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Double-strand breaks (DSBs), arising from exposure to exogenous clastogens or as a by-product of
endogenous cellular metabolism, pose grave threats to genome integrity. DSBs can sever whole
chromosomes, leading to chromosomal instability, a hallmark of cancer. Healing broken DNA
takes time, and it is therefore essential to temporarily halt cell division while DSB repair is under-
way. The seminal discovery of cyclin-dependent kinases as master regulators of the cell cycle
unleashed a series of studies aimed at defining how the DNA damage response network delays
cell division. These efforts culminated with the identification of Cdc25, the protein phosphatase
that activates Cdc2/Cdk1, as a critical target of the checkpoint kinase Chk1. However, regulation
works both ways, as recent studies have revealed that Cdc2 activity and cell cycle position determine
whether DSBs are repaired by non-homologous end-joining or homologous recombination (HR).
Central to this regulation are the proteins that initiate the processing of DNA ends for HR
repair, Mre11–Rad50–Nbs1 protein complex and Ctp1/Sae2/CtIP, and the checkpoint kinases
Tel1/ATM and Rad3/ATR. Here, we review recent findings and provide insight on how proteins
that regulate cell cycle progression affect DSB repair, and, conversely how proteins that repair
DSBs affect cell cycle progression.
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1. INTRODUCTION
Preservation of the genome is crucial for the survival and
well-being of all organisms. As genomes are under con-
stant assault from exogenous DNA-damaging agents,
such as UV light or natural radiation, and endogenous
DNA-damaging agents, such as free radicals generated
by oxidative metabolism, cells of all organisms are
equipped with multiple pathways to recognize and
repair DNA damage. One of the most harmful forms
of DNA damage is the double-strand break (DSB). A
DSB can be induced directly by exposure to, for
instance, ionizing irradiation, or indirectly through
chemical modifications of the DNA that cause replica-
tion fork stalling and collapse in actively cycling cells.
In addition, DSBs are deliberately generated in meiotic
cells and in lymphocytes during V(D)J recombination
and class switch recombination [1]. When left unre-
paired, DSBs can cause a plethora of chromosomal
aberrations that often result in cell death or mutations
that can lead to cancer phenotypes [2].

There are two major pathways that repair DSBs:
non-homologous end-joining (NHEJ) and homologous
recombination (HR). Key NHEJ proteins are conserved
from yeast to humans, and include the Ku70–Ku80
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heterodimer that binds DNA ends with high affinity, as
well as XRCC4-like factor (XLF)/Cernunnos and
DNA ligase IV [3,4]. During NHEJ, DNA ends are
recognized, captured and brought together by Ku70–
Ku80. The Ku heterodimer recruits nucleases (Artemis
with DNA-dependent protein kinase catalytic subunit,
DNA-PKcs), polymerases (m and l) and the ligase com-
plex (XLF with DNA ligase IV). After little to no end
processing by the nucleases and polymerases, the ends
are directly ligated [5]. While NHEJ is highly efficient,
its imprecise nature makes it prone to mutations. NHEJ
is active throughout the entire cell cycle, but is the pre-
ferred mode of repair during G0, G1 and early S phase
[5]. HR, on the other hand, is generally restricted to
the late S and G2 phases of the cell cycle, as it usually
uses the intact sister chromatid as template for syn-
thesis-dependent repair in mitotic cells [6,7]. HR- or
homology-directed repair (HDR) initiates when the
Mre11–Rad50–Nbs1/Xrs2 (MRN) complex recognizes
and binds the DNA end. The DNA ends on both sides of
the DSB undergo 50 to 30 resection. Replication protein A
(RPA) complex binds the resulting 30 single-stranded
DNA (ssDNA) overhangs. In yeast, Rad52 catalyses the
assembly of Rad51 on the ssDNA, thereby displacing
RPA [8–10]. The Rad51-covered filament initiates the
homology search and catalyses strand exchange to allow
the priming of DNA replication to repair the DSB
[11,12]. HR is considered to be an error-free pathway,
This journal is q 2011 The Royal Society
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as it mainly uses the homologous sequence of the sister
chromatid as a template for repair. Interestingly, DSBs
in vertebrate cells are predominantly repaired by NHEJ
rather than HR. While it has been postulated that
chromosome condensation may make the search for
homology extremely difficult, thereby resulting in the
preferential use of NHEJ for DSB repair [13], chromo-
some condensation is not a feature of interphase
chromatin. Rather, interphase chromatin is wrapped
around histones, which has been thought to act as a
barrier for the successful recognition and capture of hom-
ology by an invading Rad51-covered filament. Several
studies performed in the last 5 years have however
shown that wrapping of DNA around histones does not
interfere with HR, both in vitro and in vivo [14–16].

Intriguingly, HR is essential for recombination
between homologous chromosomes in meiosis, which
is required for proper chromosome segregation and
generation of genetic diversity. A multitude of human
disease syndromes have been traced to NHEJ and HR
defects, including those characterized by neurological,
immunological and developmental disorders as well as
radiation sensitivity, premature ageing diseases and
cancer, stressing the importance of NHEJ and HR in
maintaining genome stability [17–22].

The preference for NHEJ in G1 phase and HR in S
and G2 phases implies that the modes of DSB repair
are regulated during the cell cycle. At the same time,
cell cycle checkpoints play a critical role in delaying
the onset of mitosis until DSB repair is complete,
otherwise chromosome fragments that are distal to
the DSB would be lost during nuclear division.
Here, we describe recent findings and provide insights
on how proteins that regulate cell cycle progression
affect DSB repair, and, conversely, how proteins that
repair DSBs affect cell cycle progression.
2. REGULATION OF CELL CYCLE PROGRESSION
In the early 1950s, the first experimental evidence was
published showing that plant and animal cells synthesize
DNA within a certain limited period during cell division
[23–26]. This led to the subdivision of cell division
into four distinct phases: the mitotic phase or M, the
first gap phase or G1, the DNA synthesis phase or S
and the second gap phase or G2. The discovery of
cyclin-dependent kinases (CDKs) provided the first
clues on how the transitions from initiation of DNA
replication and the entry into mitosis are regulated.
The identification of Cdc25 in Schizosaccharomyces
pombe, the phosphatase that activates Cdc2/Cdk1,
propelled the understanding on cell cycle regulation
further forward [27]. CDKs are protein Ser/Thr kinases
that bind a cyclin to form an active heterodimer. Cyclin–
CDK complexes are however kept in an inactive state
through inhibitory phosphorylation by Wee1 and Myt1
[28]. Cdc25 dephosphorylates Cdc2/Cdk1 within the
activation loop of the kinase domain to achieve full
activity of the cyclin–CDK complex [28]. In S. pombe
and Saccharomyces cerevisiae a single CDK, Cdc2 and
Cdc28, respectively, triggers both the G1 to S and G2
to M transition. While many CDKs exist in mammalian
cells, it appears that the Cdc2 homologue Cdk1,
which is necessary for the onset of mitosis and can
Phil. Trans. R. Soc. B (2011)
interact with all cyclins, can solely drive the essential
mammalian cell cycle in culture [29]. The lack of
Cdk1 results in embryonic lethality in mice, indicating
that the ability of other CDKs to compensate for Cdk1
is incomplete [29]. The reverse is also true, as triple
Cdk2 Cdk4 Cdk6 mutants lacking all interphase
CDKs show embryonic lethality [29].
3. HOW TO STALL THE CELL CYCLE AFTER DNA
DAMAGE
Cells are under constant attack by DNA-damaging
agents that interfere with the faithful transmission of
genetic information when a cell divides. As it takes
time to repair broken or damaged DNA, it is essential
that cycle progression can be temporarily stalled. In
the late 1980s, surveillance mechanisms that are
capable of delaying the cell cycle in the presence of
DNA damage were identified [30–32]. These mech-
anisms are now referred to as checkpoints.
Mammalian cells have three major DNA repair check-
points: G1/S, intra-S and G2/M [33], whereas fission
yeast appears to have only two: the intra-S and
G2/M checkpoints. In a simplified model of check-
points, four groups of proteins can be identified:
damage sensors, signal mediators, signal transducers
and effectors. In the case of DSBs, it appears that
the MRN complex serves as the main sensor, as it
recognizes and locates to the DSB during all stages
of the cell cycle [34,35]. MRN subsequently recruits
the Ataxia-telangiectasia-mutated (ATM, or Tel1 in
yeast) checkpoint kinase through binding to the
Nbs1 subunit [36–38]. ATM belongs to the phospho-
inositide-3 kinase-related protein kinase (PIKK)
family of kinases and activates checkpoint signalling
by phosphorylating downstream targets. Despite the
fact that the MRN complex is required for recruitment
of ATM in all species, the function of ATM at DSBs is
not conserved. In yeast, ATM is not required for DSB
repair but is primarily involved in telomere mainten-
ance [39]. Two other members of the PIKK family
kinases that play a role in checkpoint signalling are
ATM- and Rad3-related (ATR, or Rad3 in S. pombe)
and DNA–PKcs. Rad3 is recruited to sites of
damage by binding of its interaction partner Rad26/
ATRIP (ATR-interacting protein) to RPA-coated
ssDNA [40]. In yeast, it is Rad3 rather than Tel1
that is responsible for the DNA damage signalling
upon DSB detection [41,42]. DNA–PKcs, on the
other hand, for which no homologue is identified in
yeast, interacts with the Ku heterodimer, another
DNA damage sensor that recognizes and binds to
DSBs [43,44]. Activation of ATM, ATR and DNA–
PKcs depends on their recruitment to sites of
damage that is mediated through a conserved motif
found in Nbs1, ATRIP and Ku80, respectively [37].

The PIKK kinases serve as transducers of the
damage signal, ultimately phosphorylating and activat-
ing the downstream effector kinases: checkpoint
kinases 1 and 2 (Chk1 and Cds1 in S. pombe). The
relay of the signal from transducer to effector kinases
is facilitated and enhanced by mediator proteins
[45,46]. In S. pombe, a critical mediator for Chk1 acti-
vation is Crb2, as Crb2-deficient cells are unable to
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Figure 1. Homologous recombination (HR) repair activates the DNA damage checkpoint. Double-strand breaks formed in S
or G2 phases are processed for HR repair. Resection by nucleases generates 30 ssDNA overhangs that are bound by RPA, which

recruits the Rad3–Rad26 checkpoint kinase in Schizosaccharomyces pombe. Rad3 phosphorylates and thereby activates the
checkpoint kinase Chk1. This event requires the Rad9–Rad1–Hus1 checkpoint clamp and Crb2 mediator proteins (not
shown in the figure). Chk1 phosphorylates and thereby inactivates the mitotic inducer Cdc25, which is a protein phosphatase
that activates Cdc2. Cdc2 is kept in an inactive state by Wee1 protein kinase. Inhibition of Cdc25 by Chk1 delays the onset of
mitosis, which provides time to complete DSB repair. See main text for references.
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activate the G2/M checkpoint [47,48]. Two types of
histone modifications ensure that Crb2 localizes to
sites of damage: a tandem BRCA1 carboxyl terminal
(BRCT) domain in Crb2 binds to C-terminal phos-
phorylated histone H2A (g-H2A) [49,50], while a
tandem Tudor domain binds to dimethylated lysine
20 on histone H4 (H4-K20me2) [51,52]. Most
mediator proteins do not strictly depend on g-H2A/
H2AX for their recruitment to DSBs as they have
additional interactions with proteins that localize at
DSBs, rather, binding to g-H2A/H2AX is required
for the large scale and prolonged presence of these
proteins at the break [53]. Interestingly, the transducer
kinases ATM, ATR and DNA-PK (consisting of
DNA-PKcs and the Ku heterodimer) are responsible
for phosphorylation of H2A/H2AX [49,54,55]. A
second factor required for Rad3-dependent activation
of Chk1 is a protein complex consisting of Rad9–
Rad1–Hus1 (the 9-1-1- complex or DNA damage
checkpoint clamp) [56–59]. Interestingly, the loading
of this protein complex at DNA lesions is enhanced by
an interaction with RPA-coated ssDNA, similar to
Rad3–Rad26 [60,61].

The actual cell cycle arrest is imposed by the effec-
tor kinases Chk1 and Cds1. In fission yeast, Chk1 is
activated in G2, whereas Cds1 is activated in response
to stalled replication forks during the S phase [33].
Studies in fission yeast have identified Cdc25 as a
key target for Chk1 and Cds1 [62]. Phosphorylation
of active Cdc25 by Chk1 and Cds1 was shown to inhi-
bit Cdc25 activity [63]. In the absence of Cdc25, the
inhibitory phosphorylation on Cdc2 is not removed
and the cell cycle arrests. A representation of the inter-
actions between RPA, PIKK and checkpoint kinases,
Cdc25 and Cdc2 in S. pombe is shown in figure 1.
4. KU AND MRE11–RAD50–NBS1: MORE THAN
SIGNALLING
The first protein complexes that sense or recognize
DSBs are the Ku heterodimer and the MRN complex.
Besides initiating the activation of the DNA damage
checkpoint, these protein complexes are required for
Phil. Trans. R. Soc. B (2011)
the actual repair of DSBs by NHEJ and HR, respect-
ively. As mentioned earlier, Ku recruits DNA–PKcs
in mammalian cells to form DNA–PK and initiate
checkpoint signalling. In addition, Ku recruits the
XRCC4/DNA ligase IV complex that ligates the ends
together [64–67]. This step is stimulated by XLF/
Cernunnos [68,69]. Ku and the homologues of
DNA ligase IV and XLF are required for DSB
repair by NHEJ in all species [5,70–73], suggesting
a high conservation of the mode of action of NHEJ
repair. Interestingly, DNA–PKcs not only activates
checkpoint signalling but is also thought to function
as a bridging factor by bringing the two DNA
ends of a DSB to close proximity [74]. Yeast cells
lack DNA–PKcs, suggesting that the DNA end-
bridging function is performed by another protein.
The Mre11–Rad50–Xrs2 (MRX) complex may per-
form this function in budding yeast [75]. Curiously,
MRN is not required for NHEJ in S. pombe [71], leav-
ing open the bridging factor that brings the DNA ends
together for NHEJ.

The first essential step in HDR of DSBs is the 50 to 30

resection of the DNA ends. Current models, which are
largely based on studies performed with S. cerevisiae,
suggest that resection is a two-step process that can
be divided into resection initiation and resection exten-
sion. The MRN complex is required for the first step:
initiation of resection [76,77]. While Mre11 has
ssDNA endonuclease and 30 to 50 dsDNA exonuclease
activities in vitro [78], these activities are not actually
required for resection in budding yeast unless the exo-
nuclease 1 (Exo1) and Sgs1–Dna2 proteins required
for extended resection are absent (see below; [79–
81]). Mre11 nuclease mutants in budding yeast are
modestly sensitive to DNA-damaging agents such as
g-irradiation and methyl methanesulphonate, whereas
the analogous nuclease-deficient mutant in fission
yeast is highly sensitive to the same DNA-damaging
agents [82–84], although in neither species are they
as sensitive as Mre11 null mutants. This is in contrast
to a study performed in mouse embryonic fibroblasts
(MEFs), which indicated that Mre11 nuclease mutants
phenocopy Mre11 deficiency [85]. While studies of
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Mre11 nuclease mutants in S. pombe have revealed a
role for Mre11 nuclease activity in the processing of
DNA ends that are covalently bound by protein [86–
88], the function of Mre11 nuclease activity in the
repair of DSBs arising from g-irradiation remains a
mystery.

The initiation of resection also involves the Sae2
protein in budding yeast [76,77]. However, as seen
for mutants defective in Mre11 nuclease activities,
the resection and DSB defects of sae2D mutants are
modest in comparison with mrxD mutants, which
lack one of the subunits of the MRX complex [80].
The contribution of Sae2 to resection becomes clear
when the Exo1- and Sgs1-dependent activities
required for extended resection are eliminated. In sup-
port of its role in resection, Sae2 was shown to have
nuclease functions in vitro [89]. Schizosaccharomyces
pombe Ctp1 and mammalian CtBP interacting protein
(CtIP) share sequence similarities to Sae2 and are pre-
sumed to be Sae2 orthologues, although it is unknown
whether they share the nuclease activities detected
with Sae2. In contrast to sae2D mutants, which are
only weakly sensitive to most DNA-damaging agents,
S. pombe cpt1D cells are acutely sensitive to DNA-
damaging agents, showing phenotypes equivalent to
mrnD mutants [90–92]. The reasons for these species
differences in the requirements for Sae2 versus Ctp1
are unknown, but they suggest that Ctp1 may be criti-
cal for resection in an otherwise wild-type background.
This prediction is supported by chromatin immuno-
precipitation (ChIP) studies showing that RPA
localization at a site-specific DSB is strongly dimin-
ished in cpt1D cells [90]. It will be interesting to
quantitatively measure resection of DNA ends in vivo
in fission yeast to determine the effects of Ctp1 and
MRN deletion on resection. Interestingly, siRNA
experiments in mammalian cells showed that the for-
mation of RPA foci is diminished when CtIP is
knocked down [93], which indicates that CtIP may
be required for efficient resection. From these studies,
it appears that both Ctp1/CtIP may be critical for pro-
cessing of DSBs in fission yeast and mammals,
whereas Sae2 is less crucial in budding yeast, perhaps
because alternative activities can more effectively sub-
stitute for Sae2. Curiously, Ctp1 and CtIP are recruited
to DSBs through interaction with the Nbs1 subunit of
the MRN complex [90,93], while Sae2 does not require
the MRX protein complex to localize to DSBs [34]. CtIP
localization at DSBs also requires an interaction with the
tumour suppressor protein breast cancer 1 (BRCA1),
which does not exist in budding or fission yeasts [94,95].

The second phase of resection that extends ssDNA
formation several kilobases from the break involves the
exonuclease Exo1 or the DNA helicase Sgs1 acting
with the Dna2 nuclease [76,77]. Recently, several labora-
tories reconstituted the resection process in vitro, using
either budding yeast Sgs1/Dna2/MRX or Exo1/MRX/
Sae2 or mammalian Bloom’s syndrome protein
(BLM)/EXO1/MRN [96–98].

After resection, the newly generated ssDNA is coated
by RPA to protect from degradation and allow the
exchange of RPA with Rad51. The formation of RPA-
coated ssDNA can be visualized by fluorescent tagging
of RPA and monitoring the appearance of repair foci.
Phil. Trans. R. Soc. B (2011)
This method is commonly used in mammalian cells,
where it has so far not been possible to quantitatively
measure resection. Using this technique, it was shown
that depletion of CtIP, BLM (mammalian homologue
of Sgs1) or EXO1 results in decreased RPA foci for-
mation [93,99,100], supporting the idea that the three
resection activities defined in budding yeast are con-
served in mammals. Decreased RPA foci formation and
reduced Chk1 phosphorylation after g-irradiation was
also observed in Mre11 nuclease-deficient MEFs [85].
This result is intriguing, as budding yeast nuclease-
deficient Mre11 mutants do not show reduced ssDNA
formation at DSBs [79]. These data suggest that
Mre11 nuclease activity may be required for efficient
resection of ionizing radiation (IR)-induced DSBs in
mammalian cells.
5. NON-HOMOLOGOUS END-JOINING OR
HOMOLOGOUS RECOMBINATION: COMPETING
INTERESTS?
It is clear that there are two protein complexes that can
recognize DNA ends and each of them initiates a
different mode of DSB repair. How do cells decide
which pathway to use? Do NHEJ and HR proteins
compete with each other for the same DNA end? Sev-
eral studies have shown that Ku indeed interferes with
repair of DSBs by HR [90,101–105]. More specifi-
cally, Ku inhibits Exo1-dependent resection in
budding yeast, which is most apparent in the absence
of MRN or Sae2 [80,81]. It would therefore seem a
good idea to be able to remove Ku from DNA ends
to allow resection to activate repair by HR. ChIP
experiments in S. cerevisiae showing increased pres-
ence of Ku at DSBs in the absence of the MRX
complex suggest that MRX displaces Ku from the
DNA end [66,81,106]. While these results can be
explained by competition between Ku and MRX for
DNA ends, MRX is required for efficient NHEJ in
budding yeast, arguing against this idea [72,107]. It
therefore appears that Ku and MRN are not merely
competing for DNA ends, but that MRN can actively
release Ku from DNA ends when HR is the favoured
mode of DSB repair.

Curiously, despite the fact that deletion of the Ku
heterodimer in Mre11 nuclease-deficient budding
yeast can improve cell survival upon high doses of
IR, Mre11 nuclease activity is not required to
remove Ku from DSBs [66,81]. In comparison with
S. cerevisiae, Mre11 nuclease activity is more critical
for survival of IR-induced DSBs in fission yeast, but
this defect can be very effectively suppressed by elimi-
nating Ku [80,84]. It will therefore be interesting to
investigate the interplay between MRN and Ku in
fission yeast, as it may reveal the mysterious function
of Mre11 nuclease activity.
6. CELL CYCLE REGULATION OF
HOMOLOGOUS RECOMBINATION
While it seems sensible to use HR activities to prevent
NHEJ when a template is available for HDR, it increases
the complexity of DSB repair. If the MRN complex is
constantly available to bind DSBs and displace or
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which is required for HR repair of DSBs in fission yeast. In S. cerevisiae, Sae2 is expressed throughout the cell cycle, but its
activity depends on phosphorylation by Cdc28. Both MRX and Sae2 locate to the DSB, but in contrast to fission yeast,
Sae2 binds to DSBs independently of MRX. Sae2 and MRX initiate resection, with extended resection performed by Exo1
or Sgs1–Dna2. See main text for references.
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actively release Ku from DNA ends, then NHEJ would
never get a chance to repair DSBs. This suggests that the
binding of the MRN complex to DNA ends is insuffi-
cient to promote HR at the expense of NHEJ. As HR
repair is most favoured during S and G2 phases, it is
likely that cell cycle-regulating proteins are involved in
this decision-making step. One way to control MRN
and Ctp1 activity during the cell cycle would be to regu-
late their abundance à la B-type cyclins. The MRN/X
protein complex is however assembled and abundant
throughout the cell cycle in all organisms that have
been studied. On the other hand, the abundance of fis-
sion yeast Ctp1 and its human homologue CtIP are cell
cycle-regulated, with no (Ctp1) to low (CtIP) protein in
G1 and the highest amount observed during S and G2
phases [90,108]. Transcription of ctp1þmRNA is regu-
lated by MluI binding factor (MBF), a transcription
factor responsible for the periodic expression of a large
Phil. Trans. R. Soc. B (2011)
set of genes that are required for DNA replication and
other cell cycle-regulated events [79]. MBF activity is
regulated by CDKs, thus the same activity that drives
the transition from G1 to S phase is also responsible
for the expression of ctp1þ mRNA (figure 2). In view
of the critical roles that Ctp1 and CtIP have in promot-
ing HDR, it is likely that the onset of their expression in
late G1 phase is a major determining factor in the switch
from NHEJ to HR as the preferred mode of DSB repair
at that stage of the cell cycle.

Another way to potentially control the mode of
DSB repair is to regulate protein activity through
post-translational modification, such as phosphoryl-
ation by protein kinases. CDKs are the obvious
candidates, as the increase in CDK activity that trig-
gers the G1–S transition coincides with the switch
from NHEJ to HR as the preferred mode of DSB
repair. Indeed, studies of S. cerevisiae in the
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mid-2000s showed that resection is decreased in the
absence of CDK1 (Cdc28) activity [109–111]. This
was followed by the discovery that Cdc28 phosphory-
lates Sae2 on Ser267 in a region of sequence similarity
with CtIP ([112]; figure 2). Interestingly, this C-term-
inal domain is absent in S. pombe, plants and in some
other species, indicating that it was lost from these
organisms during evolution. Mutating Ser267 in
Sae2 to abolish phosphorylation reduces processing
of DSBs and increases sensitivity to DSB-inducing
agents [112]. Later studies with CtIP identified a cor-
responding phosphorylation at Thr847, which is part
of a CDK-consensus motif [113]. Mutation of this
residue impaired CtIP function. CtIP is phosphory-
lated on a second site, Ser327, enabling the
interaction of CtIP with BRCA1 that is necessary to
recruit CtIP to DSBs [94,114]. Curiously, while
Ctp1 is phosphorylated both basally and upon DNA
damage, only basal phosphorylation is partially
CDK-dependent and even then does not appear to
affect the DNA repair-associated activities of Ctp1
[115]. Rather, DNA damage-induced phosphorylation
of Ctp1 is suggested to be required for localization of
Ctp1 to DSBs through the interaction with Nbs1
[116–118].
7. CONCLUDING REMARKS
Years of inspired research have culminated in a good
understanding of the processes of DSB repair. Most
or all of the proteins involved in HR are known, and
more specifically, we have a good working knowledge
on the nucleases and helicases responsible for the
resection during HR in S. cerevisiae. The proteins
required for NHEJ have also been characterized.
Additionally, much is understood about how check-
points detect DNA damage and regulate the cell
cycle, and conversely, how cell cycle status influences
the mode of DSB repair used by the cell. One of the
next steps is likely to be in the direction of how resec-
tion is switched off. This may involve proteins
belonging to the checkpoint-signalling pathway. In
fact, it appears that the mediator proteins Rad9
in budding yeast (Crb2 in S. pombe) and 53BP1 in
mammalian cells inhibit resection of DNA ends
[119–121]. Interestingly, all three homologues are
phosphorylated by CDKs [122–124]. The effect of
this phosphorylation remains to be elucidated.
8. NOTE ADDED IN PROOF
Two late-breaking studies address important topics of
this review. Cdk1, which activates Sae2/CtIP, was
found to also activate Dna2, the partner of Sgs1 in
budding yeast [125]. Ctp1, the S. pombe Sae2/CtIP
orthologue, was shown to be crucial for resection
initiation and release of Ku from DNA ends [126].
Mre11 endonuclease activity was found to be dispen-
sable for resection while essential for efficient release
of Ku and accumulation of RPA on resected DNA
ends [126]. These results correlate with the strong
radiosensitive phenotypes of mutants lacking Mre11
endonuclease activity or Ctp1 [84,90].
Phil. Trans. R. Soc. B (2011)
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