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Anthropogenic environmental change is often implicated in the emergence of new zoonoses from wildlife;

however, there is little mechanistic understanding of these causal links. Here, we examine the trans-

mission dynamics of an emerging zoonotic paramyxovirus, Hendra virus (HeV), in its endemic host,

Australian Pteropus bats (fruit bats or flying foxes). HeV is a biosecurity level 4 (BSL-4) pathogen,

with a high case-fatality rate in humans and horses. With models parametrized from field and laboratory

data, we explore a set of probable contributory mechanisms that explain the spatial and temporal pattern

of HeV emergence; including urban habituation and decreased migration—two widely observed changes

in flying fox ecology that result from anthropogenic transformation of bat habitat in Australia. Urban

habituation increases the number of flying foxes in contact with human and domestic animal populations,

and our models suggest that, in addition, decreased bat migratory behaviour could lead to a decline in

population immunity, giving rise to more intense outbreaks after local viral reintroduction. Ten of the

14 known HeV outbreaks occurred near urbanized or sedentary flying fox populations, supporting

these predictions. We also demonstrate that by incorporating waning maternal immunity into our

models, the peak modelled prevalence coincides with the peak annual spill-over hazard for HeV. These

results provide the first detailed mechanistic framework for understanding the sporadic temporal pattern

of HeV emergence, and of the urban/peri-urban distribution of HeV outbreaks in horses and people.

Keywords: Hendra virus; Pteropus; flying fox; bat virus; connectivity; metapopulation disease model
1. INTRODUCTION
Emerging zoonoses from wildlife represent a significant

and increasing threat to global public health [1]. There is

evidence that anthropogenic changes are responsible for

most zoonotic emerging infectious diseases [1–4]. How-

ever, very few studies have been able to identify

mechanistic linkages between environmental drivers and

disease emergence [5,6]. Bats are hosts of some of the

most significant recently emerging zoonoses [7–9] and,

since 1994, four novel human pathogens have emerged

from bats of the genus Pteropus (fruit bats, known as

flying foxes) alone [10,11]. Two of these, the paramyxo-

viruses Hendra and Nipah virus, have caused sporadic
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outbreaks in domestic animals and people, with extremely

high case-fatality rates, and evidence of human-to-human

transmission for Nipah virus [12–14]. The unprecedented

emergence of four novel human pathogens from a single

host genus in such a short period of time suggests that

recent changes in host ecology may play a role in emergence

[6]. However, despite their pandemic potential, and the

lack of effective therapies or vaccines, little is known

about what factors may have caused these bat-borne

viruses to emerge.

Hendra virus (HeV) is lethal in humans and horses.

Fourteen known outbreaks of HeV have occurred in

Australia (see the electronic supplementary material,

table S1), apparently with an increasing frequency

(figure 1a), and a higher risk of spill-over from May to

October (figure 1b). All 14 outbreaks involved trans-

mission of virus from flying foxes to a primary case horse,

and five events involved subsequent transmission to

humans resulting in an illness or death (see the electronic
This journal is q 2011 The Royal Society
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Figure 1. Epidemic hazard rates for HeV spill-over events. (a) Bayesian posterior epidemic hazard rate for Hendra virus (HeV)
spill-over from 1994 to 2010. The grey region is bounded by the 2.5th and 97.5th posterior percentiles for the hazard rate. The
grey horizontal line is the flat prior used, bound by the middle 95% of the prior distribution (see the electronic supplementary
material, methods). Crosses represent spill-over events. (b) Bayesian monthly posterior epidemic hazard rate for HeV. Crosses

indicate spill-over events within the labelled month. The approximate peak timing of life-history events for P. alecto and
P. poliocephalus in South Queensland [15–18] is indicated at the top of the plot.
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supplementary material, table S1). Experimentally infected

flying foxes exhibit a short infectious period with no appar-

ent clinical disease, and viral excretion in urine, saliva, faeces

and placental fluids [19,20]. Transmission from flying foxes

to horses is presumed to be via ingestion of pasture, feed or

water contaminated with these products [13,21].

Flying foxes depend on nectar and fruit food sources

that are irregular, ephemeral and patchily distributed in

native forests, so only frequent migration over large

areas of intact habitat can ensure a continuous food

supply [15,17,22–24]. As natural food resources decline

with the loss of up to 75 per cent of the once contiguous

forest cover on the east coast of Australia [25], flying foxes

have sought an alternative food source in urban gardens.

Urban flowering resources are abundant, reliable and

available year-round, decreasing the requirement for

energy-expensive, long-distance foraging and migration.

In response, an increasing proportion of flying fox popu-

lations are becoming urbanized, and an increasing

proportion of these urban flying foxes are ceasing to

migrate (figure 2 and the electronic supplementary

material, figure S1) [16,23,30,31,33–36]. Today, all of

Australia’s major east coast cities, and many major

towns, contain continuously occupied flying fox camps

(daytime roosts), which were not historically present

(figure 2; the electronic supplementary material, figures
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S1 and S2). In addition to this distributional shift, ongoing

urban and rural residential development in critical flying

fox habitat [22,37] may increase the overlap between

human, horse and flying fox populations. These recent

changes probably have important consequences for the

metapopulation dynamics of HeV, and disease trans-

mission between flying foxes and people.

HeV has probably circulated in flying fox populations

for long periods of evolutionary time [9] but cases have

only recently been described in horses and humans.

Cases of HeV in humans and horses also appear to be sea-

sonal and cyclical. It is important to determine what

factors account for the spatio-temporal trends and

HeV’s modern-day persistence, emergence and spill-

over. Our study used data and modelling approaches to

evaluate a set of probable contributory mechanisms

underlying HeV emergence in urban and peri-urban

locations in eastern Australia. Likely mechanisms consist-

ent with the data that include: (i) An increase in urban

flying fox populations allows for increased contact with

humans and horses; (ii) a decrease in migratory behaviour

of urban flying foxes reduces viral transmission, leading

to a decline in herd immunity, and a consequent increase

in the intensity of HeV outbreaks when infection is re-

introduced; and (iii) synchrony of stressors on individual

bats and some demographic factors, including seasonal
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aggregation, pregnancy, birth and waning maternal

immunity in pups, could drive annual temporal clustering

of HeV outbreaks. We use computational models, para-

metrized by field and laboratory data, to investigate the

factors driving temporal oscillations in HeV outbreaks

and the predicted impact of urban habituation and

decreased flying fox migration on HeV dynamics and

emergence.
2. METHODS
The population structure of flying foxes—notably the distinct

camps in which bats aggregate, with low levels of movement

between camps—provides an ideal configuration for viral

metapopulation dynamics. We developed a spatial SEIR

(susceptible, exposed, infectious, recovered) model to approxi-

mate the stochastic behaviour of HeV transmission in this

spatially structured flying fox metapopulation. Our model

includes precise information about quantitative dynamics

within local populations (camps) as well as between-population

coupling and explicit metapopulation structure. Models with

heterogeneous infectious periods or transmission rates and a

model with waning maternal immunity (phenomena proposed

for henipaviruses) were also explored to account for alternative

mechanisms of persistence within flying fox populations (see

the electronic supplementary material, ‘methods’).

Demographic parameters including birth rate, death rate

and seasonality were estimated from captive and field studies

of Pteropus poliocephalus and Pteropus alecto (grey-headed and

black flying foxes) ([38]; P. Eby 2004, unpublished data),
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while epidemiological parameters were estimated from exper-

imental, field and captive data on P. poliocephalus and P. alecto

(table 1). Direct empirical estimates of transmission rates (b)

have thus far been impossible to obtain, hence we estimated a

range of b values from field seroprevalence data (table 1),

assuming equilibrium at g/b susceptibles [40,41]. Lifelong

immunity to HeV in P. poliocephalus and P. alecto was assumed

on the basis of long-lived detectable antibodies in captive

flying foxes ([39]; H. Field 2005, unpublished data), and

long-lived immunity induced by other paramyxoviruses

[42–44]. The period over which maternal immunity wanes

was estimated from field and captive serosurveys [21,39].

Population and metapopulation characteristics of flying

foxes (table 1) were estimated using data from biannual syn-

chronized surveys of P. poliocephalus populations [26–29] and

regional surveys of P. alecto populations [30,31]. Although

the ecology of these two species differ, field and laboratory

studies of HeV have not been able to distinguish significant

differences in host-viral dynamics; furthermore, roost sharing

[30,45,46] and identical isolates from both species [47]

imply frequent interspecific transmission. Therefore, for the

purpose of this paper, we grouped populations of the two

species together. Qualitative assessments of long-term

changes to flying fox populations were obtained by com-

paring historic literature [48–50] to current assessments

[26–29,31] and expert opinion. Connectivity estimates

from radio and satellite telemetry studies of P. poliocephalus

[15,36] and radio telemetry studies of P. alecto [51,52] dif-

fered substantially, hence, we explored HeV dynamics over

the entire range of the connectivity parameter, c, for which



Table 1. Model parameters.

parameter estimate or range source

transmission rate b 2E 2 5–5E 2 5 g /b susceptibles, estimate from field data
infectious period 1/g 7 (95% CI: 4, 10)

days

K. Halpin et al. (2005), unpublished data

incubation period 1/s 6 (95% CI: 4, 9) days K. Halpin et al. (2005), unpublished data
mean seroprevalence 0.5 estimate from data in Field [39]
standard deviation of seroprevalence 0.3 estimate from data in Field [39]
local population (camp) size N0 10 000 mean estimated from [26–30]

birth rate average b max 0.40 P. Eby (2004), unpublished data
mortality rate d 1/10 years [38]
carrying capacity K K ¼ N0/(1 2 d/b) calculated for equilibrium value
duration of breeding season 12 weeks Oct–Dec [38]

number of local populations h 200–800 (two
species)

[26–30]

urban cluster size s 0–40 current maximum is 20 camps [31].
rate at which transmission declines with

distance
c*d (0–0.25)*30 range of c values for which simulations

persisted

duration of maternal immunity 182 days (six
months)

[6,21,39]
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Figure 3. Herd immunity and epidemic size. Relationship
between initial herd immunity, epidemic amplitude (black
triangles) and epidemic duration (red circles) in a stochastic
metapopulation simulation (N0 ¼ 10 000, b ¼ 4.76E 2 05,

g ¼ 0.143, h ¼ 200, c ¼ 0.16). The deterministic threshold
number of susceptibles required for disease invasion in this
model system is approximately 3000 (initial proportion
immune ¼ 0.7). When virus is introduced into a population
with initial herd immunity approaching the threshold for

invasion, low amplitude, persistent smouldering epidemics
may result. When virus is introduced into a more susceptible
population, high amplitude, shorter epidemics may result.
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simulations persisted (see the electronic supplementary

material, methods).
3. RESULTS
(a) Local and metapopulation dynamics

Local populations (camps) within the model flying fox–

HeV system experienced periodic epidemics that depleted

the susceptible pool, leading to local viral extinction after

which susceptibles were replenished via births, followed

by reinfection via spatial transmission. The size and the

duration of each local epidemic were critically dependent

on the local herd immunity (proportion of immune ani-

mals) at the start of the each epidemic (figure 3)

[53,54]. Therefore, given heterogeneous herd immunity

across local populations in an endemic host, an ensemble
Proc. R. Soc. B (2011)
of epidemic types occurred across the metapopulation—

from large explosive short-lived epidemics to slow ‘smoul-

dering’ epidemic dynamics. Viral persistence depended

on a small number of highly persistent smouldering epi-

demics to maintain infection through global troughs, as

well as classic asynchronous metapopulation dynamics.
(b) Decreased migratory behaviour and

urban aggregation

We simulated the effects of two changes in the structure and

dynamics of the flying fox–HeV metapopulation: decreased

migratory behaviour and greater aggregation of flying foxes

in urban areas. Decreased migratory behaviour (a reduction

in the probability of animals moving between populations—

synonymous with decreasing population connectivity) had

a significant impact on viral metapopulation dynamics. As

connectivity decreased, epidemics (i) increased in size

and, when combined with urban aggregation of flying

foxes, (ii) diverged in amplitude and frequency in urban

and rural environments (figure 4a,b).

The inverse relationship between outbreak size and

connectivity can be explained by the change in inter-

epidemic intervals. As fewer individuals migrate, the

probability of infected hosts moving between local popu-

lations decreases—thereby lowering the probability of

camps becoming reinfected after local viral extinction—

and increasing the time over which flying fox populations

can recruit susceptible individuals via birth (figure 4c).

The resulting decline in herd immunity across the meta-

population shifts disease dynamics towards sporadic,

shorter and more intense local epidemics with a higher

epidemic amplitude, and larger number of individuals

infected (figure 3). However, the total number of infected

individuals within a metapopulation over a 20 year simu-

lation decreased with declining connectivity (figure 4d).

When we simulated changing flying fox population

structure—towards clusters of urban camps, spanning to

linear arrays of rural camps—the total number of infec-

tious individuals, and therefore the force of infection,

was notably higher in the urban clusters, compared with

the rural arms (figure 5).
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When decreased migratory behaviour was imposed on

the clustered flying fox population structure, the resulting

establishment of a spatial hierarchy set up the conditions

[55] that allowed HeV dynamics in urban and rural

environments to diverge. Even at low rates of flying fox

migration, HeV was more likely to persist within clusters

of proximate urban camps, thereby periodically sparking

spatio-temporal waves of infection through rural

populations (figure 6).
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(c) Connectivity and persistence

Connectivity had a profound effect on viral persistence.

As we decreased migratory rates below levels of connec-

tivity optimal for persistence, movement eventually

became insufficient to allow reinfection of patches, result-

ing in concerted viral extinction. Thus, the same

conditions that promoted larger epidemics eventually

led to viral extinction, rendering the system vulnerable

to a large synchronized outbreak.
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(d) Alternative models: waning immunity and

superspreaders

Incorporating waning maternal immunity shifted the

annual pulse in disease incidence by six months

(figure 7a,b), to approximately coincide with the peak in

HeV spill-over hazard (figure 1b). When the infectious

period was allowed to vary, so that a small fraction of indi-

viduals became ‘super-long-shedders’ (see the electronic

supplementary material, methods), local populations

became permanently infected, with synchronous annual

fluctuations in incidence driven by the influx of suscepti-

bles. The shift in peak prevalence, driven by waning

maternal immunity, was more pronounced in the

‘super-long shedder’ model compared with the acute

homogeneous model where local populations were in

frequently infected.

When we simulated decreased migratory behaviour,

and urban aggregation with super-long-shedder, and

‘super-high-shedder’ models (see the electronic supple-

mentary material, methods), the sum of infected

individuals within urban aggregations was still greater

than in the rural linear positions (see the electronic

supplementary material, figure S3), however rare super-

long-shedders maintained herd immunity so that declining

connectivity did not impact epidemic size (see the

electronic supplementary material, figure S4). The super-

high-shedder model generated very similar dynamics to

the acute homogeneous model (electronic supplementary

material, figure S4).
4. DISCUSSION
Our study provides a number of viable mechanistic

explanations for the recent emergence, and pattern of

continued but sporadic spill-over, of HeV near densely
Proc. R. Soc. B (2011)
populated areas of eastern Australia. Our models suggest

that changes in host ecology, behaviour and movement,

driven by anthropogenic environmental change, may

have provided critical conditions for HeV emergence;

while seasonal changes associated with reproduction

may drive annual temporal trends in viral dynamics

within bat populations.
(a) Increasing urban aggregation is a likely

driver of emergence

The risk of pathogen emergence from a reservoir host to

a new host species is affected by the number of reservoir

hosts infected, the encounter rate between reservoir and

novel hosts, and the infection dynamics and trans-

mission biology of the pathogen [21,56–58]. The

increasing number of flying foxes in urban settings

should increase the encounter rate between flying foxes

and urban/peri-urban horse populations as the pattern

of domestic horse distribution and density closely

follows that of humans on the east coast of Australia

(R. McFarlane 2009, unpublished data). In addition,

urban aggregation of flying foxes increases the absolute

number of infected flying foxes in urban clusters, regard-

less of whether flying foxes are changing their migratory

behaviour.

The finding that nine out of 14 known HeV spill-over

events have been within the foraging radius of continu-

ously occupied urban camps is consistent with the

hypothesis that human/bat overlap in peri-urban environ-

ments contributes to HeV spill-over. A further one of

these 14 outbreaks occurred near a continuously occupied

non-urban camp, but is unusual in occurring where abun-

dant food resources in northern New South Wales sustain

permanently occupied camps regardless of human popu-

lation density. The other four spill-overs occurred near

seasonally occupied camps with large aggregations of

flying foxes at the time of spill-over (H. Field 2011,

unpublished data), with two of these in areas of high

human (and horse) density. Although, the pattern of

spill-over is consistent with our findings, 14 spill-over

events is a limited sample size, and biases may exist

within this sample (e.g. reporting bias in urban areas).

Thus, prospective exploration of urban and non-urban

HeV dynamics, as well as more rigorous identification,

and investigation of future outbreaks is essential to

confirm or reject this hypothesis.
(b) Changing migratory behaviour may also

drive spill-over events

Our model showed that, in the absence of a rare super-

long-shedder state, epidemics become larger, but less

frequent when migration declines. However, over entire,

multiple-decade simulations of highly connected metapo-

pulations, in which virus was predicted to be continuously

present at low incidence, the overall numbers of infected

individuals were comparable to, or even higher than, the

sporadic, explosive outbreaks in fragmented metapopula-

tions. Therefore, the critical question is—which scenario

increases the risk of spill-over: a continuous, low-level

force of infection or an infrequent but high force of

infection from flying foxes?

Data show that flying fox populations have either

declined, shifted into urbanized environments, or both
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[16,22,30,34,59], since early surveys by Ratcliffe [49,50]

and Nelson [48]. Historically, more numerous and more

connected flying fox populations probably favoured

smouldering, low-incidence epidemic dynamics in

nearly contiguous east coast forest, and an overall larger

number of infected individuals. Therefore, we hypo-

thesize that high-intensity epidemics, a possible

consequence of reducing flying fox population connec-

tivity, could facilitate spill-over to horses, and therefore

explain the increasing hazard of HeV outbreaks, despite

our prediction that the global number of infected flying

foxes has declined. If large epidemics happen to coincide

spatially with areas of high human and horse density, or

temporally with periods of putative increased risk for

horses (e.g. pregnancy; [60]) or flying foxes (e.g. nutri-

tional stress or pregnancy; [21]), the risk of spill-over

from intense but infrequent epidemics may be enhanced.

Although the fact that 10 out of 14 HeV outbreak sites

were near continuously occupied flying fox camps, which

we assume contain non-migratory animals ([16,36,61];

P. Eby 2008, unpublished data), supports this hypothesis,

detailed temporal surveys of urban flying foxes demonstrat-

ing declining herd immunity before HeV outbreaks in

horses, will be necessary to confirm this hypothesis.
(c) Spatio-temporal clustering of spill-over events:

epidemic waves

The spatio-temporal clustering of some spill-over events

(e.g. Cairns and Townsville in 2004, Peachester and

Murwillumbah in 2006), the isolation of identical strains

of HeV from separate locations (e.g. Mackay and

Brisbane in 1994; [62,63]), and the sporadic nature of

HeV outbreaks could be explained by wave-like spatio-

temporal behaviour. Our models show that epidemic

waves of HeV, sparked by urban epidemics and travelling

progressively through non-urban populations, are a poss-

ible consequence of changing flying fox spatial population

structure. Similarly, spatial heterogeneity in host popu-

lation structure has been hypothesized to account for

travelling waves of measles virus in England and Wales

[55] and dengue haemorrhagic fever in Thailand [64],

with larger communities periodically sparking waves in

incidence through small communities. Monitoring of

HeV in Australian flying foxes will be necessary to deter-

mine whether HeVexhibits these patterns of spatial spread.
(d) Seasonal clustering of spill-over events: birth

pulses, pregnancy, aggregation and ‘stress

synchrony’

Seasonal changes in reproductive behaviour, birth rates,

aggregation patterns and host susceptibility can drive pulses

in disease incidence [65,66] and annual peaks in epidemic

frequency [65]. Seasonal factors almost certainly apply to

flying foxes, with the annual birth pulse, pregnancy, seasonal

aggregation and cyclical environmental stressors being sev-

eral distinct mechanisms that could contribute to the

seasonal (winter–spring) increase in HeV spill-over hazard.

Seasonal births provide an influx of immunologically

naive hosts, lowering herd immunity and increasing

the risk of infection for all susceptibles [67,68]. In the

absence of maternal immunity, our models predic-

ted that a pulse in disease incidence should follow the

birth pulse. Waning maternal immunity shifted the
Proc. R. Soc. B (2011)
recruitment of susceptibles by six months, and delayed

the spike in prevalence to coincide with the peak in

HeV spill-over hazard. Seasonal forcing was a dominant

feature of the super-long-shedder model, where seasonal

effects were synchronous across the persistently infected

local populations. When local infection was sporadic,

as in the acute homogeneous model, seasonality could

only drive dynamics within populations that happened

to be infected during the recruitment of susceptibles,

and specific local epidemic history was a more dominant

influence on local force of infection. Temporal studies of

HeV prevalence and seroprevalence are required to inves-

tigate the role of waning maternal immunity and to assess

outputs from the superspreader and homogeneous

models.

A delayed pulse of susceptibles could potentially inter-

act with an increased risk of infection during pregnancy,

as demonstrated in P. scapulatus [21], or other, as yet

unknown factors, such as recrudescent infection [69].

Host aggregation during reproduction [23,30,48,49] or

periods of resource concentration [15,22] are other

potential drivers of transmission that need further investi-

gation. Finally, environmental stress could drive

geographical ‘stress synchrony’. Elevated seroprevalence

was associated with nutritional stress in P. scapulatus

[21], suggesting that processes that alter flying fox food

sources—such as drought and climate change—could

both increase and synchronize the risk of HeV spill-

over. As synchronous stressors affect bats, synchronous

stressors on horses, (e.g. foraging stress or pregnancy)

or conditions that promote pathogen survival in the

environment, could exacerbate the potential for spill-

over. Identifying the mechanism linking seasonal host fac-

tors with HeV emergence is critical to aid in forecasting

outbreaks and developing control strategies.
5. CONCLUSION
Our work suggests multiple factors in the changing land-

scape of Australia and the demography of flying foxes

contribute to HeV dynamics in bats and spill-over hosts.

Our models predict that urban habituation of flying

foxes increases the epidemiological linkage between

flying foxes and horses, providing plausible scenarios

for the recent apparent increased frequency of HeV out-

breaks in Australia. We present alternative models of

HeV persistence, including an acute homogeneous meta-

population model, where explosive infrequent outbreaks

may drive the sporadic pattern of emergence; and a locally

persistent model of HeV dynamics with seasonal oscil-

lations in incidence coinciding with increased risk of

HeV emergence. Field data are critically needed to dis-

tinguish between these alternative models for HeV

persistence and spill-over, along with laboratory investi-

gations that improve our interpretation of serology.

Furthermore, we describe a counterintuitive ‘epidemic

dampening’ effect, where decreasing reservoir host popu-

lation connectivity can favour a sporadic, high force of

infection that may facilitate pathogen emergence into an

aberrant host. We propose that future work on the

drivers of emergence of other zoonotic disease systems

test this theoretical framework that may have important

conservation and public health implications. Finally, our

results suggest that anthropogenically driven changes to
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flying fox ecology may result in more intense, sporadic,

lethal outbreaks of HeV in livestock and people.
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