 expression and suppressive function in human

CD4+CD25� cells in vitro [79]. Exposure to another

HDAC inhibitor, nicotinamide, increased the number of

FOXP3+ cells in CD4+ cell cultures as well as the

amount of FOXP3 per cell and the suppressive capacity

of CD4+CD25+ cells [78]. Also in vivo, administration of

HDAC inhibitors leads to increased numbers of FOXP3+

T cells with enhanced suppressive capacity. Moreover,

treatment with HDAC inhibitors reduces pathology in

dextran sodium sulphate-induced colitis [80, 81], lupus-

prone mice [82] and experimental arthritis [83], by

enhancing Treg function. Trichostatin-A (TSA) treatment

even improved already established colitis and HDAC in-

hibitors have been shown to reduce the down-regulating

effect of IL-6 on FOXP3 [84]. This makes them attractive

candidates for the treatment of ongoing inflammation.

Interestingly, several HDAC inhibitors are now being

developed for application in human autoimmune disease

based not on their capacity to enhance Treg function, but

on their more familiar anti-inflammatory and immuno-

suppressive capacities. Among those agents is hydroxa-

mic acid, which is being tested for therapeutic application

in arthritis [85]. In addition, HDAC inhibitors can be used to

stabilize FOXP3 expression in induced or expanded Treg

since they prevent conversion of these cells into Th17

cells [35].

Antigen-specific induction of Treg by
mucosal tolerization with self-antigen

The above-described methods are all based on enhancing

the polyclonal Treg population. However, these non-

specific approaches might lead to increased risk of infec-

tions and cancer, due to general immune suppression

[86]. These unwanted side effects can be avoided by

antigen-specific induction of Treg. This can be achieved

by mucosal administration of self-antigen, which is a

powerful way of inducing Treg towards a specific antigen

[87]. Oral or nasal administration of self-antigens works

well in animal models of arthritis, leading to delayed

onset of disease and reduced severity [88–90], presum-

ably via the induction of Treg [91–93]. Moreover, beneficial

effects of oral antigen administration have also been

described in already established disease, making a

therapeutic application in humans feasible [94, 95].

However, results from animal models have been difficult

to translate into humans. Clinical trials have shown that

oral administration of antigen is safe [96–101]; however, in

many cases only small improvements were found [97, 98],

or only a minority of the patients responded to treatment

[100]. These disappointing results are presumably caused

by the fact that the disease-triggering antigen in humans

is less clear and at the time of intervention multiple anti-

gens are involved, due to epitope spreading [102]. Still,

through bystander suppression, Treg specific for one anti-

gen can also suppress immune responses towards other

antigens that are presented in the same vicinity [103, 104].

This can be achieved by the production of non-specific,

inhibitory cytokines, such as IL-10 and TGF-b by the

induced Treg [88, 91, 92]. As a result, mucosal tolerization

with self-antigen could work in human disease as well, as

long as an immunogenic antigen is used that is presented

at the same location as the self-antigens driving the

immune response. A special class of proteins, termed

heat shock proteins (HSPs), are promising antigens for

this Treg induction via mucosal tolerization.

HSPs

HSPs are a set of evolutionarily conserved chaperones

that are up-regulated under conditions of cellular stress,
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for instance during infection and inflammation [105]. As a

result, they are abundantly present at the site of inflam-

mation in RA and JIA [106, 107] and, because of their

unique features HSPs are very immunogenic [108–110].

Therefore, these antigens are good candidates for muco-

sal tolerization in autoimmune disease, since they trigger

T-cell responses and are highly present at the site of in-

flammation. Moreover, studies with cells from JIA patients

suggest that HSPs might have a natural role in controlling

inflammation via the induction of regulatory responses

[111–114].

Several HSP family members have been shown to be

protective upon mucosal administration in experimental

arthritis, even in already established disease [115], prob-

ably via the induction of Treg [116, 117]. Moreover, nasal

administration of a mycobacterial HSP peptide inhibited

adjuvant arthritis, but also arthritis induced by an unre-

lated, non-microbial stimulus [118]. Thus, HSPs suppress

experimental arthritis irrespective of the initial trigger and

are effective in already established disease. This makes

them suitable for therapeutic application in human arth-

ritis. Studies with OM-89, an extract of Escherichia coli

used for the treatment of RA, provide the first evidence

that HSP could be effective in the treatment of human

arthritis. Multicentre placebo-controlled trials with

OM-89 showed that it ameliorates RA with few side ef-

fects [119, 120]. Later on, analysis of the OM-89 content

revealed that it contained HSP [121] and oral administra-

tion in animal models led to HSP-directed T-cell

responses [122]. Therefore, HSP is thought to be respon-

sible for the therapeutic effect of OM-89 in arthritis. More

direct evidence comes from a pilot Phase II trial with a

peptide derived from E. coli HSP, dnaJP1. Oral adminis-

tration of this peptide in RA patients was well tolerated

and led to enhanced IL-4 and IL-10, and reduced TNF-a
and IFN-g production towards the peptide. Furthermore,

dnaJP1-induced expression of FOXP3 in CD25bright cells

was increased following treatment [123]. Subsequently,

the clinical efficacy of this approach was studied in a

placebo-controlled Phase II trial enrolling 160 patients

with active RA. Again treatment was safe and well toler-

ated and reduced TNF-a responses towards dnaJP1 were

found. Furthermore, a difference in the ACR20 and ACR50

score between treatment and placebo groups suggested

clinical efficacy [124].

Indirect approaches to enhance Treg
function

In addition to the above-described strategies that target

the Treg population directly, indirect approaches can

also be taken to enhance Treg function in patients with

autoimmune disease. These include reducing the pro-

inflammatory environment and enhancing responsiveness

of effector cells to suppression.

Inhibition of pro-inflammatory cytokines

As described above, the in vivo pro-inflammatory environ-

ment at the site of inflammation in patients with

autoimmune disease can have profound negative effects

on Treg function. Therefore, dampening the ongoing in-

flammation, for instance by inhibiting pro-inflammatory

cytokines, can indirectly lead to better Treg-mediated

suppression. This is clearly shown by two studies that

examined Treg function in RA patients before and after

anti-TNF-a (infliximab) therapy. Both studies reported im-

paired Treg function before therapy, which was complete-

ly restored after infliximab treatment [22, 27]. Probably,

neutralizing the high TNF-a levels in these patients directly

reduced the down-regulating effect of TNF-a on Treg [27],

thereby restoring their suppressive function. However, it is

also possible that, instead of reconstituting the suppres-

sive function of already existing Treg, anti-TNF-a therapy

actually induced a new Treg population with enhanced

regulatory potential [125].

Enhancing the responsiveness of effector cells
to suppression

Indirect improvement of Treg function can also be

achieved by enhancing responsiveness of effector cells

to suppression. In Type 1 diabetes, inflammatory bowel

disease and lupus, effector cells are refractory to inhibition

by Treg [126–129]. Also in the SF of JIA and RA patients,

effector cells appear to be less responsive to suppression

compared with their peripheral blood counterparts

[20, 26]. Elucidating the cause of this resistance to

suppression and subsequent targeting will enhance

Treg-mediated inhibition and restrict uncontrolled activa-

tion of effector cells. Several studies suggest that this can,

at least partially, be achieved by blocking the production

of pro-inflammatory cytokines. In experimental autoim-

mune encephalomyelitis (EAE), it was found that Treg

isolated from the CNS could suppress effector cells

from the spleen, but failed to inhibit effector cells isolated

from the site of inflammation. When analysing these CNS

effector cells, they were found to produce high levels of

IL-6 and TNF-a. Furthermore, adding both these cytokines

to naı̈ve effector cells reversed their responsiveness to

suppression. Thus, the increased resistance of effector

cells at the site of inflammation in EAE mice is caused

by TNF-a and IL-6 produced by these cells [130].

Another study describing the negative effects of IL-6 on

Treg-mediated suppression also found that IL-6 acts on

effector cells rather than on Treg [33]. Similarly IL-7,

known to reduce Treg-mediated suppression, is expected

to target effector cells as well [34], since expression of the

IL-7 receptor (CD127) is low on Treg [131]. Therefore,

blocking these pro-inflammatory cytokines will reduce

the resistance of effector cells to suppression and thereby

enhance control of inflammation by Treg.

Combination therapy

So far, we have described multiple approaches that can

be taken to target Treg function in patients with autoim-

mune disease (Fig. 1), including direct, antigen-specific

induction of Treg by tolerization with self-antigen. In add-

ition, inhibition of the inflammatory response increases the

responsiveness of effector cells to suppression and
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reduces the down-regulating effect of pro-inflammatory

cytokines on Treg, thereby indirectly enhancing Treg func-

tion. It is therefore expected that clinical outcome can be

enhanced by a combination of both these direct and

indirect strategies. This is nicely illustrated by a study in

which antigen-specific induction of Treg was combined

with anti-TNF-a therapy in adjuvant arthritis. Both nasal

administration of HSP60 peptide as well as a single

dose of anti-TNF-a (etanercept) treatment, led to a small

and insignificant reduction in arthritis scores. However,

combining the two therapies resulted in a highly significant

improvement of disease, as shown by lower arthritis

scores and reduced joint destruction [132]. In addition,

in several models of autoimmune diabetes, mucosal tol-

erization with islet antigen induced Treg and prevented

development of disease, but was incapable of reversing

established disease. Bresson et al. [133] now show

that, when combined with a suboptimal dose of

anti-CD3 therapy, intranasal administration of proinsulin

peptide reverses recent-onset diabetes. Also in humans

there is evidence for enhanced effectiveness of Treg in-

duction, when combined with anti-inflammatory treat-

ment. In the previously described trial with dnaJP1 in

RA patients a synergistic clinical effect was found in pa-

tients receiving HCQ, a drug with potent anti-inflammatory

properties [124]. Together, these data clearly demonstrate

that combining Treg induction with anti-inflammatory treat-

ment enhances clinical outcome. In addition to increased

effectiveness, dampening the ongoing inflammation might

also be crucial in preventing adverse effects, as it has

been shown that in a pro-inflammatory environment

TGF-b produced by Treg drives Th17 differentiation [37,

134] and Treg can convert into Th17 cells themselves [35–

37].

Autologous bone marrow
transplantation as a multifactorial
therapeutic approach

One very powerful therapy applied for the treatment

of refractory autoimmune disease is autologous bone

marrow transplantation (aBMT). The idea of using aBMT

in the treatment of autoimmunity stems from observed

remission in patients transplanted for co-existing haem-

atological malignancies and from efficacy in experimental

models [135]. Initially, the mechanism of action was

thought to depend on the elimination of autoreactive

lymphocytes by intensive immune ablation, followed by

the development of a new tolerant lymphocyte population

after aBMT. However, more recently it has become clear

that induction of Treg is also important in the clinical effi-

cacy of aBMT [136]. aBMT has been used in the treatment

of RA and systemic JIA patients who are unresponsive to

other treatments [135, 137]. Especially in systemic JIA pa-

tients, this approach has been successful, leading to

long-lasting, drug-free remission in 53% of the patients

and a partial response in 18% of patients [137]. In a

follow-up study of JIA patients receiving aBMT, it was

demonstrated that in addition to a more tolerogenic re-

sponse observed in effector T cells, Treg were affected as

well. The low Treg levels before treatment were restored

after aBMT and even after long-term follow-up the num-

bers of Treg were significantly increased compared with

pre-treatment [138].

The importance of Treg in aBMT has also been investi-

gated in experimental models of autoimmune disease.

In EAE, pseudo-autologous BMT prevented relapses

and resulted in increased levels of CD25bright cells and

FOXP3 mRNA expression [139] and in CIA, co-transfer

of purified Treg with the graft enhanced clinical outcome

[18]. Furthermore, in proteoglycan-induced arthritis, it was

found that depletion of CD25+ Treg after pseudo-

autologous BMT abrogated disease remission induced

by aBMT [140]. This last result clearly demonstrates a

key role for Treg in the clinical efficacy of aBMT, next to

elimination of autoreactive T cells and reduced inflamma-

tion, caused by immune suppression. aBMT is therefore a

good example of how a multifactorial approach targeting

Treg, effector T cells and ongoing inflammation is highly

FIG. 1 Methods of enhancing Treg function in arthritis

patients. Treg can be enhanced in arthritis patients via

different methods: (A) isolation and ex vivo expansion of

natural Treg or (B) in vitro induction of Treg from non-Treg

(n-Tr), followed by reinfusion into the patient; (C) in vivo

induction and expansion of Treg by anti-CD3 antibodies

(aCD3), HADC inhibitors (HADCi) and neuropetides, such

as VIP; (D) mucosal tolerization with self-antigen,

preferably HSP; (E) indirect improvement of Treg function

by enhancing the responsiveness of effector cells to

suppression and blocking pro-inflammatory cytokines.
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effective, even in the treatment of severe, systemic

autoimmunity. It also shows that intensive immune

ablation followed by aBMT provides an environment that

is optimally suited for the development of Treg and might

provide a window of opportunity for the induction of

antigen-specific Treg.

Conclusion

Treg play a critical role in controlling autoimmune disease

and several strategies are now being explored to target

these cells for therapeutic purposes. For patients with RA

and JIA, Treg provide a valuable new treatment option,

since current therapies, such as anti-TNF-a therapy,

cause a rather general immune suppression and do not

induce sustained remission. As a result, side effects occur

and life-long treatment is required. To enhance Treg func-

tion, the cells can be expanded and induced in vitro fol-

lowed by adoptive transfer. However, these protocols

have severe drawbacks, especially the risks associated

with conversion of Treg into effector cells, and the costs

and complexities associated with cellular therapy.

Alternatively, Treg can be induced in vivo by immunomo-

dulatory compounds and some of these agents have

already been tested in patients.

Also, to avoid risks associated with general immune

suppression, antigen-specific induction of Treg provides

a potential safe and efficient approach, for which HSPs

are promising candidate antigens. These proteins induce

Treg that specifically recognize antigen at the site of in-

flammation, thereby avoiding systemic immune suppres-

sion. Clinical trials have shown that HSP treatment is

safe and induces clinical improvement. Since the majority

of studies indicate that Treg are not deficient in arthritis

patients, but are functionally compromised by their

pro-inflammatory environment, the efficacy of this ap-

proach can be optimized by inhibiting the ongoing inflam-

mation in these patients. This is illustrated by a synergistic

effect of Treg induction and anti-inflammatory treatment in

both patients and experimental models. When combined

with HSP treatment, only a single dose of anti-TNF-a
therapy is sufficient to reduce pathology in experimental

arthritis. The possibility of lowering the dose of anti-

inflammatory treatment will have great impact on patient

care, since it reduces the side effects associated with

life-long drug administration. Therefore, Treg targeted

approaches may significantly add to therapies that are in

the clinic for arthritis today and deserve thorough future

investigation.

Rheumatology key messages

. Treg are attractive targets for immune modulation in
RA and JIA.

. Antigen-specific induction of Treg will reduce
side effects associated with general immune
suppression.

. Combination therapy has enhanced clinical efficacy
and reduces the risk of adverse effects.
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