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The Polycomb Group (PcG) pathway represses transcription through a mechanism conserved among plants and animals.

PcG-mediated repression can determine spatial territories of gene expression, but it remains unclear whether PcG-

mediated repression is a regulatory requirement for all targets. Here, we show the role of PcG proteins in the spatial

regulation of FLOWERING LOCUS T (FT), a main activator of flowering in Arabidopsis thaliana exclusively expressed in the

vasculature. Strikingly, the loss of PcG repression causes down-regulation of FT. In addition, our results show how the

effect of PcG-mediated regulation differs for target genes and that, for FT expression, it relies primarily on tissue

differentiation.

INTRODUCTION

Two main complexes are involved in the repression mediated by

the PolycombGroup (PcG) pathway. PolycombRepressive Com-

plex2 (PRC2) tri-methylates lysine 27of histone 3 (H3K27me3) and

recruitsPRC1,which further contributes to the repressionof target

genes (Hennig and Derkacheva, 2009; Simon and Kingston,

2009). The expression of homeotic (Hox) genes is the paradigm

of PcG regulation in animals. Hox genes are expressed only in

specific regions of the animal body; however, in PcGmutants their

expression extends to other regions, causing homeotic changes

in body patterning (Simon and Kingston, 2009). In plants, the best

known example of a Hox gene spatially regulated by PcG proteins

is the Arabidopsis thaliana MADS box gene AGAMOUS (AG). In

the wild-type plants, AG is expressed only in the flowers, whereas

in PcG mutants, it is ectopically expressed in leaves and other

parts of the plant, correlating with a decrease in H3K27me3

(Goodrich et al., 1997; Chanvivattana et al., 2004; Schubert et al.,

2006; Calonje et al., 2008). H3K27me3 target genes inArabidopsis

often show marked tissue-specific expression patterns (Turck

et al., 2007; Zhang et al., 2007). Two recent tissue-specific,

genome-wide distribution studies of H3K27me3 have revealed that

the H3K27me3 is mostly absent from targets in the tissues where

these are expressed (Weinhofer et al., 2010; Lafos et al., 2011). On

the other hand, changes in H3K27me3 levels are not always

correlated with changes in transcription (Schubert et al., 2006;

Schwartz and Pirrotta, 2007; Kwon et al., 2009; Adrian et al., 2010).

H3K27me3 is widely dispersed across the FLOWERING

LOCUS T (FT) locus (Turck et al., 2007; Zhang et al., 2007), and

the histone mark is proposed to delimit the accessibility of

transcription factors to certain cis-elements at the FT promoter

(Adrian et al., 2010). Chromatin-mediated repression is required

to confer photoperiod-dependent control of FT expression

(Goodrich et al., 1997; Takada and Goto, 2003). FT encodes a

plant florigen and is induced by long-day conditions through the

activator CONSTANS (CO) (Turck et al., 2008; Imaizumi, 2010).

CO has been shown to bind DNA sequences specifically in vitro,

and CO consensus binding sites within the proximal FT promoter

are functional cis-elements required for FT expression (Adrian

et al., 2010; Tiwari et al., 2010). However, these elements and

the proximal promoter alone are not sufficient to drive expression

of reporter genes in transgenic plants, but require the presence

of enhancer elements that are located more than 4 kb from the

transcription start (Adrian et al., 2010). One striking aspect of FT

transcriptional regulation is its spatial pattern: prior to flowering,

FT is expressed only in the phloem companion cells of the

cotyledons and the distal blade of rosette leaves (Takada and

Goto, 2003; Yamaguchi et al., 2005; Adrian et al., 2010); after

flowering, the gene is also expressed in other organs (cauline

leaves, sepals, and fruits) but is still strongly limited to the

vascular tissue (Adrian et al., 2010). FT expression is limited to

the vasculature even if CO is provided ectopically (Yamaguchi

et al., 2005; Adrian et al., 2010). In plants carrying mutations in

LIKE HETEROCHROMATIN PROTEIN1 (LHP1), a FT expression

pattern similar to that of CO-overexpressing plants is observed

(Takada and Goto, 2003). LHP1 directly represses FT as part of a

plant PRC1, but in lhp1mutants the PcG pathway is only partially

affected, and the level of H3K27me3 at FT does not change

(Turck et al., 2007; Farrona et al., 2008); therefore, the analysis
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of this mutant is not sufficient to understand the role of PcG

proteins in FT regulation. As neither CO nor LHP1 are responsible

for the characteristic tissue-specific expression pattern of FT,

other regulatory components must be involved.

Here we investigate whether the H3K27me3 mark is required

for the tissue-specific expression pattern of FT as part of a PcG-

mediated repression mechanism that is independent of LHP1.

We show that the loss of PcG repression differentially affects

targets, and that the domain of FT expression depends on tissue

differentiation, even in the absence of a PcG-mediated chroma-

tin configuration.

RESULTS

FT Expression Is Strongly Reduced in the swn-7 clf-28

PcGMutant

To analyze PcG-mediated FT spatial expression, a transgene

carrying an 8.1-kb FT promoter fragment fused to the b-Glucu-

ronidase gene (FTprom:GUS) (Adrian et al., 2010) was introduced

into the single clf-28 (clf) and double swn-7 clf-28 (swn clf) PcG

mutants (Figure 1). CURLY LEAF (CLF) and SWINGER (SWN) are

part of the histone methyltransferase SET family responsible for

H3K27me3 deposition. CLF and SWN show partially overlapping

functions and are involved in FT repression (Jiang et al., 2008; Liu

et al., 2010). In the wild-type plants, the FTprom:GUS signal was

obtained only at the vascular tissue of cotyledons and leaves, as

expected (Figures 1A and 1D) (Takada and Goto, 2003; Adrian

et al., 2010). In clfmutant plants, the signal was stronger (Figures

1B and 1E), which supported the quantitative RT-PCR (qRT-

PCR) data (Figure 2A) (Barrero et al., 2007; Jiang et al., 2008), but

it was still limited to the vascular tissue. Mutant seeds of swn clf

germinate, giving rise to a small seedling that degenerates to a

callus-/embryo-like structure (Chanvivattana et al., 2004). In swn

clf seedlings, the FT signal was observed at the veins of coty-

ledons and in leaf-like structures (Figures 1C and 1F). In addition,

the roots are also stained, and a strong, diffused signal is

observed at the hypocotyls. Strikingly, as the tip of the root

develops a swollen and opaque embryo-like tissue, known as a

pickle (pkl)-like root phenotype (Ogas et al., 1997), FT promoter-

driven signal completely disappears (Figure 1F). In 2-month-old

swn clf callus, the GUS signal strongly decreased and was

obtained only in a punctate pattern (Figure 1G). Expression

Figure 1. FT Spatial Expression Changes in the Wild Type, clf, and swn clf.

(A) to (G) Histochemical localization of GUS activity in 10- and 20-day-old wild-type, clf, and swn clf seedlings and 2-month-old swn clf callus carrying

an FTprom:GUS construct. Ten-day-old wild type (A), clf (B), and swn clf (C); 20-d-old wild type (D), clf (E), and swn clf (F); 2-month-old swn clf (G). Arrow

in (F) indicates the loss of GUS signal in the pkl-like root.
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analysis confirmed a reduction in FT in swn clf (Figure 2A) despite

a maintained expression of CO (Figure 2B). By contrast, AG is

strongly expressed in clf and swn clf mutants, indicating that its

regulation dependsmostly onCLF;whereasSTM is up-regulated

only in the swn clf background and, therefore, ismore dependent

on SWN (Figures 2C and 2D) (Schubert et al., 2006).

To further characterize the expression pattern of other PcG

targets and to investigate whether other genes mimic FT ex-

pression in PcGmutants, the expression of H3K27me3-enriched

genes in the wild type, clf, and swn clf was analyzed by expres-

sion microarray analysis and clustered according to the different

patterns of expression. Although an important percentage of

PcG targets was strongly up-regulated in swn clf plants, the

clustering showed that FT, which is placed in cluster 1, is not

an exception among PcG target genes, because 9.7% of all

H3K27me3-enriched genes follow a similar pattern of expres-

sion. In addition, other clusters showed only slight expression

changes between the wild-type and mutant plants (Figure 3; see

Supplemental Figure 1 and Supplemental Data Set 1 online).

In summary, despite the general role of PcG in establishing a

repressive chromatin configuration and thereby participating in

tissue-specific gene regulation, loss of PcG repression is not

synonymous with transcriptional activation, and no general rule

predicts how expression might change in PcG mutants.

FLCOverexpression IsNot theCauseofFTRepression in the

swn clfMutant

The MADS box transcription factors FLOWERING LOCUS C

(FLC) and SHORTVEGETATIVE PHASE (SVP) directly repress FT

(Li et al., 2008), and the expression of FLC itself is regulated by

CLF and SWN as part of different PRC2 complexes (Hennig and

Derkacheva, 2009; Liu et al., 2010). Like FLC, the SVP locus is

covered by the H3K27me3 mark, indicating repression by PcG

proteins, although such regulation has not been described

(Zhang et al., 2007). FLCwasup-regulated in clfplants compared

with the wild-type plants (Figure 2E) (Jiang et al., 2008) and was

further increased in swn clf plants, indicating that FLC repression

depends on both PcG proteins (Figure 2E). By contrast, SVP is

not up-regulated in clf or swn clf plants (see Supplemental Figure

2A online). AP2-like proteins TEMPRANILLO1 (TEM1), TEM2,

and SCHLAFMÜTZE (SMZ) repress FT expression (Imaizumi,

2010) but are not marked by H3K27me3 and are down-regulated

in swn clf (see Supplemental Figures 2B to 2D online). Therefore,

FLC, but neither SVP nor TEM1 and 2 or SMZ, might cause FT

down-regulation in swn clf. To investigate the role of FLC, FT

expression was analyzed in the triple mutant swn-7 clf-28 flc-3

(swn clf flc). Although loss of FLC caused an increase in FT

expression in the clf mutant, no up-regulation was observed in

Figure 2. Expression Analysis in the Wild Type, clf, and swn clf.

(A) to (E) qRT-PCRs in 10- and 20-d-old wild type (WT), clf, and swn clf and 2-month-old swn clf callus. qRT-PCRs of FT (A), CO (B), AG (C), STM (D),

and FLC (E).

(F) qRT-PCRs of FT in 10- and 20-d-old wild type, flc, clf, clf flc, swn clf flc, and swn clf and 2-month-old swn clf flc and swn clf callus.

Error bars represent SE of the mean based on three technical replicates. Similar results were obtained in at least two independent experiments. A

biological replicate of the analysis is included as Supplemental Figure 6 online.
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the swn clfbackground (Figure 2F), demonstrating that FLC is not

involved in FT down-regulation in this genetic background.

Chromatin Changes at FT Are Not Sufficient to Explain

Its Down-Regulation

FT expression data obtained in clf and swn clf mutants were

correlated to changes in FT chromatin (Figure 4A). It has been

reported that H3K27me3 is absent at FT in clf (Jiang et al., 2008);

however, our ChIP data show that this loss is not homoge-

neous for the whole FT locus, because significant enrichment of

H3K27me3 can still be detected at the 39 region. In swn clf plants,

the H3K27me3 signal completely disappeared (Figure 4B). LHP1

binding to FT followed almost exactly the same pattern as

H3K27me3 in the single and double mutants (Figure 4C). Similar

results were obtained for the AG locus (see Supplemental Figure

3A online).

Loss of H3K27me3 and LHP1 promotes a more permissive

chromatin structure, which cannot explain the down-regulation

of FT observed in swn clf. Therefore, we analyzed whether, in the

absence of H3K27me3, the repressive histone marks H3K9me2

and H3K27me1 were recruited to FT. H3K9me2 ChIP data at

FT showed some increase of this mark over the FT locus only in

swn clf plants. However, the H3K9me2 increase at FT seems

nonsignificant when compared with levels at the Ta3 retrotrans-

poson, although no studies have shown threshold levels for

effective H3K9me2-mediated repression (Figure 4D). For

H3K27me1, the ChIP data showed an inverse correlation be-

tween changes in this mark and H3K27me3 changes at FT

(Figures 4B and 4E). An increase in H3K27me1 was also ob-

served atAG, despite the strong up-regulation of this gene in swn

clf (see Supplemental Figure 3B online).

H3K4me3 has been shown to act as a bivalent mark together

with H3K27me3 at the FT and FLC loci (Jiang et al., 2008; Carles

and Fletcher, 2009). Increased H3K4me3 levels were reported in

the 59 region of FT and AG in the clfmutant (Carles and Fletcher,

2009). Our ChIP experiments did not show any significant

changes for H3K4me3 in the clf background either at FT or AG

(see Supplemental Figures 3C and 3Donline). An increase for this

markwas observed in swn clf plants, despite the repression of FT

(see Supplemental Figure 3D online).

In conclusion, despite their divergent expression, FT and AG

are subjected to similar changes in chromatin conformation in

the PcG mutants. Therefore, chromatin changes are not suffi-

cient to explain FT down-regulation in swn clf.

FT Expression Is Strongly Reduced upon Loss of Vascular

Identity in Induced Callus

In swn clf plants, development of the vascular tissue is par-

ticularly affected. The characteristic reticulated pattern of the

veins is lost in the leaf-like structures, and the linear pattern is

Figure 3. K-Means Clustering of Expression Data of H3K27me3-Enriched Genes in PcG Mutant Seedlings.

The expression data of the H3K27me3-enriched set of genes (n = 4599) were analyzed by K-means clustering (k = 8) using the software Genesis.

Expression values for each gene were calculated as fold change compared with the wild type (WT). Clustering was performed on log2-transformed fold-

change values. The Pearson correlation coefficient was used as a distance measurement to cluster according to patterns rather than absolute values.

Each graph represents one cluster. Squares represent the average expression, and bars indicate the normalized SD. FT is located in Cluster 1.
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interrupted in the roots (Figure 1G; see Supplemental Figure 4

online). To analyze the importance of vascular development in

the down-regulation of FT in swn clf calli, the FTprom:GUS line in

the wild-type background was germinated on callus-inducing

medium. In hormone-induced callus, FT was expressed only in

the cotyledons (Figure 5A), which are formed during embryo-

genesis and were therefore less affected by the hormone treat-

ment. In these organs, FT was strongly expressed in the veins

from where the signal diffused to the surrounding cells (Figure

5B). In the hormone-induced opaque embryo-like tissue that

lacked differentiation of veins, the GUS signal disappeared,

similar to the results obtained in pkl-like roots and callus of the

swn clfmutant (Figures 1F, 1G, and 5A). The loss of GUS signal in

the hormone-induced callus occurred despite a high and ectopic

up-regulation of CO (Figure 5C) and the presence of CO protein

(see Supplemental Figure 5 online). Strong expression of CO in

the cotyledons might cause high FTprom:GUS signal in these

organs in the callus-inducing medium.

We next assessed whether an increase in the number of leaf

veins could lead to higher expression of FT. 1-N-Naphtylphtala-

mic acid (NPA) affects vascular patterning by inhibiting auxin

efflux (Wenzel et al., 2008). NPA treatment increases the number

and width of vascular bundles but impairs vein differentiation,

because the cells within the vascular strand are improperly

aligned and the petiole vessels are not connected to those of the

stem (Wenzel et al., 2008). FT expression decreased in NPA-

treated plants, despite the apparent increase in vasculature

(Figure 6).

Figure 4. Chromatin Changes at FT in the Wild Type, clf, and swn clf.

(A) Genome browser view of the FT locus at chromosome 1. Exons of FT and upstream gene FAS1 are represented as blue boxes, and untranslated

regions are represented as white boxes. Positions of amplicons used in the ChIP analysis are presented as black boxes and are numbered.

(B) H3K27me3 at FT locus. ChIP experiments were performed with chromatin from 10-d-old (10d) and 20-d-old (20d) wild type (wt), clf, and swn clf and

2-month-old (2m) swn clf plants. Signals detected along the FT locus were normalized against the input.

(C) Binding of LHP1 at FT locus. ChIP experiments were performed with chromatin from 20-d-old (20d) wild type, clf, and swn clf and 2-month-old (2m)

swn clf plants carrying a 35Sprom:LHP1:HA transgene. Normalization as in (B).

(D) H3K9me2 at FT locus and the Ta3 retrotransposon. Data are based on the same chromatin extract and analysis as used in (B).

(E) H3K27me1 at FT locus. Data are based on the same chromatin extract and analysis as used in (B).

Error bars represent SE of the mean based on three technical replicates. Dashed lines represent background calculated as average of qPCR signals

obtained from each sample with Ta3 primers ([B] and [C]) or RBCS1A primers ([D] and [E]), as described in Methods. A biological replicate of the

analysis is included as Supplemental Figure 7 online.
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Taken together, the results confirm the necessity of proper

vascular development and differentiation to establish the domain

of FT expression.

DISCUSSION

FT Expression Domain Is Reduced in Strong PcGMutants

Previous studies have shown the requirement for PcG repression

to define territories of expression of different target genes in

animals and plants. Consequently, in PcGmutants the expression

of such target genes extends to other domains (Goodrich et al.,

1997; Chanvivattana et al., 2004; Schubert et al., 2006; Calonje

et al., 2008; Simon and Kingston, 2009; Bratzel et al., 2010). We

have focused on FT, a PcG target with a well-known and defined

spatial pattern, to characterize this regulation further. Although in

clf mutants, FT is up-regulated (Figure 2A) (Barrero et al., 2007;

Jiang et al., 2008), our results showed that FT expression in clf is

confined to the vascular tissue, its normal domain of expression.

However, in calli of the strong PcG double mutant swn clf, FT

domain of expression is not ectopically extended, but rather

is strongly reduced to a small group of cells. Clustering analysis

of PcG targets divided them in eight different clusters according

to their pattern of expression in the wild-type, clf, and swn clf

seedlings. Cluster 2, Cluster 4, Cluster 5, and Cluster 8, with

almost 50% of the targets, include genes with a very strong to

moderate up-regulation in swn clf plants, as expected after the

loss of a general repressive pathway. Some targets differentially

dependonCLF andSWN (Figure 2) (Schubert et al., 2006). Indeed,

Cluster 5 includes genes that dependmainly onCLF, and genes in

Cluster 2 depend on both proteins, whereas for genes in Cluster

4, the absence of SWN has a strong effect. Strikingly, ;10% of

PcG targets show similar regulation as FT, with high expression in

clf and low expression in swn clf (Cluster 1). The dependency ofFT

on signals lost in the de-differentiated swn clf callusmay therefore

be a model for the regulation of many PcG targets.

FT down-regulation in swn clf could be due to the up-regulation

of a repressor. FT plays a central role in flowering and, therefore, is

tightly regulated by different flowering pathways (Turck et al.,

2008; Imaizumi, 2010). TEM1 and TEM2 are partially overlapping

AP2-like transcription factors that repress FT directly by binding

to the region encoding the 59 untranslated region (Castillejo and

Pelaz, 2008). SMZ, which belongs to a different AP2 clade

(Aukerman and Sakai, 2003), also represses FT expression but

interactswith a region several kilobases downstreamof the coding

region (Mathieu et al., 2009). The MADS box factors FLC and SVP

form a complex that represses FT transcription, interacting with

CArG cis-elements located in the first intron and FT proximal

promoter region (Searle et al., 2006; Li et al., 2008). TEM1, TEM2,

andSMZ are not PcG targets, and themicroarray analysis showed

that these genes are not up-regulated, but rather are down-

regulated in swn clf plants. Therefore, we discarded them as the

potential cause for FT down-regulation in swn clf plants. SVP is

enriched in H3K27me3 but belongs to Cluster 3, which includes

genes that are down-regulated inclf and swn clfplants. The results

were confirmed by qRT-PCR, indicating that SVP is probably not

involved in FT down-regulation in swn clf mutants.

FLC is the best characterized PcG target in Arabidopsis. Differ-

ent PcG complexes have been shown to regulate FLC. The VRN-

PRC2 complex participates in the vernalization pathway that

stably represses FLC after a prolonged exposure to cold temper-

atures, whereas the EMF-PRC2 complex seems to regulate FLC

independently of vernalization (Hennig and Derkacheva, 2009).

CLF and SWN are components of both complexes (Hennig and

Derkacheva, 2009; Liu et al., 2010). The expression analysis

indicated an additive effect of both proteins in FLC regulation,

and, therefore, FLC was a candidate for FT down-regulation in

swn clf. However, the genetic data concluded that FLC is not the

factor responsible for the decrease in FT expression in the strong

PcG mutants. Our results do not exclude that other putative

repressors could down-regulate FT in swn clf plants, but the

known direct repressors do not have a role in FT down-regulation

in the absence of PcG regulation.

Chromatin Changes Are Not Key Factors in Determining

FT Spatial Expression

The PcG pathway modifies chromatin conformation, which is

believed to repress transcription by interfering with the binding of

Figure 5. FT Spatial Expression in Hormone-induced Callus.

(A) and (B) Histochemical localization of GUS activity in FTprom:GUS plants in the wild-type background grown for 10 d on GM medium supplemented

with 4.5 mM 2,4-D and 0.45 mM kinetin.

(B) Detail of the adaxial surface of the cotyledon marked on (A) with a square.

(C) Histochemical localization of GUS activity in COprom:GUS plants in the wild-type background grown as in (A).
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transcription factors to cis-elements, affecting the recruitment of

the RNA polymerase and blocking transcriptional initiation and/

or elongation (Simon and Kingston, 2009). However, transcrip-

tion also feeds back on chromatin conformation, and it is not yet

fully resolved under which conditions the chromatin plays a de-

termining regulatory role in the regulation of individual target

genes (Buzas et al., 2011). Therefore, we investigated whether

changes in FT and AG chromatin correlated with the transcrip-

tional changes observed in swn clf plants.

We observed a reduction of H3K27me3 in clf at both loci and

a complete loss in swn clf, pointing out that a SWN-PRC2 com-

plex is also involved in FTmethylation. LHP1, as part of a PRC1,

recognizes and binds to its targets by direct interaction with the

H3K27me3 mark (Exner et al., 2009). It has been suggested that

H3K27me3 contributes to, but is not fully responsible for, PRC1

targeting (Simon andKingston, 2009). Our data showed that LHP1

binding mirrors H3K27me3 occurrence, and, therefore, that at FT

and AG, H3K27me3 acts as obligatory docking site for LHP1.

In the absence of the PcG signatures H3K27me3 and

LHP1, other repressive marks could be recruited and spread

over the FT locus. In Arabidopsis, H3K9me2 is a repressive

mark characteristic of heterochromatic regions that is ex-

cluded from H3K27me3-enriched regions (Turck et al., 2007).

Although the minimum level of H3K9me2 required to promote

Figure 6. Expression Analysis of FT in the Presence of an Auxin Transporter Inhibitor.

(A) and (B) Histochemical localization of GUS activity in leaves of 25-d-old 8.1kbFTprom:GUS plants grown on GM plates supplemented with DMSO.

(C) Vasculature organization of a 25-d-old leaf grown on GM plates supplemented with DMSO.

(D) and (E) Histochemical localization of GUS activity in leaves of 25-d-old 8.1kbFTprom:GUS plants grown on GM plates supplemented with NPA.

(F) Vasculature organization of a 25-d-old leaf grown on GM plates supplemented with NPA.

(G) qRT-PCRs in plants grown on GM plates supplemented with DMSO or NPA. Data were normalized to PP2AA3. Error bars represent SE of the mean

based on three technical replicates.
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down-regulation is unknown, the slight increase in this mark

observed at FT in swn clf mutants seems nonsignificant when

compared with the H3K9me2 levels at the Ta3 retrotransposon.

Consequently, we do not favor a role for H3K9me2 in FT down-

regulation. H3K27me1 is also considered as a repressive histone

mark and is believed to be the precursor for H3K27me3 (Campos

and Reinberg, 2009). In Arabidopsis, a decrease in H3K27me3

does not affect nuclear H3K27me1 levels (Lafos et al., 2011). We

did observe local increase in H3K27me1, but, considering that

similar changes in H3K27me1 were observed at FT and AG

(Figure 4; see Supplemental Figure 3 online), this mark neither

predicts nor follows the transcriptional state in swn clf plants.

Because H3K27me1 reflects the reduced activity of PRCs, it

might also be a PRC2 substrate in Arabidopsis.

H3K4me3 is part of the active Trithorax Group pathway, which

antagonizes PcG regulation (Köhler and Hennig, 2010). In animal

stem cells, active and repressive chromatin marks are present at

the samedevelopmental loci and poise their targets for activation

or repression during differentiation (Fisher and Fisher, 2011). In

Arabidopsis, bivalent chromatin was demonstrated for FT and

FLC (Jiang et al., 2008), and a role of bivalent chromatin in fine-

tuning FLC and FT expression was suggested (Jiang et al., 2008;

Carles and Fletcher, 2009; Jeong et al., 2009). However, ge-

nome-wide data in Arabidopsis did not show a general associ-

ation between H3K4me3 and H3K27me3 (Ha et al., 2011).

Despite previous results (Jiang et al., 2008; Carles and Fletcher,

2009; Jeong et al., 2009), our ChIP experiments did not confirm

any significant change for H3K4me3 in the clf background either

at FT or AG. An increase for this mark was observed in swn clf

plants, despite the repression of FT. Lafos et al. have recently

shown that H3K4me3 levels increase globally in swn clf calli,

which may explain why higher levels were detected at the FT

locus (Lafos et al., 2011). In comparison to H3K27 methylation

marks, the levels of H3K4me3 at FT and AG were very low (see

Supplemental Figure 3 online), which could explain why the

number of genes that are detected as positive for the H3K4me3

mark genome-wide does not change in mutant seedlings that

have lost PRC2 function (Bouyer et al., 2011).

Tissue Differentiation Bypasses Lack of PcG Repression

Considering that chromatin changes are not sufficient to explain

FT down-regulation in strong PcG mutants and that vascular

tissue is the normal domain of FT expression, its alteration could

be the basis for FT down-regulation in swn clf callus. Auxin is key

to the development of the vascular tissue, and important genes

involved in the biosynthesis, transportation, perception, and

signaling of this hormone are among PcG targets (Notaguchi

et al., 2008; Lafos et al., 2011; Rizzardi et al., 2011). Several

genes that play an important role in the auxin pathway are

affected in swn clf (Figure 3; see Supplemental Data Set 1 online)

(Lafos et al., 2011). One possible result of misregulating the auxin

pathway is the alteration of vasculature development. This

hypothesis is supported by the results in hormone-induced calli

and in plants grown in NPA-containing medium. In both situa-

tions, the development of the vascular tissue is affected; in

hormone-enriched medium by reducing the differentiation of the

veins, and in the presence of NPA by increasing the amount and

distribution of vascular bundles while impairing their integrity

(Figures 5 and 6) (Wenzel et al., 2008). Based on microrarray

studies performedby the AtGenExpress consortium, neither auxin

nor NPA affect FT transcription directly (Goda et al., 2008).

Therefore, the results confirm the sensitivity of FT expression to

the appropriate development and differentiation of the vascular

tissue. The absence of proper vasculature development prevents

the activation of FT by CO, which is expressed at normal levels in

swn clf and is strongly up-regulated in hormone-induced calli.

In summary, our data show that the role of PcG proteins in the

regulatory network determining tissue-specific expression is not

identical for all PcG-target genes. Although almost one quarter of

Figure 7. The Impaired Differentiation of Vascular Tissue Bypasses the Lack of PcG Repression.

(A) In a wild-type (WT) leaf, the FT expression pattern is the result of the interplay among repressors, such as LHP1 and the PRC2 complex, and

activators, such as CO. The PcG pathway is not only involved in the direct repression of FT but is also necessary to promote the proper development of

the vascular tissue that is essential for FT activation through an unknown “X” factor.

(B) In a swn clf callus, where the differentiation of the vascular tissue is strongly impaired, CO is not able to activate FT expression due to the absence of

the vascular “X” factor, despite the loss of PcG repressive marks in the FT chromatin.
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PcG targets are strongly up-regulated in the swn clfmutant (Figure

3) and some have been shown to be ectopically expressed

in different PcG mutants (Goodrich et al., 1997; Chanvivattana

et al., 2004; Schubert et al., 2006; Calonje et al., 2008; Bratzel

et al., 2010), the lack of the repressive H3K27me3 mark is not

always synonymous with an increase in the expression domain

or increased expression levels. This indicates that the lack of

chromatin-mediated repression leads to elevated expression

only if additional positive regulators are present. Specifically, the

spatial expression of FT depends on the proper development

and differentiation of the vascular system, and the removal of

the PcG-mediated repressive chromatin structure, even in the

presence of the activator CO, is not sufficient to overcome this

requirement (Figure 7).

METHODS

Plant Materials and Growth Conditions

All the plants used in this work were the Columbia (Col-0) ecotype. clf-28

(SALK_139371) (Doyle and Amasino, 2009), swn-7 (SALK_109121), and

swn-7 clf-28mutants were kindly provided by Daniel Schubert. The flc-3

mutant has been previously described (Michaels and Amasino, 1999).

Due to the sterility of the double mutant, the 8.1kbFTprom:GUS and

35S:LHP1:HA transgenic lines (Adrian et al., 2010) were crossed to swn-

72/2clf-28+/2 and were segregated until plants were obtained carrying

each transgene in homozygosis in a swn-72/2clf-28+/2 background. The

progenies from these lines were analyzed to find the corresponding

phenotypes for the wild-type, clf, and swn clf mutants.

Plants were grown onGMmedium under long-day conditions (16 h light/

8 h dark) at 208C. The callus-inducing GMmediumwas supplementedwith

4.5 mM 2,4D and 0.45 mM kinetin (Hu et al., 2000). Overgrowth of the

vascular tissue was induced with GM medium supplemented with 10 mM

1-N-naphtylphtalamic acid (Wenzel et al., 2008).

Gene Expression Analysis

Total RNA was extracted with the RNeasy mini kit (Quiagen). Five

micrograms of RNA were DNase treated using the DNA-free kit (Ambion)

to cDNA synthesis. Real time-qPCR was performed using a BioRad

iQ5 apparatus and SYBR Green II detection. Expression of PP2AA3

(At1g13320) (Hong et al., 2010) was used for normalization. Primer sets

can be found in Supplemental Table 1 online. GUS staining was

performed as previously described (Adrian et al., 2010).

Microarray Analysis and Clustering of Expression Data

For genome-wide distribution of H3K27me3 in the ecotype Col-0, the

data set described elsewhere (Göbel et al., 2010; Reimer and Turck, 2010)

was used. H3K27me3-positive regions (chers) were determined with the

implementation of RINGO (Toedling et al., 2007) in the R package ChIPR

(half-window-size: 100, dist_CUT_off:200) and were subsequently map-

ped to genes according to the TAIR8 genome annotation (minimal

number of probes per gene: 3). Genes were considered as H3K27me3

targets if at least 20% of the gene or 500 bp were covered by a positive

cher. For microarray expression analysis, total RNA was extracted from

10-d-old Col and clf-28 and 12-d-old swn-7 clf-28 seedlings grown on

0.53 MS medium. Affymetrix ATH1 arrays were hybridized with two

biological replicates per genotype and processed using the MAS 5.0

procedure (NASCARRAYS-425). For each gene, mean fold-change

values compared with Col-0 were calculated. Clustering analysis was

performed with all H3K27me3 target genes that were present in the

expression data sets (4614 genes).

Clustering was performed with the software Genesis (Sturn et al.,

2002). As a distance measurement, the Pearson correlation coefficient

was used after computing log2 fold changes using the wild type as

reference. For an overview on themajor groups of patterns in the data set,

hierarchical clustering was performed on a randomly selected subset of

500 H3K27me3 target genes and revealed eight major groups of expres-

sion patterns (see Supplemental Figure 1 online). Therefore, k = 8 was

used for the K-means clustering analysis shown in Figure 3.

Chromatin Immunoprecipitation

ChIP experiments were performed as previously described (Searle et al.,

2006) with anti-H3K27me3 (07-449; Millipore), anti-H3K9me2 (pAb-

060-050; Diagenode), anti-H3K27me (pAB-045-050; Diagenode), anti-

H3K4me3 (ab1012; Abcam), and anti-HA (H6908; Sigma-Aldrich). A small

aliquot of untreated sonicated chromatinwas used as the total input DNA.

qPCR data were normalized against the input and represented as means

of three technical replicates. For background, qPCRs with Ta3 primers

were used for H3K27me3, H3K4me3, and LHP1:HA ChIPs, and the

average of the signal obtained in each sample was plotted (dashed line in

graphs). A similar method was used for H3K9me2 and H3K27me1, but

withRBSC1A primers (a highly expressed gene) as backgroundmeasure.

Primer sets can be found in Supplemental Table 1 online.

Vascular Staining

Staining of the vasculature was performed by incubating ethanol-clarified

plant tissues for 30min inBasic Fuchsin (0.05%) after 10min of incubation

in 0.2 M NaOH. Excess stain was removed by rinsing in lactic acid.

Immunoblotting

Eleven-day-old 35Sprom:CO (Jang et al., 2008) seedlings were ground in

lysis buffer (50 mMMES, pH 8.5, 25 mMKCl, 5 mMMgCl2, 5% Suc, 30%

Glycerol, 10 mM b-mercaptoethanol, 1 mM DTT, 0.3% Triton X-100,

1:1000 Proteinase Inhibitor Cocktail [PIC, Sigma-Aldrich], and 1 mM

PMSF). Nuclei were filtered through Miracloth, washed with wash buffer

(6 mM MgCl2, 33 mM KCl, 17 mM HEPES, pH 7.5, 13% Suc, 13%

glycerol, 13 mM b-mercaptoethanol, 1 mM DTT, 1.5 mM PMSF, 0.3%

Triton X-100, 1:500 PIC), and resuspended in 500 mL Talon buffer (300

mM NaCl, 50 mM NaPO4, 6 M guanidine HCl, 100 mM ZnSO4, 100 mM

DTT). Proteins were precipitated by addition of ethanol and guanidine to

final concentrations of 95% and 0.3 M guanidine, respectively, and were

resuspended in 25mL of resuspension buffer (50mMTris HCl, pH 7.5, 150

mM KCl, 10 mM ZnSO4) and 25 mL of 23 Laemmli buffer. Immunoblots

were developed with primary antibodies anti-CO (Valverde et al., 2004)

and anti-Histone 3 (ab1791, Abcam) as loading control, and secondary

anti-Rabbit IgG-HRPO conjugated (711-035-152, Dianova). The mem-

brane was incubated with a mix of SuperSignal West Dura Chemilumi-

nescent Substrate and SuperSignal West Femto Chemiluminescent

Substrate (Pierce Chemical Co.), and the positive signals were detected

by a cooled–charge-coupled device camera detection system.

Accession Numbers

Sequence data from this article can be found in the Arabidopsis Genome

Initiative data libraries under the following accession numbers: AG

(At4g18960), CO (At5g15840), FLC (At5g10140), FT (At1g65480), LHP1

(At5g17690), SMZ (At3g54990), SVP (At2g22540), TEM1 (At1g25560),

TEM2 (At1g68840), CLF (At2g23380), SWN (At4g02020), VIN3

(At5g57380), STM (At1g62360), RBSC1A (At1g67090), GSE20256
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(Polycombmutant seedlings microarrays), and E-MTAB-749 (H3K27me3

ChIP-chip data).
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The following materials are available in the online version of this article.

Supplemental Figure 1. Representative Example of Hierarchical

Clustering Based on Expression Data of a Subset of 500 Randomly

Selected H3K27me3 Genes.

Supplemental Figure 2. Analysis of SVP, TEM1, TEM2, and SMZ

Expression in the Wild Type, clf, and swn clf.

Supplemental Figure 3. LHP1:HA Binding and H3K27me1 Changes

at AG and H3K4me3 Changes at FT and AG in the Wild Type, clf, and

swn clf.

Supplemental Figure 4. The Vascular Tissue Loses Its Reticulated

Pattern in swn clf.

Supplemental Figure 5. CO Protein Is Stable in Hormone-Supple-

mented Medium.

Supplemental Figure 6. Biological Repeat of Expression Data

Presented in Figure 2.

Supplemental Figure 7. Biological Repeat of ChIP Data Presented in

Figure 4.

Supplemental Table 1. List of Primers.

Supplemental Data Set 1. Expression Clusters of H3K27me3-

Enriched Genes by K-Means Clustering.
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Göbel, U., Reimer, J., and Turck, F. (2010). Genome-wide mapping of

protein-DNA interaction by chromatin immunoprecipitation and DNA

microarray hybridization (ChIP-chip). Part B: ChIP-chip data analysis.

Methods Mol. Biol. 631: 161–184.

Goda, H., et al. (2008). The AtGenExpress hormone and chemical

treatment data set: experimental design, data evaluation, model data

analysis and data access. Plant J. 55: 526–542.

Goodrich, J., Puangsomlee, P., Martin, M., Long, D., Meyerowitz,

E.M., and Coupland, G. (1997). A Polycomb-group gene regulates

homeotic gene expression in Arabidopsis. Nature 386: 44–51.

Ha, M., Ng, D.W., Li, W.H., and Chen, Z.J. (2011). Coordinated histone

modifications are associated with gene expression variation within

and between species. Genome Res. 21: 590–598.

Hennig, L., and Derkacheva, M. (2009). Diversity of Polycomb group

complexes in plants: Same rules, different players? Trends Genet. 25:

414–423.

Hong, S.M., Bahn, S.C., Lyu, A., Jung, H.S., and Ahn, J.H. (2010).

Identification and testing of superior reference genes for a starting

pool of transcript normalization in Arabidopsis. Plant Cell Physiol. 51:

1694–1706.

Hu, Y., Bao, F., and Li, J. (2000). Promotive effect of brassinosteroids

FT Tissue Specificity 3213



on cell division involves a distinct CycD3-induction pathway in

Arabidopsis. Plant J. 24: 693–701.

Imaizumi, T. (2010). Arabidopsis circadian clock and photoperiodism:

time to think about location. Curr. Opin. Plant Biol. 13: 83–89.

Jang, S., Marchal, V., Panigrahi, K.C., Wenkel, S., Soppe, W., Deng,

X.W., Valverde, F., and Coupland, G. (2008). Arabidopsis COP1

shapes the temporal pattern of CO accumulation conferring a pho-

toperiodic flowering response. EMBO J. 27: 1277–1288.

Jeong, J.H., Song, H.R., Ko, J.H., Jeong, Y.M., Kwon, Y.E., Seol,

J.H., Amasino, R.M., Noh, B., and Noh, Y.S. (2009). Repression of

FLOWERING LOCUS T chromatin by functionally redundant histone

H3 lysine 4 demethylases in Arabidopsis. PLoS ONE 4: e8033.

Jiang, D., Wang, Y., Wang, Y., and He, Y. (2008). Repression of

FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis

Polycomb repressive complex 2 components. PLoS ONE 3: e3404.
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