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In this paper, a new three-dimensional modelling approach is described for studying fluid–
viscoelastic cell interaction, the subcellular element Langevin (SCEL) method, with cells
modelled by subcellular elements (SCEs) and SCE cells coupled with fluid flow and substrate
models by using the Langevin equation. It is demonstrated that: (i) the new method is compu-
tationally efficient, scaling as O(N) for N SCEs; (ii) cell geometry, stiffness and adhesivity can
be modelled by directly relating parameters to experimentally measured values; (iii) modelling
the fluid–platelet interface as a surface leads to a very good correlation with experimentally
observed platelet flow interactions. Using this method, the three-dimensional motion of a
viscoelastic platelet in a shear blood flow was simulated and compared with experiments on
tracking platelets in a blood chamber. It is shown that the complex platelet-flipping dynamics
under linear shear flows can be accurately recovered with the SCEL model when compared
with the experiments. All experimental details and electronic supplementary material are
archived at http://biomath.math.nd.edu/scelsupplementaryinformation/.
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1. INTRODUCTION

Damage or inflammation of the blood vessel wall can lead
to the development of an intravascular clot or thrombus.
Venous thromboembolic disease is a significant bio-
medical problem, with the annual incidence in the USA
being estimated as high as 900 000 cases per year leading
to 300 000 deaths [1,2]. Understanding the processes
involved in the formation and development of a thrombus
is of significant biomedical importance.

The recruitment of platelets flowing freely in blood to
sites of injury is a key step in the formation of a thrombus.
Before contacting the vessel wall, free-flowing platelets
near the surface exhibit shear-dependent flipping. The
flipping of free-flowing platelets affects the orientation
of platelets when first contacting the surface of the
vessel. After contact, the platelet receptor component
GPIba of the GPIb-V-IX complex forms transient
bonds with the von Willebrand factor (vWF) exposed
at the injury site. The rapid association and dissociation
kinetics of the GPIba–vWF results in transient
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tethering and subsequent flipping (or rolling) of platelets
on the vessel surface [3,4]. Interestingly, the formation
of the GPIba–vWF bond is influenced by the orienta-
tion of the platelet when contacting the surface. This
GPIba–vWF binding is critical for supporting the initial
attachment (tethering) and subsequent translocation of
platelets in flow [5]. The initial attachment permits
other platelet receptors to interact with the ligands in
the vessel wall and blood (GPIV–collagen, GPIaIIb
with collagen and vWF) that in addition to contributing
to adhesion also activate intracellular signalling path-
ways leading to platelet morphological changes and
activation of another platelet receptor, GPIIb–IIIa,
which is necessary for binding to fibrin(ogen), vWF
and vitronectin. These latter interactions are necessary
for firm irreversible adhesion and the formation of
stable platelet aggregates.

Therefore, several computational models have been
developed to characterize platelet motion quantitati-
vely and to study platelet–blood vessel wall adhesion
dynamics. Image analysis of platelet motion in
flow-chamber experiments was used in Mody et al. [6]
to identify motion of platelets before, during and after
contact with surface coated with the vWF for a range
of fluid shear stresses (0.2–0.8 dyn cm22). An analytical
This journal is q 2011 The Royal Society
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two-dimensional model was also introduced in Mody
et al. [6] to characterize the flipping of tethered platelets.
A three-dimensional computational model was presen-
ted in Mody & King [7–9] for simulating motion of
platelet-shaped cells in a flow near a wall to elucidate
GPIba–vWF-mediated platelet and substrate binding
that leads to shear-induced platelet aggregation. The
adhesion model, introduced in King & Hammer [10],
was combined in Mody & King [7–9] with the completed
double-layer boundary integral equation method for
solving the Stokes hydrodynamics equation. Effects of
hydrodynamics, the shape of platelets and proximity of
a planewall on cell–cell collisions and on two unactivated
platelets bridged by GPIba–vWF–GPIba at high shear
rates were investigated.

A number of methods modelling cells, cellular inter-
actions and cell–flow interactions have been developed
previously. The subcellular element (SCE) model intro-
duced in Sandersius & Newman [11] and Newman [12]
represents each cell by a collection of elastically coupled
SCEs, interacting with each other via short-range
potentials, and being dynamically updated using Lan-
gevin dynamics. Using a large number of SCEs, cells
yield viscoelastic properties consistent with those
measured experimentally. The cell–cell adhesion is
modelled as a modified Morse PP. However, the SCE
model in Sandersius & Newman [11] and Newman [12]
does not couple the cell dynamics to that of the fluid.
A parallel implementation of the SCE method for indi-
vidual cells residing in a lattice-free spatial environment
is described in Christley et al. [13] (without coupling
to a flow).

The immersed boundary (IB) method [14,15] has been
widely used for modelling flexible structures immersed in
a fluid. For instance, it was applied to the study of blood
flow around heart valves [16]. The IB method of Jadhav
et al. [17] represents a cell (leucocyte) as a massless elastic
membrane enclosing an incompressible fluid. The conti-
nuity between the fluid and the cell is achieved by the
interpolation of the velocities from the fluid and the dis-
tribution of the forces from the elastic membrane. An
adhesion model employed in Jadhav et al. [17] represents
individual receptor–ligand (P-selectin and P-selectin
glycoprotein ligand-1 pair) interactions as harmonic
springs that form or break according to probabilities
depending on the values of forward and reverse rate con-
stants obtained from the literature [18]. The immersed
finite-element method (IFEM) [19] is similar to the IB
method. However, the IFEM models a cell as an elastic
solid with mass. A Lagrangian solid mesh for cells
moves on top of a fixed Eulerian fluid mesh that covers
the entire computational domain. Solutions in both
the solid and the fluid subdomains are computed by the
finite-element method and the continuity between the
fluid and solid subdomains is also enforced by the inter-
polation of the velocities and the distribution of the
forces with the reproducing Kernel particle method
delta function. Cell–cell and cell–vessel adhesion in Liu
et al. [19] is modelled as a modified Morse pairwise
potential (PP). In the papers by Fogelson & Guy
[20,21], an IB-based method in which individual platelets
were modelled as a massless elastic fibre was used to
simulate the formation of platelet aggregates.
J. R. Soc. Interface (2011)
The dissipative particle dynamics (DPD) method
[22,23] is based on the idea of introducing discrete ‘soft’
fluid particles to replace the continuum flow description.
In addition to the soft particles, random perturbations
are introduced to model the fluid atoms interacting with
the immersed cellular structures, which are also modelled
as collections of particles. Many fine-grained features of
the fluid dynamics and immersed structures within the
fluid are often not resolved in detail. Additionally, the
DPD method generally requires many DPD particles in
relation to the number of cells, which increases compu-
tational cost. However, the work in Pivkin & Karniadakis
[23] reveals the potential to develop DPD-based models
with low computational cost for simulating fluid and
blood cell interactions.

Several models of thrombus formation have also been
introduced, which take the recruitment of free-flowing
blood cells and initial contact between blood cells and
blood vessel walls into account. For example, models
[20,21] used the IB approach to study the formation
of platelet thrombi in coronary-artery-sized blood
vessels. Pivkin et al. [24] developed a platelet thrombi
model using the force-coupling method. In recent
papers [25–29], a multiscale model of venous thrombo-
sis was introduced that combined continuum submodels
for the blood flow and the chemical cascade, induced by
tissue factors at injuries, and discrete stochastic cellular
Potts models (CPMs) for simulating cell–cell and cell–
injury interactions. The CPM has proved to be efficient
in implementing simulations of thousands of cells
but has limited abilities in describing in detail cell
properties such as elasticity and shape.

In this paper, we develop a new method for three-
dimensional flow–cell interaction simulations—the
subcellular element Langevin (SCEL) method. This
method uses SCEs to simulate cell motion and defor-
mation and the SCE cell is coupled to the plasma flow
by a novel variation of the Langevin equation [30].
The SCEL method allows one to model the mechanical
properties of cells accurately, while retaining the O(N)
computational scaling of Langevin solvers with short-
range interactions. It also confers greatly reduced
computational cost. Our approach confers ‘forward’
coupling between the flow field and the SCE.

We ran experiments on the tracking motion of platelets
in a blood flow chamber. Human platelets were introduced
into a plasma flow passing through a rectangular capillary
tube. Images were captured at a rate of 30 fps, and individ-
ual platelets were tracked for analysis. Flipping of the
platelets was detected by measuring the minor and major
axes of the platelets in each frame, since the shape of a
platelet is approximately elliptical in cross section with
the ratio of minor and major axes being 0.5 and the diam-
eter of the platelet being 4 mm. The angle of the platelet
then was deduced and the time to complete a flip
was calculated.

It is demonstrated in this paper that: (i) the new
SCEL method is computationally efficient, scaling as
O(N) for N SCEs; (ii) cell geometry, stiffness and adhe-
sivity can be modelled by directly relating parameters
to experimentally measured values; (iii) modelling the
fluid–platelet interface as a surface leads to a good cor-
relation with experimentally observed platelet–flow
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interactions. Using this method, the three-dimensional
motion of a viscoelastic platelet in a shear blood flow
was simulated and compared with experiments on
tracking platelets in a blood chamber. It is shown that
the complex platelet-flipping dynamics under linear
shear flows can be accurately recovered with the
SCEL model when compared with the experiments.

The paper is organized as follows. Section 2 describes in
detail SCE cell-based model coupled to the flow by using a
novel variation to the Langevin equation. Section 3
describes simulations of flipping platelets moving in a
linear shear flow and refines the choice of parameter
values used in simulations. Section 4 includes conclusions
and discussion of the future work. Electronic supplemen-
tary material §B.1 discusses the numerical schemes to
solve model equations. Biological background section in
the electronic supplementary material provides biological
details about the platelet and blood interaction.
SCE

harmonic
spring

tether point

Figure 1. Cell–substrate interaction potential energy. (a) Poten-
tial energy Ua changes with inter-SCE distance rij showing
switch-on point ro and switch cut-off rc. Solid line, Lennard
Jones; dashed lines, harmonic spring; dashed-dotted line, hard
wall; dotted line, switched LJ. (b) SCE representation of a platelet
with Harmonic tether.
2. MODEL DESCRIPTION

In what follows, we describe a new method for three-
dimensional flow–cell wall interaction simulations, the
SCEL method. This method uses SCEs to model the
cells and the Langevin equation is employed to couple
the SCE to the plasma flow.

This coupling idea is similar to the DPD extension in
that the microscopic fluid–SCE interactions can be mod-
elled (as random forces) and that the fluid acts as a heat
bath. We extend the Langevin equation to allow the coup-
ling of the coarser flow structure using a Stokes–Langevin
approach [30]. Perturbations in the flow field at the cellular
scale are assumed to couple to SCEs using Stokes’ Law,
with the force being proportional to the fluid velocity.

2.1. Model assumptions

We assume that the plasma–cell mixture is homogeneous
up to cells attached to the injury site or rolling on the
substrate surface.Weassume that in a free-flowing environ-
ment, the cells will eventually achieve the same velocity as
the underlying fluid, and moving cells do not affect the flow
as we only consider the ‘forward coupling’ in the present
paper. The fluctuation–dissipation theorem assumes that
the random forces can be positive or negative with equal
probability [31], an assumption that may be violated by
the introduction of a biased flow. To reduce such errors,
we subtract the average flow velocity from the system
(combined plasma and SCEs) velocity for the propagation
of the SCE and assume, since the flow is considered
incompressible, that the resulting flow field is unbiased.

2.2. Subcellular elements and forces

Our coarse-grained approach is based on modelling the
platelets and blood cells using SCEs and treating the
solvent (plasma) as removed degrees of freedom (d.f.)
that are introduced stochastically as velocity damping
and random fluctuations.

2.2.1. Subcellular element model of cells and schematic
of problems being modelled. Sandersius & Newman
[11] and Newman [12] introduced the SCE model to
J. R. Soc. Interface (2011)
compute the dynamics of a large number of three-
dimensional deformable cells in multicellular systems.
In the SCE model framework, each cell is represented
by a collection of elastically linked SCEs, interacting
with one another via short-range potentials. Figure 1b
shows the SCE representation of a platelet in our
model. In our cell representation, a cell comprises an
SCE at the cell centre and a set of SCEs discretizing
the proximity of surface of the cell (discussed in
§2.2.2). The position of an SCE changes according to
three processes (or forces): (i) a stochastic component
simulating cellular fluctuation, (ii) an elastic force by
intracellular interactions, (iii) a hydrodynamic force
by fluid–cell interaction. To this end, a modified Lange-
vin equation including these three processes is used to
update the position of an SCE. Using this model, we
simulate the platelet motion by placing the platelet in
a linear shear flow field within a rectangular channel.
2.2.2. Cell mechanical properties. Each cell consists of a
number of surface nodes (or SCEs) and a central node
(or a central SCE). The surface nodes represent points
close to the cell surface (defined below) and the central
node represents a point close to the cell nucleus. The
mechanical properties and geometry of a cell are mod-
elled by connecting each surface node to both its
immediate neighbours and the central node, by



Subcellular element Langevin method C. R. Sweet et al. 1763
harmonic ‘spring’ forces of given rest length. The associ-
ated potential energy function for bodies i and j are

Ue
ij ¼

kij

2
ðjjrij jj � lijÞ2; ð2:1Þ

where lij is the rest length, rij ¼ xj 2 xi the position
vector difference for bodies i and j, respectively, and
kij the coefficient that defines the spring ‘stiffness’.
The corresponding force vector acting on body i by
body j is

Fe
ij ¼ �rxUe

ijðxÞ ¼ �kijðjjrij jj � lijÞ r̂ij ; ð2:2Þ

here r̂ij is a unit vector defined by r̂ij ¼ rij=jjrij jj.
We note that the effective surface of an SCE cell is

defined by the intersection of the spheres of radius s

around each node. s is dependent on the SCE geometry
and should be chosen to give a continuous platelet sur-
face, i.e. its diameter should be greater than the
distance between adjacent SCEs. A detailed description
of the choice of s can be found in §3.2.1.
2.2.3. Cell–vessel wall interaction. Previous attempts to
resolve SCE cell–substrate interactions have used a
simplistic pairwise interaction based on the Morse
potential [11,12]. We have extended the SCE model to
prevent cellular-vessel overlap and also to allow accu-
rate representations of cell rolling dynamics. This has
been accomplished by using the idea of bonds, repre-
senting ligand–receptor (GPIba–vWF in our case)
pairs, that break beyond a given extension [9,17,32].
Since the number of SCEs representing a cell is gener-
ally much less than the number of platelet receptor
sites, the statistics of modelling many ligand–receptor
pairs per SCE is well defined.

The ligand–receptor adhesion modelling component
in our model is an extension of the original SCE Morse
PP [12]. Namely, we integrate an adhesion submodel
from Krasik et al. [32] into the SCE model. (We note
that similar adhesion models were used in Jadhav
et al. [17] and Mody & King [9] for the study of selec-
tin-mediated leucocyte rolling and platelet–platelet
bridging by forming GPIba–vWF–GPIba bonds,
respectively. However, in those works, the bond force
is calculated directly.) In the work of Krasik et al.
[33], the adhesion model was developed to study the
mechanisms of the neutrophil arrest. Here the probabil-
ities of breakage and formation of bonds are calculated
using the Bell model [33].

Our approach to modelling platelet adhesivity is to
introduce forces representing the observed receptor–
ligand interactions averaged over the individual SCE
surfaces, and to model their stochastic behaviour via
the Langevin equation. We introduce individual linear
springs between each of the SCE and the vessel wall
to mimic the receptor–ligand interactions. Parameters
in the cell–wall interaction model are determined by
the mechanical properties of the receptor–ligand
bond, the number of such bonds that are likely to
form, given cell contact surface area and the probability
of the bonds breaking beyond a given length [9,17,32].
Each SCE/vessel wall interaction is represented by a
potential energy function, which is a quadratic function
J. R. Soc. Interface (2011)
truncated at the maximum and minimum length of the
spring (bond) (figure 1a, dashed line). To prevent the
SCE surface and the vessel wall from overlapping, a
‘hard wall’ interaction term is added [34] (figure 1a,
vertical (dashed-dotted) line).

Since forces in our model are defined as the negative
of the gradient of the potential energy, we have to
modify this function so that it is continuous, i.e. the
spring (bond) cannot break instantaneously. Our
approach is illustrated in figure 1a. The ideal force
that combines harmonic spring force and hard wall
force prevents overlap between the SCE (on the cell sur-
face) and the substrate. We approximate this force with
a PP of the Lennard–Jones type [35,36] that emulates
the ‘hard wall’ and the first section of the spring poten-
tial well. Since the PP force has a long ‘tail’, we
truncate this by using a ‘switch’ that turns off the PP
force over a short distance and prevents instantaneous
energy changes.

The result is a nonlinear spring with a known
region of breakage coupled to the defined surfaces
that cannot overlap.

The potential energy function between the SCE i
and the substrate point j is

Ua
ij ¼ eij

sij

rij

� �12

� sij

rij

� �6
 !

SðrijÞ; ð2:3Þ

where rij ¼ xj 2 xi is the SCE-substrate vector and rij ¼
krijk. e ij and sij define the adhesion level and distance,
respectively. The switch S is defined as

SðrijÞ ¼

1 if rij � ro;

ðr2
ij � r2

c Þ
2ðr2

c þ 2r2
ij � 3r2

o Þ
ðr2

c � r2
o Þ

3 if ro � rij , rc;

0 if rij . rc;

8>>><
>>>:

ð2:4Þ

where ro is the switch-on value and rc is the cut-off
value.

The corresponding vector acting on the SCE i is

Fa
ij ¼ �

dUa
ij ðrijÞ
drij

SðrijÞ þ
dSðrijÞ

drij
Ua

ij ðrijÞ
� �

r̂ij : ð2:5Þ

Having defined the form of the potential energy, we
now need to determine the position of the substrate
point j. We assume that the substrate surface consists
of discrete contact points with a known ‘granularity’.
The point nearest to the SCE i on the substrate is
calculated (using the normal to the substrate surface)
and the nearest discrete point, in a direction opposite
to the SCE velocity, is selected. Specifically, given a
unit vector normal to a plane tangential to the
substrate (blood vessel wall) n̂p and point on this
plane xp, we find the distance to the plane as follows:
Dd ¼ n̂p � ðxi � xpÞ. We then find the ‘anchor’ point

xj ¼ xi þ Dd n̂p �
v0i
jjv0ijj

Dg; ð2:6Þ

for granularity Dg and vector v0i, the ith SCEs velocity
projected onto the plane. The granularity Dg represents
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Figure 2. Cell–substrate interaction potential energy.

1764 Subcellular element Langevin method C. R. Sweet et al.
the average distance between receptor–ligand on
the substrate.

To parametrize equations (2.3) and (2.4), we need to
find the spring constant associated with extending the
combined microvillus and receptor–ligand ks, the rest
length (un-forced) drest and breaking length drest þ dd
of the combined microvillus and receptor–ligand. The
parameters sij, e ij are then derived from these. Given
the required spring constant ks, receptor–ligand rest
length drest and breaking extension dd, we can calculate
the variables e ij, sij, switch on distance ro and switch
cut-off rc from equations (2.3) and (2.4)

sij ¼ 2�1=6 drest; ð2:7Þ
eij ¼ 4ksðddÞ2; ð2:8Þ
ro ¼ drest ð2:9Þ

and rc ¼ drest þ dd: ð2:10Þ

Since there is no experiential data for the platelet
GPIba receptor and the wall immobilized vWF ligand
binding bonds, we assume that the mechanical proper-
ties of the platelet–wall binding bonds are similar to
those of the leucocyte selectin–ligand bonds. Therefore,
spring constants, receptor–ligand rest length and
breaking extension distances are taken from Jadhav
et al. [17].

A discussion of the parametrization can be found
in §3. The SCEL simulation work flow can be seen in
figure 2. The platelet geometry and force parameters
for the simulation are generated using the SCE factory
written in Python. The resulting simulation files are
input to the SCEL simulation engine to produce the rel-
evant trajectory files. The platelet angles are then
extracted from the trajectory files using Matlab scripts
that are available on the electronic supplementary
material website.

2.2.4. Brownian dynamics. The simplest fluid–SCE
interaction can be modelled as Brownian dynamics.
Consider a body with mass m and radius r moving
with velocity v in a fluid with viscosity h. The fluid
effectively applies a force f to the body in the opposite
direction to its movement, which we typically approxi-
mate with f ¼ 2gv for friction coefficient g. We can
J. R. Soc. Interface (2011)
calculate g from Stokes’ Law g ¼ 6phr. The simplistic
equation of motion is then

m
dv
dt
¼ �gv; ð2:11Þ

with solution

vðtÞ ¼ e�gt=mvð0Þ: ð2:12Þ

Clearly, the velocity would go to zero as time
increases, which is not what we observe in reality. We
can improve the model by simulating the, assumed
random, collisions of the fluid particles with the body.
The equation of motion now becomes

m
dv
dt
¼ �gv þ dRðtÞ; ð2:13Þ

for the random force dR(t). We make the following
assumptions about dR(t) by considering that the sum
effect of the collisions must be unbiased and that the
force of the impacts varies extremely rapidly in any
infinitesimal time interval

kdRðtÞl ¼ 0 and kdRðtÞdRðt0Þl ¼ Sdðt � t0Þ; ð2:14Þ

for S being the strength of the random force.
Assuming that the fluid acts as a constant-temperature

‘heat bath’, we have

k1
2

mv2l ¼ NkT
2

; ð2:15Þ

for N being the d.f., k the Boltzmann coefficient and
T the temperature.

From equations (2.14) and (2.15), we can show that
dR(t) is satisfied by a random variable with a Gaussian
distribution, zero mean and variance of 2gkT. Before we
discuss our approach to modelling fluid–SCE inter-
action, we would like to point out that the Brownian
motion of a platelet in the creeping flow regime near a
surface has been studied in Mody & King [37], indicat-
ing that Brownian motion played an insignificant role in
influencing platelet motion.
2.2.5. The Langevin equation. The more complex scen-
arios of the fluid–SCE interaction can be modelled by
using the Langevin equation, allowing the introduction
of systematic forces related to SCEs. Given a system of
N bodies with a potential energy U(x) as a function of
position vector x, then the conservative force vector is
given by the gradient F(x) ¼ 2rU(x) and our
equation of the motion becomes

Mẍ ¼ FðxÞ � gẋþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gNkT

p
Z; ð2:16Þ

where Z is a vector of normally distributed
random variables and M is the diagonal matrix of
particle masses.

More rigorous analysis of the method can be made by
considering Mori–Zwanzig formalism, and making the
appropriate model-dependent approximations. This is
the basis for many coarse-grained methods; generally
a new set of variables is chosen to model ‘important’
aspects of the system (usually slow d.f.) and the
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remaining d.f. (usually fast and in our case the fluid) are
modelled by their effects on the chosen variables.

Given the large-scale separation of the model,
we require a numerical propagation method that gives
the correct solutions for a large time step Dt and
damping coefficient g. Appropriate methods that give
the correct solution for gDt� 1 [38] are discussed
in numerical methods section in the electronic
supplementary material.

2.2.6. Coupling technique. Our problem is to model the
interactions of a flowing fluid with bodies representing
the blood cellular constituents. This is an extension to
the general idea of a non-equilibrium system, which is
generally close to equilibrium in some sense. For
instance, the expected value of the kinetic energy per
degree of freedom is now not equal to kT/2.

The flow is calculated on a three-dimensional grid
where the distance between the grid points, Dd, is simi-
lar to the platelet dimensions of 2–4 mm. The grid is
defined on a domain with x [ [0,X ], y [ [0,Y ], z [
[0,Z ]. We define the fluid velocity vector at grid point
i,j,k to be vijk

g with corresponding position gijk ¼

fiDd 2 Dd/2, jDd 2 Dd/2, kDd 2 Dd/2g, with the
indices bounded by I ¼ X/Dd, J ¼ Y/Dd, K ¼ Z/Dd
for i, j and k, respectively. The flow is incompressible,
so is divergence free. Hence, for a given constant
inlet velocity, we have a well-defined average
three-dimensional velocity vector

kvf l ¼ 1
IJK

XI

i¼1

XJ

j¼1

XK
k¼1

vg
ijk : ð2:17Þ

We define the flow velocity at SCE m as

vf
m ¼ vg

abc where fabcg ¼ arg min
i;j;k

jjxm � gijk jj: ð2:18Þ

The system flow velocity vector for inclusion in the
modified Langevin framework is then v f ¼ [v1

f , . . . ,vN
f ]T.

We consider the dynamics to be in a reference frame
having velocity kv f l. We then need to consider the inter-
action between the underlying flow perturbation vector
dv f ¼ v f 2 kv f l with the bodies of interest. The
additional force vector f f on the bodies can again be
modelled by using Stokes’ Law, which gives f f ¼ gdv f.

Then, we have

Mẍ ¼ FðxÞ � gðẋ� dvf Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gNkT

p
Z: ð2:19Þ

Note that we need to add the average velocities to
those resulting from these equations to get the observed
velocities vo, i.e.

vo ¼ ẋþ kvf l; ð2:20Þ

and add the average movement of the reference frame to
get the observed positions xo

xo ¼ xþ Dt kvf l: ð2:21Þ
2.2.7. Surface interface modification. Equation (2.19)
does not take account of the cellular surface; each
SCE is treated as if it is immersed in the fluid.
J. R. Soc. Interface (2011)
A more realistic interaction can be achieved by scaling
the damping factor g along the vector connecting
the surface SCE to the SCE at the cell centre. We
denote this ‘surface interface’ modification as SIM.
The centre SCE should see no effect from the flow.
The damping applied to SCE i given local damping
factor gi is

gi ¼
sig; si . 0; i � F;
0; si � 0;
0; i [ F;

8<
: ð2:22Þ

where F is the set of SCEs not on the cell surface, and

si ¼
dvf

i � sci

jjdvf
i jj jj sci jj

; dvf
i = 0;

0; dvf
i ¼ 0;

8><
>: ð2:23Þ

here sci ¼ xi 2xc, and xc is the position of the SCE at
the centre of the cell associated with SCE i.

The updated equation is

Mẍ ¼ FðxÞ � Gðẋ� dvf Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2NkT
p

G1=2Z; ð2:24Þ

where G is now a matrix containing the gi.
3. RESULTS

We tested whether our model provides accurate fluid
mechanical solutions that can be applied to microscopic
spherical and ellipsoidal cells in a bounded fluid. We
note that any shapes of cells can be represented by
the model. To validate our method, we compare with
both theoretical studies and actual experiments of
platelet flipping in the plasma flowing through a capil-
lary tube. We separate the results into comparisons
with theoretical and experimental results, respectively.
All experimental details and electronic supplementary
material are archived at http://biomath.math.nd.edu/
scelsupplementaryinformation/.

Figure 5 (below) shows the snapshots of the platelet
during the flipping process in our simulations.

3.1. Comparison with experimental data

Here, we compare the experimental results of flipping
platelets conducted in vitro with the simulation results.
We show that we have achieved good agreement
between experiments and simulations.

3.1.1. Experimental and simulation conditions. Flipping
of the platelets is detected by measuring the minor and
major axes of the platelets in each frame, since the
shape of a platelet is approximately elliptical in cross
section with l ¼ 0.5, with the diameter of the platelet
being 4 mm. The angle of the platelet can then
be deduced and the time to complete a flip can
be calculated.

The motion of platelets in different experiments was
measured in a platelet-rich plasma prepared from ACD
anticoagulated blood from the same healthy donor after
informed consent on different days. The platelet counts
in the blood samples were in the normal range
2.2–2.5 � 105 ml21.

http://biomath.math.nd.edu/scelsupplementaryinformation/
http://biomath.math.nd.edu/scelsupplementaryinformation/
http://biomath.math.nd.edu/scelsupplementaryinformation/


Figure 3. Experimentally observed flipping of a human platelet travelling from right to left. The calibration grid shown on the
left-hand side of each image has graduations of 10 mm. Snapshots are taken from frames 8, 11, 13 and 14 from the file ‘Grabbed
Frames from 7-8-2010 4ul-min 2 mm cap PRPþCa.ppt’ in the electronic supplementary material.

Table 1. Platelet-flipping results.

experiment set flow (ml min21) average tz s.d. tz

1 4 1.6556 0.0814
2 10 1.6972 0.3553
simulation — 1.81 —
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Two separate sets of experiments were carried out,
differing in the flow rate of 4 or 10 ml min21 and also
the date on which the platelets were obtained (from
the same subject). Platelet-rich plasma was drawn
through a 0.2 � 2.0 mm rectangular capillary tube
(Vitricon, NJ, USA) at 4 or 10 ml min21. The motion
of flowing platelets was recorded by videomicroscopy at
30 fps. Each experiment enabled one to follow multiple
different platelets. In the first experiment, the
average flow velocity through the capillary was
0.1667 mm s21 and the maximum platelet velocity was
estimated to be 0.4 mm s21. In the second experiment,
the average flow velocity through the capillary was
0.4168 mm s21 and the maximum velocity was estimated
to be 0.7 mm s21.

To estimate the shear, we assume that the velocity
profile is parabolic with zero velocity at the wall of
the capillary tube, and the maximum platelet velocity
is estimated by finding the platelet with the highest vel-
ocity. The shear rate z for a platelet can then be readily
calculated and, with the observed flipping time t, the
product tz can be found (see also experimental results
section for these estimated values).

In the first experiment ten platelets, with velocities
ranging from 0.08–0.13 mm s21 were measured and
the upper and lower bounds were found for the flipping
time-shear rate products.

In the second experiment, a further 12 platelets, with
velocities ranging from 0.08 to 0.39 mm s21 were
measured, and again the upper and lower bounds were
found for the flipping time-shear rate products.

The simulations were repeated with a platelet of
diameter of 4 mm and l ¼ 0.5 (cf. 2 mm and l ¼ 0.25
in the theoretical experiments above).

3.1.2. Experimental results. Frames from the first set of
experiments for one flipping platelet can be seen in
figure 3. Frames 8, 11, 13 and 16 from the file ‘Grabbed
Frames from 7-8-2010 4ul-min 2mm cap PRPþCa.ppt’
in the electronic supplementary material and the
calibration grid (for converting pixel measurements
from the camera frames to physical measurements)
has graduations of 10 mm. The platelet can be seen to
transition from an elliptical cross section in frame 1 to
J. R. Soc. Interface (2011)
circular in frame 3 and back to elliptical in
frame 4. This represents a half flip (through 1808) in
seven frames (233 ms at 30 fps), which has a velocity
of 0.17 mm s21 and a shear rate (from the parabolic pro-
file assumption) of 6.7 s21. The time-shear rate product
is 1.58 (unit-less). We would like to remark that this
shear rate is quite low compared with physiological
values in the circulation or in previous platelet studies
[6], by two orders of magnitude. The microfluidic exper-
imental system used in the study required low flow rates
in order to capture high-resolution images of flipping
platelets. However, this value of shear rate does not
invalidate any of the analysis conducted in the paper.

The results for the two sets of experiments can be
found in table 1. The average tz product for each exper-
iment is close in value; we note that the standard
deviation (s.d.) for tz is larger at the higher velocity.
Complete tabular data for these experiments can be
found in the electronic supplementary material.

The average time-shear rate product for each exper-
iment set, plotted with the simulation results in
figure 4, shows good correlation. Here, the solid curve
represents the simulation results and the dotted lines
show the mean and 1 s.d. for each of the experiment
sets, showing a small error in the simulation. The simu-
lation method reproduces the flow interacting with the
human platelets with an observed maximum error
(difference in the flipping time of experiment and simu-
lation normalized by the simulation flipping time) of
less than 2 s.d. for the first experimental set and less
than 1 s.d. for the second experimental set.
3.2. Comparison to theoretical studies

We compare, in what follows, our simulation results
with the results of Mody et al. [6], which describe
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Figure 4. Comparison of the simulated platelet-flipping
dynamics with the experiment results for human platelets.
The solid curve represents the simulation and the dark-dashed
curves represent the results from experiment sets 1 and 2 with
error bars at 1 s.d, both showing good correlation with the simu-
lated flipping times. The light-dotted curve represents the actual
measured angle of the representative platelet. The variation in
angle a to the platelet major axis is plotted against the unit-
less time, shear-rate product tz. Solid line, simulation with g ¼

250; dotted line, sample experiment data; dashed–dotted line,
experiment 1, tz; dashed line, experiment 2, tz.

Figure 6. Platelet constructed from 53 SCEs.

Figure 5. Figure showing the flipping of the platelet owing to
interaction with high shear rate flow.
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theoretical solutions obtained using the Jeffery orbit
theory [39] and provide predictions obtained using the
analytical platelet-flipping model.

Specifically, we compared our simulation predictions
of the effect of the wall on the rotational motion of a
platelet, where the ratios of major and minor axes are
l ¼ 0.25 and l ¼ 0.5 with the analytical solutions for
a circular disc computed by Kim et al. [40]. The platelet
or circular disk was oriented with its major axis parallel
to the surface so that its axis of symmetry lay at right
angles to the surface (figure 5). These results are veri-
fied using the analytical solutions of Jeffery [39] for
the rotational trajectory of an oblate spheroid flowing
in the linear shear flow in an unbounded fluid.

In addition to the basic Langevin–Stokes (LS) coup-
ling, we have introduced the ‘surface interaction
modification’ (SIM) method in §2.2.7 as an extension to
the LS idea. We illustrate the effects of this modification
in the tests as well.

3.2.1. Modelling parameters. For modelling the platelet
dynamics, we use a set of units based on distance in
mm, mass in pg and time in ms.

The flow velocity in the x-direction is given by the
following equation

vx ¼ zy þ v0; ð3:1Þ

where z is the shear rate and y is the y-coordinate of the
SCE. In our simulations, we set z ¼ 1023 ms21, with
offset velocity of v0 ¼ 1.25 �1025 mm ms21. These
parameters were obtained from Mody & King [7].

In our simulations, the relative platelet height H of
the platelet from the vessel wall is selected as H .20,
where the units are multiples of the platelet radius r.
Again this parameter is taken from Mody & King [7].
J. R. Soc. Interface (2011)
For the platelet parameters, we use inter-SCE spring
constant kSCE ¼ 2.4 fJ mm22 with all SCEs connected
to their nearest neighbours and the central SCE. This
parameter is chosen from Jadhav et al. [17], where the
cell membrane elasticity is 0.3–3.0 fJ mm22.

The mass of each SCE is 0.08 pg by calculating the
volume of the spheroid and assuming that the platelet
has the same density as water. The platelet is con-
structed from the SCE on the circumference of five
circles stacked in the z-plane. We denote the central
(largest) circle as type ‘circle 1’, the adjacent two circles
(above and below) as type ‘circle 2’ and the remaining
two (smallest) circles type ‘circle 3’.

The effective radius of the SCE is 0.3 mm for circle 3,
0.2 mm for circle 2 and 0.1 mm for circle 1 (the circle
with largest radius) to provide a connecting surface
map. We use a total of 53 SCEs with platelet l ¼ 0.25
(ratio of minor to major axis) as depicted in figure 6.

To estimate the damping coefficient g, we consider
the force from Stokes’ equation weighted by the mass;
for a sphere, it is

g ¼ 6phr
mi

; ð3:2Þ

where h is the viscosity of the fluid, set to h ¼ 1.2 nNms
m s22, r is the radius of the cell and mi is the SCE mass.
This yields an approximate figure of 283 m s21;
however, the actual figure should be less since l , 1.

We incorporate the adhesivity submodel described in
§2.2.3 (including the repulsive force) to constrain platelets
within the simulated blood vessel and to account for the
platelet–vessel wall interactions. We note that we do
not provide simulations that specifically test this part of
the model, but for completeness, we use the estimated
parameters from the literature. For the vessel wall, we
select the effective surface distance s¼ 0.45 mm
from Jadhav et al. [17], which is the combined recep-
tor–ligand length. An estimate for cell–vessel
adhesion coefficient can be made from Jadhav et al.
[17] as follows. If we consider that the rest length of
the receptor–ligand is 0.45 mm and calculate the
forward rate constants near to equilibrium, we have
kr � 1023 ms21. The probability of bond rupture is
Pr ¼ 1 2 exp(2krdt) for time dt; so by choosing a sig-
nificant probability, say 0.5, we find that the bond
lifetime is of the order of 1 ms. If we further assume
that the velocity of the cell is approximately equal to
that of the liquid at a height of 3r, then the ligand–
receptor extension is 2 � 1023 mm. From §2.2.3, this



Table 2. Model parameters.

parameter value units reference

shear rate z 1023 ms21 [7]
kSCE 2.4 fJ mm22 [17]
SCE mass 0.08 pg water density
SCE radius 0.1–0.3 mm [7]
SCE number 53
l 0.25 ratio [7]
eTOT 5 �1025 fJ [17]
g 283 ms21
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Figure 7. Comparison of the SIM and LS methods on the
platelet-flipping dynamics. The surface interaction method
SIM shows flipping rates closer to the theoretical Jeffery
orbit. The variation in angle a to the platelet major axis is
plotted against the unit-less time, shear-rate product tz.
Solid lines with squares, SIM method; dotted line with circles,
LS method; dashed line with triangles, Jeffery orbit.
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Figure 8. Effect of varying damping factor g on the platelet-
flipping dynamics. The predicted value of g ¼ 250 shows
flipping rates close to the theoretical Jeffery orbit. The vari-
ation in angle a to the platelet major axis is plotted against
the unit-less time, shear-rate product tz.
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gives adhesion coefficient e ¼ 8 �1026 fJ per receptor–
ligand. From Jadhav et al. [17] if we assume that there
are of the order of 250 receptors per cell and two SCEs
contact the vessel, then we potentially have six bonds,
equating to a combined adhesion coefficient eTOT ¼

5 � 1025 fJ. Note that the coefficients are combined as
eTOT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eSCEeV
p

for the SCE and vessel coefficients,
respectively.

Note that all of the parameters used in the model
are estimated from measurements from physical
systems—there are no free parameters (table 2).

3.2.2. Platelet surface interaction with flow modification.
As discussed in §2.2.7, the LS coupling does not take
account of the cellular surface. Instead, each SCE is
treated as if it is immersed in the fluid. We find that
a more realistic description of the interaction can be
achieved by treating the damping factor g as if scaled
along the vector connecting the surface SCE to the
SCE at the platelet centre. This effectively allows
each SCE to ‘shield’ other SCEs from the fluid flow
field, as which would occur in a real-flow scenario. In
addition to this modification, the centre SCE should
see no effect from the flow. In the following text, we
refer to this as the surface interaction modification
(SIM) method.

In the first set of simulations, for the platelet flip-
ping, we employed both the basic LS coupling and the
SIM method, where we effectively apply a local damp-
ing factor to each SCE. All simulation results are
compared with the modified Jeffery orbit from Mody
et al. [6]. In the LS model, we expect the rate of initial
rotation of the platelet to be larger since the flow inter-
acts with all of the SCEs equally. With the SIM
method, the flow only acts on the surface SCEs facing
the up-stream flow, which slows the initial rotation.
These results are illustrated in figure 7, where the
advantages of using the SIM approach can be clearly
seen. The initial flow/platelet interaction follows the
theoretical curve closely, in contrast to the basic LS
approach.

3.2.3. The effect of the damping factor g. In general, the
damping factor ĝ is chosen to model the viscosity of the
fluid from Stokes’ Law

ĝ ¼ 6phr; ð3:3Þ

where h is the viscosity of the fluid and r is the radius of
the spherical body. For our LS approach, where we
J. R. Soc. Interface (2011)
require that the fluid also acts as heat bath for our
platelets, the actual value is divided by the mass of
the SCE to give g for our Langevin equation (3.2)
in the electronic supplementary material, §B.1. In
addition, the use of the SIM method means that
the final value will be dependent on the geometry
chosen for the platelet.

To determine the correct value, we simulated the
flipping platelet with a range of damping factors 25 �
g � 500. The effect of changing this parameter can be
seen in figure 8, in which we also compared with the
results of Jeffery [39]. Optimal results occur at g ¼
250 m s21, which is close to our estimated value of
283 m s21 for a spherical cell.



5 10 15 20 250

0.5

1.0

1.5

2.0

2.5

3.0 Jeffrey orbit
k = 2.4
k = 10
k = 25
k = 50

tz

a

Figure 9. Effect of varying kSCE on the platelet-flipping
dynamics. As the stiffness of the platelets kSCE is increased
the flipping rates become faster than the theoretical Jeffery
orbit. The variation in angle a to the platelet major axis is
plotted against the unit-less time, shear-rate product tz.
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Figure 10. Forward flow coupling.
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3.3. Stiffness of platelet

Elasticity of the platelet is defined by the spring constant
kSCE between pairs of SCEs in a cell. In our model, kSCE is
not a free parameter as discussed above. Instead it
is determined from experimental results (table 2). In
this subsection, we demonstrate how the values of kSCE

affect flipping dynamics of the platelet. The results can
be seen in figure 9. Here, we ran simulations with k ¼

2.4, 10, 25, 50, respectively. In each of these simulations,
we used g ¼ 250 m s21. It is evident that if the cell is less
elastic, it flips faster under the influence of shear flow.
Clearly, if the cell is more elastic, it can absorb more of
the stress owing to the flow.

In Mody et al. [6], simulations were used to characterize
trajectories of the freely flowing platelets. Itwas shown that
platelets consistently attach to an adhesive surface only
during the first-half of their rotation. Namely, angular
orientations of platelets result in compression along the
length of the platelet by the hydrodynamic flow forces.
Our results suggest that the patterns of platelet flipping
are also influenced by the mechanical properties of the
platelet itself, which can subsequently affect the platelet
binding to an adhesive surface. Conceivably, with a less
elastic cell that flips faster, the time it remains in an orien-
tation relative to the surface that permits binding may be
shorter than the time required for bond formation. On
the other hand, a more elastic cell could stay in the orien-
tation, which allows forming the binding bond for a
longer period of time once the cell makes the contact
with the surface. Since experimental measurements of the
effects of elasticity on platelet dynamics are not available
at this time, we use simulations to predict the effects of
the elasticity on platelet flipping in the flow. The study of
the effect of platelet elasticity on binding to the surface
will be the focus of the future work.
4. DISCUSSION

The formation of intravascular thrombi can impair
blood flow leading to ischaemic damage to tissues in
J. R. Soc. Interface (2011)
the vascular field of the vessel. A critical process in
the formation or growth of a thrombus is the binding
of resting platelets in the flowing blood with the
injury site or developing thrombus surface. The binding
of platelets is a multistep process involving the estab-
lishment of rapidly forming but transient interactions
that slow the platelet and cause it to flip. The flipping
on the thrombus or injury surface allows for the estab-
lishment of slower forming but stable adhesive bonds.
To understand the recruitment of resting platelets, it
is necessary to understand the initial interactions that
are governed by the blood flow, the orientation of the
resting platelet flowing in blood and the mechanical
properties of platelets.

The main focus of this paper is to describe and to
demonstrate a new SCEL method that couples conti-
nuum blood flow field, either fixed or modelled using an
incompressible Navier–Stokes fluid solver, and the dis-
creet SCE model of a platelet using an innovative
Langevin coupling approach. This is a forward coupling
where the SCE dynamics are coupled to the flow field,
but the flow calculations are not influenced by the SCE
positions and velocities (see also figure 10). It is shown
that such coupling gives good agreement between simu-
lation results and experimental data provided that the
flow rate is not very high. In addition, a SIM is introduced
that more accurately models the fluid/platelet interface
by considering the interaction to occur at the platelet sur-
face. Moreover, since we use potentials to represent
interactions among SCEs, we have further refined the
basic adhesion models of Sandersius & Newman [11]
and Newman [12] that use potential energy to model
adhesion, to both prevent cellular overlap and allow accu-
rate representations of ‘flipping’ dynamics of platelets.
We would also like to point out that the stochastic
approach to model adhesion is better [9,17,32], and we
will incorporate this approach in the future.

The extension of the SCE method [12] described in
this paper allows modelling of the platelet with realistic
shape, elasticity and adhesivity coupled to the flow that
is essential to the delivery mechanism in thrombus
development in a blood vessel.

Using the SCEL, the three-dimensional motion of a
viscoelastic platelet in a shear blood flow was simulated
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and compared with experiments on tracking platelets in
a blood flow chamber under conditions similar to those
found in veins in terms of flow velocity and geometry. It
has been shown that the complex platelet-flipping
dynamics under linear shear flows could be accurately
recovered with the SCEL model when compared with
the experiments. Simulation results in Mody et al. [6],
in which platelets are represented as rigid ellipsoids,
suggest that the patterns of platelet binding to and
releasing from an adhesive surface are determined by
hydrodynamic forces exerted on platelets. Because of
this, binding bonds form only in specific platelet orien-
tations where a hydrodynamic compressive force pushes
the platelet against the surface. Our study suggests that
platelet flipping is also influenced by the mechanical
properties of platelets. We show that a softer cell has
a longer period of flipping in a blood flow. How cell elas-
ticity affects platelet binding to the adhesive surface
will be the subject of the future study.

This research was supported in part by NSF grant DMS-
0800612, NIH grant HL073750-01A1 and the INGEN
Initiative to Indiana University School of Medicine. We
thank Timur Kupaev for the help with the image analysis of
experimental data.
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