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To evaluate the thermo-responsive poly(N-isopropylacrylamide) (PNiPAAm) polymer as an
adjuvant, we synthesized PNiPAAm through free radical polymerization and characterized
it both in vitro and in vivo. The polymer when mixed with collagen type II (CII) induced
antigen-specific autoimmunity and arthritis. Mice immunized with PNiPAAm–CII developed
significant levels of CII-specific IgG response comprising major IgG subclasses. Antigen-specific
cellular recall response was also enhanced in these mice, while negligible level of IFN-g was
detected in splenocyte cultures, in vitro. PNiPAAm–CII-immunized arthritic mouse paws
showed massive infiltration of immune cells and extensive damage to cartilage and bone. As
determined by immunostaining, most of the CII protein retained its native configuration
after injecting it with PNiPAAm in naive mice. Physical adsorption of CII and the high-
molecular-weight form of moderately hydrophobic PNiPAAm induced a significant anti-CII
antibody response. Similar to CII, mice immunized with PNiPAAm and ovalbumin
(PNiPAAm–Ova) induced significant anti-ovalbumin antibody response. Comparable levels
of serum IFN-g, IL-1b and IL-17 were observed in ovalbumin-immunized mice with complete
Freund, incomplete Freund (CFA and IFA) or PNiPAAm adjuvants. However, serum IL-4
levels were significantly higher in PNiPAAm–Ova and CFA–Ova groups compared with
the IFA–Ova group. Thus, we show for the first time, biocompatible and biodegradable
thermo-responsive PNiPAAm can be used as an adjuvant in several immunological appli-
cations as well as in better understanding of the autoimmune responses against self-proteins.
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1. INTRODUCTION

Rheumatoid arthritis (RA) is an autoimmune disease
mediated by the concerted action of the innate and
acquired immune system in which inflammation is
associated with progressive destruction of the extra-
cellular matrices of bone and cartilage. To dissect
disease pathways and genes modulating arthritis devel-
opment, several animal models are used [1,2]. Most of
the induced models of arthritis (both chronic and
acute) use an adjuvant either at the time of adminis-
tration of protein antigen or later for inducing/
enhancing disease development. The most commonly
used adjuvants contain bacterial derivatives with or
without mineral oil, but they often tend to strongly
deviate the ensuing immune response [3,4], thereby
precluding our understanding of the actual immune
orrespondence (nandakumar.kutty-selva@ki.se).
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response to self-proteins. Furthermore, several local
and systemic toxicities have been associated with
these adjuvants and thus have restrictions for
common use. In this context, a number of natural and
synthetic molecules have been analysed for their adju-
vant properties [5] and the mechanism(s) of action of
these diverse compounds vary, as does their induction
of immune responses. Hence, searching for ideal adju-
vants that are biocompatible, modifiable but do not
strongly deviate the immune system could be useful to
study autoimmunity and autoimmune diseases.

Stimulus-responsive or smart polymers have evolved
as an important class of polymeric materials having sev-
eral important biomedical and industrial applications
[6–8]. These polymers undergo sharp reversible phase
transition in response to small changes in environmental
stimuli such as pH, temperature, ionic strength, electric
field or light [6]. Thermo-responsive polymers are one of
This journal is q 2011 The Royal Society
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the classes of responsive polymers that respond to
change in temperature and undergo reversible phase
change at above and below their critical tempera-
ture [9]. Among them, poly(N-isopropylacrylamide)
(PNiPAAm) is one of the typical examples that has
been widely studied for various biotechnological appli-
cations. PNiPAAm has a lower critical solution
temperature (LCST) of precipitation around 32.58C in
water and changes reversibly from hydrophilic below
this temperature to hydrophobic above it [10]. The
reversible phase transition of PNiPAAm can be used
for colloid suspension formation together with an anti-
gen or any other biomolecule as the temperature is
increased above the LCST, thus providing the possi-
bility of their use as an adjuvant in combination with
a specific antigen.

Although the nature of the autoantigens in RA is not
yet clarified, collagen type II (CII), which is present
abundantly in the articular cartilage, the site of inflam-
matory attack in arthritis, is a potential candidate
autoantigen. Immunization of mice with CII and an
adjuvant induces arthritis that resembles human RA,
the so-called collagen-induced arthritis (CIA) model.
CIA is the widely used animal model for not only
dissecting pathogenic mechanisms and identifying
gene targets but also for testing potential drug
candidates modifying arthritis disease process. Here,
we synthesized the thermo-responsive PNiPAAm
and characterized it both in vitro as well as in vivo.
PNiPAAm was tested for its adjuvant properties with
CII and ovalbumin and compared with Freund’s
adjuvant(s).
2. MATERIAL AND METHODS

2.1. Mice

Founders of B10.RIII/Rhd mice were from Prof. Jan
Klein (Professor Emeritus, Tübingen University,
Tübingen, Germany). Breeding pairs of C57BL/6NJ
mice were from Jackson Laboratories (Bar Harbor,
ME, USA). Rhd indicates that this classic inbred
mouse strain has been maintained in our laboratory
for more than two decades. Age-matched 8–12-week-
old mice of both genders were used for experiments.
All the animals were kept in a climate-controlled
environment having 12 L : 12 D cycles in polystyrene
cages containing wood shavings under specific
pathogen-free conditions, fed standard rodent chow
and water ad libitum. Local (Stockholm, Sweden)
animal welfare authorities approved the animal experi-
ments (permit numbers: N310-07, M107-07 and N66-10).
2.2. Antigens and antibodies

CII was prepared from nasal bovine cartilage by pepsin
digestion and further purified as described earlier [11].
Monoclonal antibodies CB20 (against native confor-
mation of collagen II) [12] and GB8 (against denatured
form of collagen) [13] were generated, characterized, affi-
nity purified and biotinylated for further use. Ovalbumin
protein grade II was obtained from Sigma-Aldrich
(St Louis, MO, USA).
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2.3. Poly(N-isopropylacrylamide) synthesis

N-isopropylacrylamide (NiPAAm) was purchased from
Acros Organics (Schwerte, Germany). Ammonium
persulphate (APS) and N,N,N 0,N 0-tetramethylethylene-
diamine (TEMED) were from Sisco Research
Laboratories Pvt Ltd (Mumbai, India). PNiPAAm
was synthesized through free radical polymerization
by using APS and TEMED. For synthesis of PNiPAAm
(1%, w/v), 100 mg of NiPAAm was dissolved in 10 ml
of degassed water. Initially, the solution was bubbled
with N2 gas for 20 min and free radical polymerization
was initiated by adding 15 mg of APS and 19.5 ml of
TEMED. The reaction vial was immediately filled
with nitrogen and tightly sealed. The reaction was
stopped after 18 h by salt-induced thermal precipitation.
The thermo-precipitation (408C) and redissolution
(48C) were done two times to ensure complete removal
of unreacted monomers and the polymer was freeze-
dried for further use. The PNiPAAm with 70 and
120 kDa molecular weight was prepared through ter-
mination of free radical polymerization reaction at
two different time points, 8 and 12 h, respectively.

2.4. Lower critical solution temperature
determination

The LCST or cloud point of synthesized PNiPAAm
(0.1%, w/v) was determined by an abrupt change in
the absorbance of the polymer solution at 450 nm,
using a HElIOS a spectrophotometer (Thermo Electron
Corporation, Cambridge, UK) [14]. The temperature of
the solution was maintained using cryostat Julabo F34
(Julabo Labortechnik GmbH, Seelbach, Germany) for
10 min, followed by a gradual increase of 18C to observe
the sudden change in solution phase, which represents
the average value of LCST.

2.5. Molecular weight determination

The molecular weight of PNiPAAm was determined
by gel permeation chromatography (GPC) (Waters,
Milford, MA, USA) using tetrahydrofuran (THF) as an
eluent and polystyrene as calibration standard. Lyophi-
lized PNiPAAm was dissolved in the THF solvent and
filtered through the THF-based 0.2 mm filter (Millipore,
Billerica, MA, USA) and passed through the Stryagel
HR 3&4 THF 7.8 � 300 mm column. A differential
refractive index detector (Waters) was used for detec-
tion. PNiPAAm was injected at a flow rate of
1.0 ml min21 (Waters 515 HPLC pump) and the mol-
ecular weight was calculated using Empower 2 build
2154 Waters software (Waters) using the polystyrene
standard plot.

2.6. Covalent coupling of collagen type II with
poly(N-isopropylacrylamide)

The covalent coupling of CII with PNiPAAm was per-
formed by a copolymerization approach [15]. At first,
chemical modification of CII was carried out by itaconic
anhydride. Briefly, the CII protein (1 mg ml–1) was dis-
solved in 50 mM potassium phosphate buffer, pH 6.0.
Itaconic anhydride (2.75 mg ml–1) and 1.5 M glucose
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were added simultaneously at 48C for 2 h in the reaction
mixture. After completion of reaction, unreacted
itaconic anhydride was removed through dialysis in
potassium phosphate buffer, pH 7.0, at 48C. Chemically
modified CII thus obtained was copolymerized with
NiPAAm monomers at 48C for 12 h. PNiPAAm copoly-
merized with CII was precipitated by adding 0.05 M
NaCl at 408C and dissolved in cold phosphate buffer
saline for further use.
2.7. Biotinylation and modification of
poly(N-isopropylacrylamide)

For biotinylation of the polymer, NiPAAm monomers
were copolymerized with allylamine monomers through
free radical polymerization. The resulting block poly-
mer PNiPAAm-co-allylamine has the primary amino
groups (-NH2), which is the preferential site for biotiny-
lation reagents containing N-hydroxysulphosuccinimide
(sulpho-NHS) esters. Briefly, the PNiPAAm-co-allyla-
mine block polymer was dissolved in 50 mM
phosphate buffer, pH 6.5, and incubated with 10 mM
sulpho-NHS-biotin reagent (Pierce, Rockford, IL, USA)
for 24 h at 48C. The unreacted impurities were removed
by dialysis. Similarly, increasing the amount of primary
amino groups by incorporating allylamine modified the
hydrophilicity of PNiPAAm. NiPAAm and allylamine
monomers have been copolymerized through the free
radical process in the ratio of 5 : 1 and 5 : 2 for this
purpose and used in further experiments.

2.8. In vitro release of collagen II from
poly(N-isopropylacrylamide)

One hundred microlitres of CII (1 mg ml–1) was mixed
with 100 mg of PNiPAAm and incubated at 378C. At
different time intervals, supernatants were collected.
The released protein content was estimated by the
bicinchoninic acid protein assay kit (Pierce, Rockford,
IL, USA). To eliminate background signal, a control
consisting of only polymers without protein was used
and experiments were performed in triplicates.

2.9. In vitro biocompatibility of
poly(N-isopropylacrylamide)

For determination of cell viability and proliferation of
cells on the PNiPAAm surface, a 3-(4,5-dimethylthia-
zol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay
was carried out [16]. It is one of the colorimetric
methods for estimation of cell growth and proliferation,
based on the principle of live cell mitochondria oxidiz-
ing the MTT reagent and giving a blue–violet colour,
which was quantified by spectrophotometric analysis.
Briefly, human fibrosarcoma HT-1080 cells were incu-
bated on the polymer surface for the purpose of
determining cell proliferation and cytotoxicity effects
of the material on the cells. The culture medium was
removed after allowing the cells to attain 70 per cent
confluence, followed by monitoring for cell viability.
The serum-free DMEM culture medium containing
MTT (0.5 mg ml–1) was added to each sample and
incubated for 4 h. The medium containing MTT was
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removed, followed by the addition of dimethylsulphox-
ide (1.5 ml) into each sample to dissolve the formazan
crystals formed by the living cells, and the sample was
incubated for 15 min at 378C. Supernatants were
removed from each sample and the absorbance was
read at 540 nm. All the above experiments were per-
formed in triplicates.
2.10. Arthritis induction

Adjuvancity of PNiPAAm was evaluated in 7–10-
week-old B10.RIII mice. Mice were distributed equally
in all three different groups, viz. CFA–CII, PNi-
PAAm–CII and PNiPAAm–Ova. CII or ovalbumin
emulsified in complete Freund adjuvant (CFA; Difco,
Detroit, MI, USA) constituted positive and negative
controls, respectively. Both CII and ovalbumin proteins
(1 mg ml–1) were mixed with PNiPAAm separately and
100 mg of antigen–polymer mixture (1 : 1) was injected
subcutaneously on day 0 and boosted with 50 mg of the
respective antigen–polymer mixture (1 : 1) on day 21 or
35. Serum samples were collected on different days for
analysis of antibody levels and cytokines.

2.11. Detection of collagen type II conformation
with poly(N-isopropylacrylamide)

Immunostaining was performed to detect changes in the
conformation of CII after mixing it with PNiPAAm.
PNiPAAm–CII was injected subcutaneously and after
3 h, tissues surrounding the injection site were collected
for immunohistochemistry. Sections of 5–10 mm were
fixed in acetone, dried and incubated with a blocking
solution containing 10 per cent bovine serum albumin,
2 per cent rat serum and avidin for 30 min. After wash-
ing with trisbuffered saline, inherent avidin present in
the tissues was blocked using biotin solution for
30 min, followed by washing and incubation with bioti-
nylated CB20 or GB8 monoclonal antibodies. Sections
were blocked for endogenous peroxidase using H2O2

(3%, v/v) in methanol before adding DAB peroxidase
substrate solution (Vector Laboratories Inc., Burlin-
game, CA, USA). Counterstaining was performed
using haematoxylin.

2.12. Anti-collagen type II antibody response

The amounts of total anti-CII IgG were determined
through quantitative ELISA as described earlier [17].
Affinity-purified anti-CII antibody from pooled sera of
CII-immunized mice or pooled sera were used as the
standard. Biotinylated goat anti-mouse IgG (Southern
Biotech, Birmingham, AL, USA) or mouse anti-mouse
IgG2c (BD), or peroxidase-conjugated goat anti-
mouse antibodies specific for IgG1, IgG2b or IgG3
(Southern Biotech) were used as detecting antibodies.
Binding of biotinylated antibodies was revealed by
extravidin peroxidase (Sigma-Aldrich). It is of interest
to note that B10 mice express IgG2a-related allele,
viz. IgG2c [18]. Plates were developed using ABTS
(Roche Diagnostic Systems) as the substrate, and
measured at 405 nm (Synergy-2, BioTek Instruments
Inc., Winooski, VT, USA). Isotype levels were measured
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as arbitrary units using pooled sera from arthritic mice
as the standard.
2.13. Clinical evaluation of arthritis
and histology

Mice were examined for arthritis development twice per
week. Scoring of animals was done blindly using a scor-
ing system based on the number of inflamed joints in
each paw, inflammation being defined by swelling and
redness [19]. In this scoring system, each inflamed toe
or knuckle gives one point, whereas an inflamed wrist
or ankle gives five points, resulting in a score of 0–15
(five toes þ five knuckles þ one wrist/ankle) for
each paw and 0–60 points for each mouse. After
fixation with phosphate-buffered paraformaldehyde
solution for 24 h and decalcification for three to four
weeks in an ethylenediaminetetraacetic acid solution
containing polyvinylpyrrolidone and tris (pH 6.9),
paws were dehydrated and embedded in paraffin
blocks. Joint sections (6 mm) were stained with haema-
toxylin–eosin to visualize morphology and infiltration
of immune cells.
2.14. Proliferation and cytokine assays

Proliferation studies of cells from splenocytes (10 days
after immunization with 100 mg of CII and PNiPAAm
at the base of the tail of B10. RIII mice) were performed
as described earlier [20]. Briefly, lymphocytes were cul-
tured at a concentration of 1 � 106 cells per well for 72 h
with medium alone, 50 mg ml–1 bovine CII, 5 mg ml–1

of concanavalin A (ConA; Sigma) or 0.5 mg ml–1 of
anti-CD3 (clone 17A2, eBioscience, Inc., San Diego,
CA, USA) in DMEM þ Glutamax-I (Gibco) sup-
plemented with 5 per cent heat-inactivated foetal calf
serum and penicillin/streptomycin and then pulsed
with [3H] thymidine (Amersham Biosciences) for a
further period of 15–18 h, as previously described.
Supernatant of cultured cells was collected after 72 h
for IFN-g measurement. IFN-g levels were determined
by coating microtitre plates with anti-IFN-g (AN18)
in PBS overnight. After blocking with BSA (1%, w/v)
in PBS, supernatant was added to these plates.
Biotinylated anti-IFN-g-bio (R46-A2) was used as
the secondary antibody. Mice immunized with
PNiPAAm–ovalbumin were used to measure serum
IL-1, IL-4, IFN-g and IL-17 levels. IL-1 levels were
measured using the assay kit supplied by eBioscience
Inc. Serum IL-4 (using 11B11 and BVD6-24G2-bio,
BD biosciences) and IL-17 (using TC11-18H10 and
TCH11-8H4.1-bio, BD biosciences) levels were
measured by ELISA similar to IFN-g. Recombinant
cytokines were used as standards.
2.15. Statistical analyses

A Mann–Whitney U-ranking test in STATVIEW 5.0.1
software version (SAS Institute, NC, USA) was used
for statistical calculations. Significance was considered
when p , 0.05 for a 95% confidence interval.
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3. RESULTS

3.1. In vitro and in vivo characterization of
poly(N-isopropylacrylamide)

PNiPAAm was synthesized by the free radical polymer-
ization procedure as described in detail earlier [21]. The
number-average (Mn) and weight-average molecular
weight (Mw) of the polymer as determined by the
GPC was used to calculate the polydispersity index
(PDI). The Mw and the Mn of PNiPAAm were found
to be 120 and 110 kDa, respectively, with a PDI of
1.1, which ensures homogeneity of the polymer. We
used PNiPAAm with CII to understand whether PNi-
PAAm can act as an adjuvant in arthritis induction
in mice. To do this, at first, we characterized the poly-
mer both in vitro and in vivo. PNiPAAm entraps an
antigen by its precipitation property [22], and the
possible interactions of PNiPAAm with CII are schema-
tically represented in figure 1a. LCST of the newly
synthesized PNiPAAm was found to be 328C
(figure 1b). We studied the pattern of CII released
from PNiPAAm at 378C (figure 1c). After 24 h, the
release of CII from PNiPAAm was high and then it
increased slowly to reach the plateau level. Interest-
ingly, CII thus released was found to mostly retain
the native triple helical conformation (figure 1d), and the
majority of the antibodies generated in mice immunized
with PNiPAAm–CII, similar to the CFA–CII group,
recognized the native CII conformation (figure 1e). We
found 100 mg each of PNiPAAm and CII (1 : 1) as the
optimal dose for immunization that induced a high level
of anti-CII antibody response (figure 1f ).

Furthermore, hydrophilicity effect on the adjuvant
potential of PNiPAAm has been analysed by increasing
the amount of primary amino groups with PNiPAAm
by allylamine incorporation. NiPAAm and allylamine
monomers were copolymerized through the free radical
process in ratios of 5 : 1 and 5 : 2. The synthesized
PNiPAAm and its copolymers were injected with CII,
and serum anti-CII antibody levels were measured
after 21 days of immunization. Interestingly, increasing
the hydrophilicity of PNiPAAm significantly reduced
the adjuvant properties of PNiPAAm (figure 2a).
Using the MTT assay with the human fibroblast cell
line, we could ascertain the biocompatibility function
(support for cell growth) of PNiPAAm in vitro
(figure 2b). Similarly, we found that CII interacting
with PNiPAAm non-covalently induced a highly signifi-
cant level of anti-CII antibody response compared with
CII that was covalently linked to PNiPAAm (figure 2c),
suggesting a depot effect (sustained release of the antigen
from a depot) might be one of the major modes of actions
of this polymer. We also found that high- but not low-
molecular-weight (120 versus 70 kDa) PNiPAAm mixed
with CII induced a significant level of antibody response
(figure 2d). To understand the in vivo gravimetric degra-
dation kinetics of PNiPAAm, we implanted PNiPAAm
in the form of a hydrogel at the back of the B10.RIII
mice. As shown in figure 2e, nearly 75 per cent of
the implanted polymer by weight was degraded within
four weeks.

To assess the bio-distribution of PNiPAAm in vivo, we
synthesized the block polymer PNiPAAm-co-allylamine,
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Figure 1. In vitro and in vivo characterization of PNiPAAm. Schematic of thermo-responsive behaviour of PNiPAAm with
CII (a). Below LCST (approx. 328C) (b), 100 mg of PNiPAAm mixed with 100 mg of CII (1 mg ml21) remains in solution and
above this temperature forms a lattice incorporating CII; in vitro release profile of CII from PNiPAAm at 378C (c); percentage
of released CII retaining native CII conformation from PNiPAAm–CII mixture (100 mg each at 1 : 1 ratio) in vitro (d); serum
antibody response recognizing native and/or denatured conformation of CII (units per ml) (e). Optimization of PNiPAAm con-
centration (50–200 mg) for immunization mixed with 100 mg of CII ( f ) after 21 days of injection. Error bars denote +s.e.m.
(e) Black bars, native CII; white bars, denatured CII.
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conjugated with biotin and injected into the mice at the
base of the tail. The lymphoid organs were harvested at
different time points for analysis. As shown in
figure 3a–i, PNiPAAm can be detected strongly in
the peripheral lymphoid organs but weakly in the
thymus after 24 h. After four weeks, PNiPAAm stain-
ing was weak in all the organs tested. Furthermore, a
monoclonal antibody specific for the native (CB20)
but not the denatured form (GB8) of CII detected the
collagen present in the surrounding tissue at the site
of PNiPAAm–CII immunization after 3 h (figure 3j–k).
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Further characterization of PNiPAAm was done for
in vivo gelation and systemic toxicity (data not shown).
Briefly, after injection into the base of the tail, we
found relatively stable gelation of PNiPAAm after
20 min because of its LCST, which is below the body
temperature. Systemic toxicity occurs owing to leaching
of the injected polymer and its distribution in the blood
and lymphatic system. However, we did not find
any detectable serum TNF-a response, which was used
as a measurement of systemic toxic response to the
injected polymer.
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Figure 2. Physical and biochemical characterization of PNiPAAm. Hydrophilicity effect on the adjuvant potential of PNiPAAm
(a); MTT cell proliferation assay of HT1080 cell line grown over the PNiPAAm surface (b); antibody response to CII (units per
ml) in mice immunized with PNiPAAm incorporating CII in a non-covalent and covalent method (c); antibody response to CII
(units per ml) in mice immunized with CII mixed with two different molecular weight forms of PNiPAAm (120 and 70 kDa)
(d); gravimetric degradation kinetics of PNiPAAm at different time points in vivo (e). ***p , 0.001. Error bars denote
+s.e.m. (b) Black bars, PNiPAAm; white bars, control.
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3.2. Arthritis induction with collagen type II
and the polymeric adjuvant

In order to use the synthetic polymer as an adjuvant,
we tested PNiPAAm in arthritis experiments. Thirty-
eight per cent of the B10.RIII mice developed arthritis
after PNiPAAm–CII immunization with a mean maxi-
mum score of 22+ 3 (figure 4a,b). Antibody response in
the PNiPAAm–CII group (figure 4c) was found to be
similar to the CFA–CII group, and there was no
difference in the distribution of major IgG subclasses
between the groups except in the IgG3 subclass
(figure 4d). Antibodies thus produced were specific to
CII, which showed negligible binding to ovalbumin
(figure 4e), suggesting the absence of any B-cell mito-
genic response owing to the injected polymer. Massive
infiltration of immune cells was observed in the
joints of mice that developed arthritis in the PNi-
PAAm–CII group with extensive damage to cartilage
and bone structures (figure 4f–h). Furthermore,
similar to the PNiPAAm–CII group, a high level of
J. R. Soc. Interface (2011)
antibody response to the globular protein, ovalbumin,
was observed in PNiPAAm–Ova-immunized mice
(figure 4e) with negligible cross-reactivity to CII.
We also found a significant antigen-specific T cell
recall response, when splenocytes from PNiPAAm–
CII mice were tested in the lymphocyte proliferation
assay (figure 5a), but IFN-g levels were found to be
similar to that of the control group (figure 5b).
3.3. Serum cytokine levels

Th1 cells produce IFN-g and mediate protection against
intracellular pathogens, Th2 cells produce IL-4, IL-13
and IL-25 and are involved in the clearance of extracellu-
lar pathogens, whereas Th17 cells produce IL-17 and
induce the production of proinflammatory cytokines,
chemokines and metalloproteinases [23]. To understand
whether the PNiPAAm adjuvant is capable of inducing
all the three T-helper cell populations, we measured
serum IFN-g, IL-4 and IL-17 levels as an indicator of
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Figure 3. Bio-distribution of the biotinylated polymer in different lymphoid organs. Tissue sections from control mice (a,d,g) and
mice sacrificed on day 1 (b,e,h) and day 30 (c,f,i) after biotinylated PNiPAAm-co-allylamine injection are shown. Lymph nodes
(a–c), spleen (d–f) and thymus (g–i) samples were used. Liver sections did not show any staining for the polymer (data not
shown). Immunostaining of CII with monoclonal antibodies recognizing native ( j) CB20 or denatured (k) GB8 conformations.
Control staining (l ). All the images were taken at 20� magnification. (Online version in colour.)
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activation of these cells. Interestingly, all these three
cytokines were found to be elevated in the PNiPAAm
adjuvant group (figure 5c–e). Similarly, the serum
IL-1b level was enhanced when PNiPAAm was used
as an adjuvant (figure 5f ), suggesting the possible
involvement of the inflammasome pathway.
4. DISCUSSION

Animal models are important tools for understanding
the disease mechanisms operating during the develop-
ment of autoimmune diseases, and in most of the
induced arthritis models, adjuvants are needed to
induce or enhance disease development. However, cur-
rently used adjuvants often tend to strongly deviate
the ensuing immune response [3,4]. Hence, there is a tre-
mendous need for mild adjuvants that are well defined,
J. R. Soc. Interface (2011)
biocompatible and amenable to modification but
which can also be used as a carrier for testing other
immune-responsive molecules. Biodegradable, biocom-
patible and stimulus-responsive polymers offer such an
opportunity because of the following advantages: poly-
mers have the ability to sustain the release of antigens
over an extended period of time, the immunomodulatory
property can also bemodifiedbypolymer chemistry, other
immunomodulatory molecules or motifs can be incor-
porated to create a pathogen-mimicking solid particle
and most of the polymers are manufactured from syn-
thetic parent compounds, eliminating many potentially
reactive antigenic or allergenic epitopes that can accom-
pany the use of prokaryotic, animal- or plant-derived
materials.

In this study, for the first time, we demonstrate the
adjuvant capacity of a thermo-responsive carrier,
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Figure 4. PNiPAAm as an adjuvant in the induction of autoimmunity and arthritis. (a) Arthritis incidence and (b) mean arthritis
score on different days are shown. Groups of 8-week-old B10.RIII mice were immunized subcutaneously at the base of the tail with
100 mg of CII emulsified in complete Freund’s adjuvant (CFA–CII; n ¼ 19), CII mixed with 100 mg of PNiPAAm (PNiPAAm–
CII; n ¼ 48) or 100 mg of ovalbumin mixed with 100 mg of PNiPAAm (PNiPAAm–Ova; n ¼ 10) on day 0 in 200 ml volume. Mice
were boosted with 50 mg of CII emulsified in incomplete Freund’s adjuvant, CII mixed with PNiPAAm or ovalbumin mixed with
PNiPAAm, respectively, on day 21 or 35. Results are from three experiments and all the animals were used for calculations. Sera
collected on either days 21/35 (pre-boost) or days 50/60 (post-boost) were used for antibody analysis (c–e) as described in §2.
CII without any adjuvant induced neither arthritis nor an anti-CII antibody response in a group of mice (n ¼ 8). IgG subclass
analysis was done in sera collected after 50 days of injection. Representative histology joints of mice (n ¼ 3–4 in each group) from
PBS ( f ), PNiPAAm–CII (g) and CFA–CII (h) groups. n indicates the number of mice in each group. Error bars denote+s.e.m. All
the images were taken at 20� magnification. (a,b) Solid line with oval-shaped symbols, CFA–CII; solid line with squares, PNi-
PAAm–CII; solid line with triangles, PNiPAAm–Ova. (c) Black bars, PNiPAAm–Ova; white bars, PNiPAAm–CII; striped
bars, CFA–CII. (d) White bars, PNiPAAm–CII; striped bars, CFA–CII. (e) Black bars, PNiPAAm–Ova; white bars,
PNiPAAm–CII. (Online version in colour.)
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PNiPAAm. Mice immunized with PNiPAAm–CII
developed CII-specific antibody responses leading to
arthritis induction. Most of the CII protein retained
its native configuration after mixing it with PNiPAAm,
and sera from PNiPAAm–CII-immunized mice
recognized native CII triple helical structure compara-
tively higher than the denatured form. Generally,
adjuvants enhance the immunogenicity of an antigen
either by creating a reservoir for the slow release of
protein by entrapping or sequestering (depot effect),
by endocytosis/phagocytosis of polymer-protein by
J. R. Soc. Interface (2011)
facilitating targeting of the antigen to immune cells
and/or by modulating and enhancing the type of
immune response induced by the antigen alone. Under-
standing the mechanisms underlying the mode of action
of adjuvants is a pre-requisite for their use in humans
[24,25]. Physical adsorption and release but not
covalent coupling of CII with PNiPAAm induced
strong arthritis, which suggests that the depot effect
might be one of the major mechanisms of the adjuvant
action of PNiPAAm. Moreover, a higher anti-CII
response was observed in mice immunized with CII
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and the high Mw form of PNiPAAm (120 kDa) than
the low Mw form (70 kDa); this might be due to the
better precipitating property with the high Mw poly-
mer, which could retain the antigen for a longer
period of time. From bio-distribution study, we found
that the biotinylated polymer injected subcutaneously
followed a similar lymphoid pathway to that of a
protein antigen. It was drained by the lymphatic
system within 24 h and retained for more than 30
J. R. Soc. Interface (2011)
days, which could have helped for antigen presentation
for a longer duration. With the progression of time,
PNiPAAm was degraded systematically as shown by
the gravimetric analysis of excised PNiPAAm after
implantation, at different time intervals. Furthermore,
epitope modifications may occur during formulation or
conjugation with an adjuvant. However, the monoclonal
antibody (CB20) recognizing the triple helical C1III epi-
tope still recognized the CII present in the tissues
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surrounding the PNiPAAm–CII injection site after 3 h
in vivo, which clearly demonstrated the absence of any
modifications to the epitope structure of CII.

However, arthritis incidence in the PNiPAAm–CII
group was low (38%) compared with the CFA–CII
(68%) group. CFA is a mineral oil suspended with
mycobacterium, which contains several pathogen-
associated molecular patterns and danger-associated
molecular patterns that are recognized by the receptors
present on the antigen-presenting cells (APCs), for
example, Toll-like receptors (TLRs). Since the costimu-
latory function of cells during the immune response to
collagen is very essential to break the tolerance to this
self-antigen for eventual induction of arthritis, as evi-
denced by the lack of arthritis induction by collagen
itself [26], we propose that PNiPAAm may induce the
immune response that is independent of TLRs. Another
possibility is the genetic background of the mice used.
Although induced cytokine difference with the adju-
vants may have contributed in causing the difference
in the incidence of arthritis between the groups, it is,
however, most unlikely because all these cytokines
have pathogenic roles depending on the location of
their response (systemic versus local). In CIA, Th1
cells producing IFN-g and IL-2 are associated with
the acute phase [27,28], whereas the Th2 cytokine
IL-4 is associated with the remission phase [27,29] of
the disease. However, IL-4 can also play a pathogenic
role at the effector phase of arthritis [30,31]. Furthermore,
Th17 cells producing IL-17 (or IL-17A), IL-6 and TNF-a
have an important role in CIA pathogenesis [32,33]. On
the other hand, the low incidence of arthritis in the
PNiPPAm group will definitely not be due to the
increased presence of native collagen in the polymer
group compared to CFA group because only native
but not denatured collagen can induce arthritis [26].
However, how the mixture of native and denatured
collagen in the CFA group contributed to increased
arthritis is currently not known because only antibodies
that recognize native structures are pathogenic, while
T cells can be presented with linear peptides derived
from denatured collagen by APCs. Experiments are
underway to answer such questions apart from
understanding whether PNiPPAm can alter genetic
susceptibility to collagen in mice.

Earlier, several polymeric systems have been tested
as adjuvants, such as poly(glycolide) [34], poly
(lactide-co-glycolide) (PLGA) [35,36], poloxamers [37],
polyphosphazenes [38], polyoxyethylene [39], polyoxy-
propylene and chitosan polymers [40]. They are
biocompatible, biodegradable and able to incorporate
different kinds of antigens with higher loading effi-
ciency. They have advantages over conventional
adjuvants, mainly in the manipulation of degradation
kinetics by varying the concentration of monomers
and cross-linkers [41]. In this way, the release profile
of an antigen can be modulated. Moreover, antigen
uptake by APCs and induction of cytotoxic T lympho-
cytes were also enhanced with the use of the polymeric
system [42]. Recent studies showed the use of the par-
ticulate form of PLGA in adjuvant-induced arthritis
in mice [43]. In this study, we used the thermo-
responsive PNiPAAm that was synthesized by free
J. R. Soc. Interface (2011)
radical polymerization and had a high molecular
weight (120 kDa) and PDI close to 1, with the cloud
point (LCST) at 328C. PNiPAAm binds to protein
mostly non-covalently and releases the protein in the
medium significantly at higher levels owing to weak
hydrophobic interactions. From immunostaining results,
it is clear that the polymer interactions with the collagen
protein did not change its native conformation signifi-
cantly. PNiPAAm is temperature responsive and thus
showed the temperature-dependent conformational
change (soluble at temperature below the LCST and
form aggregation above the LCST). Interestingly, PNi-
PAAm formed a clear and visible white precipitate at
the site of injection, which demonstrated its in vivo gela-
tion property. Furthermore, in order to find out whether
PNiPAAm can be used in immunological studies other
than autoimmunity, we tested the polymer with oval-
bumin as an antigen. As we observed for CII, immune
responses to ovalbumin were robust with PNiPAAm–
Ova immunization, suggesting PNiPAAm can be used
as a general adjuvant for several immunological
applications including vaccine formulations.

Since we observed induction of all the major IgG sub-
classes when PNiPAAm was used as an adjuvant, we
measured the serum IFN-g, IL-4 and IL-17 levels as
an indicator for the activation of all the three major
T-helper cell populations [23]. Interestingly, we found
that all these three cytokine levels in PNiPAAm–Ova
immunized mice were enhanced, suggesting no major
deviation towards any one type of an immune response.
Recent studies have also shown that the commonly used
adjuvant, alum, induced the release of IL-1b, IL-18 and
IL-33 [44,45], which is mediated by the protein NALP3
[46]. Hence, to check whether the adjuvancity of PNi-
PAAm also involves the inflammasome pathway, we
analysed IL-1b levels in the sera from PNiPAAm–
Ova-immunized mice and compared it with ovalbumin
emulsified with Freund’s adjuvant(s). PNiPAAm–
Ova immunization induced a comparable level of IL-1
production to Freund’s adjuvant groups, suggesting the
possible involvement of this inflammasome pathway
when PNiPAAm was used as an adjuvant. It is of interest
to note that IL-1 is synthesized by various cells including
monocytes, macrophages, neutrophils, hepatocytes and
tissue macrophages [47] and IL-1 is an important
mediator of inflammation induced by immune complexes
[48]. For example, after collagen immunization, around
day 14, antibodies to collagen are significantly developed
and, IL-1 plays a critical role in the antibody-mediated
cartilage damage [49]. Hence, the increased level of IL-1
during day 19 compared with day 10 might be due to
the presence of the enhanced level of anti-Ova antibodies
around this time point, as shown in figure 4c. However,
further experiments are needed to specifically address
different pathways involved in the adjuvant action of
PNiPAAm.
5. CONCLUSIONS

We found, for the first time, that the biocompatible and
biodegradable thermo-responsive PNiPAAm can be
used as an adjuvant to study several immunological
parameters, including development of autoimmunity
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and arthritis. Antigen-specific immune responses were
observed when PNiPAAm was used as an adjuvant
without any major deviation towards any one type of
an immune response. More studies are needed to explore
the mechanisms of the adjuvant action of PNiPAAm in
detail.
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