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ABSTRACT

An increasing number of algorithms for biochemical network inference from experimental
data require discrete data as input. For example, dynamic Bayesian network methods and
methods that use the framework of finite dynamical systems, such as Boolean networks, all
take discrete input. Experimental data, however, are typically continuous and represented
by computer floating point numbers. The translation from continuous to discrete data is crucial
in preserving the variable dependencies and thus has a significant impact on the performance of
the network inference algorithms. We compare the performance of two such algorithms that
use discrete data using several different discretization algorithms. One of the inference methods
uses a dynamic Bayesian network framework, the other—a time-and state-discrete dynamical
system framework. The discretization algorithms are quantile, interval discretization, and a
new algorithm introduced in this article, SSD. SSD is especially designed for short time series
data and is capable of determining the optimal number of discretization states. The experiments
show that both inference methods perform better with SSD than with the other methods. In
addition, SSD is demonstrated to preserve the dynamic features of the time series, as well as to
be robust to noise in the experimental data. A C++ implementation of SSD is available from the
authors at http:==polymath.vbi.vt.edu=discretization.

Key words: gene networks, genetic algorithms, linear algebra, reverse engineering, time discrete

dynamical systems.

1. INTRODUCTION

The development of algorithms to infer biochemical networks from system-level data, such as DNA

microarray or 2D-gel data, is a central problem of computational systems biology. Several such algo-

rithms have been proposed in recent years, using tools from a variety of fields. Many of these methods are

statistical in nature, resulting in a ‘‘dependency graph’’ for the network. Depending on the method used, the

edges represent either a statistical correlation of two variables (de la Fuente, 2004) or a causal relationship
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(Friedman, 2000). One commonly used modeling framework is that of dynamic Bayesian networks (Pournara,

2004; Yu, 2004; Beal, 2005; Nariai, 2005; Zou, 2005; Dojer, 2006). Toward the other end of the spectrum one

finds methods that use a dynamical systems modeling framework, such as systems of differential equations

(Gardner, 2003; Andrec, 2005; Kim, 2007), Boolean networks (Liang, 1998; Akutsu, 2000; Mehra, 2004;

Martin, 2007), or multi-state discrete models (Laubenbacher, 2004; Jarrah, 2005). The different methods have

different data requirements.

We focus here on methods that require discretized data as input, that is, experimental data that have been

discretized into a finite number of discrete states. This is a requirement for almost all Bayesian network

methods, as well as discrete multi-state model-based methods, such as Boolean networks. Relatively little

systematic work has been done on discretization methods for this purpose (Di Camillo, 2005; Ernst, 2006),

and such work assumes larger data sets than those available in reality and=or knowledge of the data

distribution also rarely available. Di Camillo et al. (2005), for instance, require knowledge of the distri-

bution of the error (x(t)� xb), where x(t) is the measurement and xb is its basal value, and suggest using

experimental replicates for finding it. Such a requirement makes their method inapplicable when no such

experiments are possible due to their prohibitive cost or the particular experimental design. There is also a

large selection of discretization methods which cluster data points but many of them are not directly

applicable in the network inference context or are not suitable. One important limitation is typically that the

number of available data points is very small, e.g., DNA microarray measurements. Also, methods that

provide as output a dynamic model rely on appropriate methods for the discretization of time series data.

We argue in this paper that appropriate data discretization is crucial for the optimal performance of

network inference algorithms and deserves to be studied more extensively. To this aim we present the

results of a comparison of different discretization methods. We compare the performance of two different

network inference methods on the same data set using several different discretization algorithms. The two

inference methods are the dynamic Bayesian network algorithm (Bernard, 2005) using the software

BANJO (Hartemink, 2006) and the polynomial dynamical system method developed in Jarrah (2005). We

apply both methods with the discretization algorithms available in BANJO, namely interval, as well as

quantile discretization into 2, 3, 4, and 5 states. Similarly, we evaluate the performance of both inference

methods using a new discretization algorithm described in this paper. It has been developed specifically for

short time course data, with the goal of obtaining dynamic network models. In order to assess the effect of

the different discretization algorithms on network inference accurately we use data from a synthetic gene

regulatory network, whose structure is known. We emphasize that our purpose is to compare the perfor-

mance of discretization methods and not inference methods.

2. DATA DISCRETIZATION

Discretization of real data into a typically small number of finite values is often required by machine

learning algorithms (Dougherty, 1995), data mining (Han, 2000), discrete dynamic Bayesian network

applications (Berlo, 2003), and any modeling algorithm using discrete-state models. Binary discretizations

are the simplest way of discretizing data, used, for instance, for the construction of Boolean network

models for gene regulatory networks (Kauffman, 1969; Albert, 2003). The expression data are discretized

into only two qualitative states as either present or absent. An obvious drawback of binary discretization is

that labeling the real-valued data according to a present=absent scheme generally causes the loss of a large

amount of information. Discrete models and modeling techniques allowing multiple states have been

developed and studied previously (Laubenbacher, 2004; Thieffry, 1998). In order to place the further

discussion in a general context we give a definition of discretization (Hartemink, 2001).

Definition 2.1. A discretization of a real-valued vector v¼ (v1, . . . , vN) is an integer-valued vector

d¼ (d1, . . . dN) with the following properties:

1. Each element of d is in the set 0, 1, . . . , D� 1 for some (usually small) positive integer D, called the

degree of the discretization.

2. For all 1� i, j�N, we have di� dj if and only if vi� vj.

Without loss of generality, assume that v is sorted, i.e., for all i< j, vi� vj. Spanning discretizations of

degree D are a special case that we focus on in this paper. They are defined in Hartemink (2001) as
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discretizations that satisfy the additional property that the smallest element of d is equal to 0 and that the

largest element of d is equal to D� 1. Given v¼ (v1, . . . , vN), there is a large variety of schemes to obtain a

discretization that is consistent with the above definition. Here we present two simple ways that are often

used as a starting point in more complicated methods.

Interval discretizations divide the interval [v1, vN] into k equal sized bins, where k is user-defined.

Another simple method is quantile discretization which places N=k (possibly duplicated) values in each bin

(Dougherty, 1995). Any method based on those two approaches would suffer from problems that make it in-

applicable to the type of biological data we consider. Interval discretizations are very sensitive to outliers

and may produce a strongly skewed range (Catlett, 1991). In addition, some discretization levels may not be

represented at all which may cause difficulties with their interpretation as part of the state space of a discrete

model. In fact, for the method that we propose, we assume that for each integer a with 0� a�D� 1, there is

an entry di of d such that a¼ di.

On the other hand, quantile discretizations depend only on the ordering of the observed values of v and

not on the relative spacing values. Since distance between the data points is often the only information that

comes with short time series, losing it is very undesirable. A shortcoming, common for both interval and

quantile, as well as for most other discretization methods, is that they require the number of discrete

states, k, to be user-provided. We discuss later why this is impractical.

A number of entropy-based discretization methods deserve attention. An example of those is Harte-

mink’s Information-preserving Discretization (IPD). It relies on minimizing the loss of pairwise mutual

information between each two real-valued vectors (variables). The mutual information between two ran-

dom variables X and Y with joint distribution p(X, Y) and marginal distributions p(x) and p(y) is defined as

I(X; Y)¼
X

x

X

y

p(x, y)log
p(x, y)

p(x)p(y)
:

Note that if X and Y are independent, by definition of independence p(x, y)¼ p(x)p(y), so I(X; Y)¼ 0. When

modeling regulatory networks and having as variables, for instance, mRNA, protein, and metabolite

concentrations, the joint distribution function is rarely known and it is often hard to determine whether two

variables are independent or not. In fact, finding dependencies is a primary objective of regulatory network

inference. Therefore, computing mutual information and basing discretization on its pairwise minimization

is inapplicable.

As pointed out earlier, a major challenge of discretizing biological data is the small number of data

points. For example, about 80% of microarray time series experiments are short: 3-8 time points (Ernst,

2006). For the case of such small samples of data, many statistical methods for discretization, such as Peer

(2001), are not applicable due to the insufficient amount of data. For example, the sample size may be

insufficient to estimate distributions.

Another common discretization technique is based on clustering ( Jain, 1988). One of the most often used

clustering algorithms is k-means developed in MacQueen (1967). It is a non-hierarchical clustering pro-

cedure whose goal is to minimize dissimilarity in the elements within each cluster while maximizing this

value between elements in different clusters. Many applications of k-means clustering, such as the Multi-

Experiment Viewer (Saeed, 2003), start by taking a random partition of the elements into k clusters and

computing their centroids. As a consequence, a different clustering may be obtained every time the

algorithm is run. Another inconvenience is that the number k of clusters to be formed has to be specified in

advance. Although there are methods for choosing ‘‘the best k’’, such as the one described in Crescenzi

(2001), they rely on some knowledge of the data properties that may not be available.

Another method is single-link clustering (SLC) with the Euclidean distance function. SLC is a divisive

(top-down) hierarchical clustering that defines the distance between two clusters as the minimal distance of

any two objects belonging to different clusters ( Jain, 1988). In the context of discretization, these objects

will be the real-valued entries of the vector to be discretized, and the distance function that measures the

distance between two vector entries v and w will be the one-dimensional Euclidean distance jv�wj. Top-

down clustering algorithms start from the entire data set and iteratively split it until either the degree of

similarity reaches a certain threshold or every group consists of one object only. For the purpose of data

analysis, it is impractical to let the clustering algorithm produce too many clusters containing only one real

value. The iteration at which the algorithm is terminated is crucial since it determines the degree of the

discretization. SLC with the Euclidean distance function satisfies one of our major requirements: very little
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starting information is needed—only distances between points. In addition, being a hierarchical clustering

procedure, it lends itself to adjustment in case that clusters need to be split or merged. It may result,

however, in a discretization where most of the points are clustered into a single partition if they happen to

be relatively close to one another. Another problem with SLC is that its direct implementation takes D, the

desired number of discrete states, as an input. However, we would like to choose D as small as possible,

without losing information about the system dynamics and the correlation between the variables, so that an

essentially arbitrary choice is unsatisfactory.

This brief discussion of commonly used discretization methods and the issues that arise when applying

them to data from short time course measurements is intended to demonstrate that data discretization for the

purpose of inferring properties of biochemical networks has to be approached with care.

3. NEW DISCRETIZATION METHOD: SSD (SHORT SERIES DISCRETIZATION)

We introduce a new method for discretization of time series of experimental data into a finite number of

states. While of interest for other purposes, this method is designed specifically for the discretization

of short multivariate time series, such as those used for the construction of discrete models of biochemical

networks built from time series of experimental data. An important characteristic of such time series that

we kept in mind is the relatively small number of data points—typically no more than ten. We employ a

graph-theoretic clustering method to perform the discretization and an information-theoretic technique to

minimize loss of information content. One of the most useful features of our method is the determination of

an optimal number of discrete states that is most appropriate for the data. Our Cþþ program takes as input

one or more vectors of real data and discretizes their entries into a number of states that is most suitable for

the data. Our main objective was to construct a method that is capable of preserving information about the

network dynamics inherent in the time series as well as performing well in the presence of noise in the

experimental data. While in the current paper we use the method only for reconstructing the network

interactions, we have evidence that it can be used for the reverse-engineering of the network dynamics as

the following example shows.

The current paper acknowledges the problem of having to deal with very small data sizes and presents a

method that is specifically designed to work with a small number of data points and does not make

ungrounded assumptions about their statistical properties. Some existing discretization techniques assume

that the number of discrete classes to be obtained is given (Friedman, 2000). While this number is

extremely important, it is not clear how to properly select it in many cases. Also, in these cases it is rarely

known what the appropriate discretization thresholds for each gene might be. These two issues were

addressed by modifying the SLC algorithm: our method begins by discretizing a vector in the same way as

SLC but instead of providing D as part of the input, the algorithm contains termination criteria which

determine the appropriate number D. After that each discrete state is checked for information content and if

it is determined that this content can be considerably increased by further discretization, then the state is

separated into two states in a way that may not be consistent with SLC. We point out that although the

discretization method we propose uses clustering as a tool to distribute the data points among the different

states, it is not the same as data clustering and pursues different objectives. The details of the SSD algorithm

follow next.

3.1. Discretization of one vector

Even if more than one vector is to be discretized, SSD begins by discretizing each vector independently

and for some applications this may be sufficient. The example of such a vector to keep in mind is a time

series of expression values for a single gene. If the vector contains m distinct entries, a complete weighted

graph on m vertices is constructed, where a vertex represents an entry and an edge weight is the Euclidean

distance between its endpoints. The discretization process starts by deleting the edge(s) of highest weight

until the graph gets disconnected. If there is more than one edge labeled with the current highest weight,

then all of the edges with this weight are deleted. The order in which the edges are removed leads to

components, in which the distance between any two vertices is smaller than the distance between any two

components, a requirement of SLC. We define the distance between two components G and H to be

min fjg� hj jg 2 G, h 2 Hg. The output of the algorithm is a discretization of the vector, in which each
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cluster corresponds to a discrete state and the vector entries that belong to one component are discretized

into the same state.

3.2. Example

Suppose that vector v¼ (1, 2, 7, 9, 10, 11) is to be discretized. The corresponding SLC dendrogram that

would be obtained by SLC algorithms such as the Johnson’s algorithm (Johnson, 1967) is given in Figure 1.

We start with constructing the complete weighted graph based on v which corresponds to iteration 0 of the

dendrogram (Fig. 2). Eight edges with weights 10, 9, 9, 8, 8, 7, 6, and 5, respectively, have to be deleted to

disconnect the graph into two components: one containing vertices 1 and 2 and another having vertices 7, 9,

10, and 11; this is the first iteration. Having disconnected the graph, the next task is to determine if the

obtained degree of discretization is sufficient; if not, the components need to be further disconnected in a

similar manner to obtain a finer discretization. See the following summary for details.

3.3. Algorithm summary

An implementation of the algorithm is available from the authors at polymath.vbi.vt.edu=discretization.

Input: set Sr ¼fviji¼ 1, . . . , mg where each vi¼ (vi1, . . . , viN) is a real-valued vector of length N to be

discretized.

Output: set Sd ¼fdiji¼ 1, . . . , mg where each di¼ (di1, . . . , diN) is the discretization of vi for all

i¼ 1, . . . , m.

1. For each i¼ 1, . . . , m, construct a complete weighted graph Gi where each vertex represents a distinct

vij and the weight of each edge is the Euclidean distance between the incident vertices.

2. Remove the edge(s) of highest weight.

3. If Gi is disconnected into components CGi

i1 , . . . , CGi

iMi
, go to 4. Else, go to 2.

4. For each CGi

ik , k¼ 1, . . . , Mi, apply ‘‘disconnect further’’ criteria 1–3. If any of the three criteria holds,

set Gi¼CGi

i1 and go to 2. Else, go to 5.

5. Apply DF criteria (see below). If this criterion is satisfied, go to 6. Else, go to 7.

6. Sort the vertex values of CGi

i1 and split them into two sets: if jV(CGi

i1 )j is even, split the first jV(CGi

i1 )j=2

sorted vertex values of Gi¼CGi

i1 into one set and the rest—into another. If jV(CGi

i1 )j is odd, split the

first jV(CGi

i1 )j=2þ 1 sorted vertex values of jV(CGi

i1 )j into one set and the rest—into another.

7. Sort the components CGi

i1 , k¼ 1, . . . , Mi, by the smallest vertex value in each CGi

i1 and enumerate them

0, . . . , Di� 1, where Di is the number of components into which Gi got disconnected. For each

j¼ 1, . . . , N, dij is equal to the label of the component in which vij is a vertex.

Disconnect Further (DF) Criteria. A component is further disconnected if and only if both (1) and (2)

hold:

1. The minimum vertex degree of the component is less than the number of its vertices minus 1.

The contrary implies that the component is a complete graph by itself, i.e., the distance between any

two of its vertices is smaller than the distance between the component and any other component.

FIG. 1. Dentrogram representing the SLC algorithm applied to the data of Example 3.2. The column on the right

gives the corresponding Shannon’s entropy increasing at each consecutive level.
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2. One of the following three conditions is satisfied:

(a) The average edge weight of the component is greater than half the average edge weight of the

complete graph.

(b) The largest distance between two vertices is greater than or equal to half this distance in the complete

graph. For the complete graph, the distance is the graph’s highest weight.

(c) Finally, if the above two conditions (a) and (b) fail, a third one is applied: disconnect the component

if it leads to a substantial increase in the information content carried by the discretized vector (see

Section 3.4.)

3.4. Information measure criterion

Discretizing the entries of a real-valued vector into a finite number of states inevitably reduces the

information carried by the discrete vector in the sense defined in Shannon (1948). Shannon developed a

measure of how much information is produced by a discrete source. The measure is known as entropy or

Shannon entropy. Suppose there is a set of n possible events whose probabilities of occurrence are known to

be p1, p2, . . . , pn. Shannon proposed a measure of how much choice is involved in the selection of the event

or how certain one can be of the outcome, which is given by

H¼ �
Xn

i¼ 1

pi log2 pi:

The base 2 of the logarithm is chosen so that the resulting units may be called bits. In our context the

Shannon entropy of a vector discretized into n states is given by

H¼
Xn� 1

i¼ 0

wi

n
log2

n

wi

,

where wi is the number of entries discretized into state i. An increase in the number of states implies an

increase in entropy, with an upper bound of log2n. However, we want the number of states to be small, so it

is important to notice that H increases by a different amount depending on which state is split and the size

of the resulting new states. For example, if a state containing the most entries is split into two new states of

equal size, H will increase more than if a state of fewer entries is split or if we split the larger state into two

states of different sizes. Splitting a state into two states of equal size maximizes the entropy increase. For

that reason, if a component fails the other conditions, we consider splitting it further only if doing so would

provide a very significant increase of the entropy, i.e., if the component corresponds to a ‘‘large’’ collection

of entries. In our implementation a component gets disconnected further only if it contains at least half of

the vector entries.

3.5. Algorithm complexity

Given M variables, with N time points each, we compute N(N� 1)=2 distances to construct the distance

matrix so the complexity of this step is O(N2). The distance matrix is used to create the edge and vertex sets

FIG. 2. The complete weighted graph constructed from vector entries 1, 2, 7, 9, 10, and 11. Only the edge weights

of the outer edges are given.
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of the complete distance graph, containing N(N� 1)=2 edges. This can also be accomplished in O(N2) time.

These edges are then sorted into decreasing order, so that the largest edges are removed first. A standard

sorting algorithm, such as merge sort, has complexity O(N log N) (Knuth, 1998). As each edge is removed,

the check for graph disconnection involves testing for the existence of a path between the two vertices of

the edge. This test for graph disconnection can be accomplished with a breadth-first search, which has order

O(EþV) (Pemmaraju, 2003), with E the number of edges and V the number of vertices in the component.

In our case this translates to complexity O(N2). Edge removal is typically performed for a large percentage

of the N(N� 1)=2 edges, so this step has overall complexity O(N4). The edge removal step dominates

the complexity so that the overall complexity is O(MN4) to discretize all M variables. While this is the

theoretical worst-case performance, because of the heuristics we have added the typical performance is

significantly better.

3.6. Requirements on the number of states

While for some applications any number of discretization states is acceptable, there are some cases when

there are limitations on this number. For example, if the purpose of discretizing the data is to build a model

of polynomials over a finite field, as in Laubenbacher (2004), then the number of states must be a power of

a prime since every finite field has cardinality pn, where p is prime and n is a positive integer. SSD deals

with this problem in the following way. Suppose that a vector has been discretized into m states in the way

described above. The next step is to find the smallest integer k¼ pn such that m� k. This value for k gives

the number of states that needs to be obtained. Since SSD yielded m clusters, the remaining k�m can be

constructed by sorting the entries in each cluster and splitting the one that contains the two most distant

entries with respect to Euclidean distance. The splitting should take place between these entries. This is

repeated until k clusters are obtained. This approach has a potential problem. For instance, if a vector got

discretized into 14 states and the total number of distinct entries of the vector is 15, then k¼ 16 cannot be

reached. In this case the two closest states could be merged together to obtain 13 states. In general it may

not be desirable to reduce the number of states because this results in loss of information. We would rather

increase the number of states unless it is impossible as in the above example.

3.7. Discretization of several vectors

Some applications may require that all vectors in a data set be discretized into the same number of states.

For example, the approach adopted by Laubenbacher (2004) imposes such a requirement on the dis-

cretization. The way we deal with this is by first discretizing all vectors separately. Suppose that for N

vectors, SSD discretized each into m1, m2, . . . , mN states, respectively. Let m¼ maxfmiji¼ 1, . . . , Ng.
Now find the least possible k¼ pn such that m� k. Finally, discretize all variables into k states in the same

way that was described for the discretization of a single vector into the required number of states.

3.8. Preservation of correlation

While any discretization inevitably results in information loss, a good multivariate discretization should

preserve some important features of the data such as correlation between the variables. To demonstrate that

SSD has this property, we use the temporal map of fluctuations in mRNA expression of a set of genes

related to rat central nervous system development presented in Wen (1998). This paper focuses on the

cervical spinal cord and the genes included in their study are from families that are believed to be important

for spinal cord development. They used an RT-PCR protocol to measure the expression of 112 genes in

central nervous system development. The data consist of nine expression measurements for each gene:

cervical spinal cord tissue was dissected from animals in embryonic days 11, 13, 15, 18, and 21 and in

postnatal days 0, 7, 14, and 90.

We calculated the Spearman rank correlation coefficient between each gene’s analog time series and

discretized time series according to Walpole (1998). Then we identified each coefficient value as re-

presenting a ‘‘significant’’ or ‘‘not significant’’ correlation based on a critical value of 0.683, which

corresponds to a significance level of 0.025 for a time series of nine points. This means that the probability

that the correlation coefficient for a pair of uncorrelated time series of length 9 will be greater than or equal

to 0.683 is 0.025. The result is that 71 out of 112 genes were found to be significantly correlated to their

discrete version, which is 63.39% of the total number of genes. By changing the level of significance to
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0.05, this percentage increases to 76.79%. We also calculated the Spearman rank correlation coefficient for

each pair of genes before and after discretizing the data, considering only the genes that discretized into

exactly three states (56 of them). For the original data given in Wen (1998), out of the 1540 gene pairs, 234

pairs were identified as significantly correlated at significance level 0.025. Based on the discretized data,

132 pairs were correctly identified as significantly correlated and 1181 pairs were correctly recognized as

not significantly correlated. That is, 1313, or more than 85%, of the correlations were correctly classified

after discretization. These results suggest that SSD can be successfully applied to cases when preserving the

correlation among the variables in a system is important.

We performed more correlation analysis to compare SSD to quantile and interval discretization (see

Section 4.5).

3.9. SSD algorithm validation

We now demonstrate how SSD can be used for reconstruction of a gene network. Due to limited

knowledge of the dynamic features of real biochemical networks, the validation of our method is best done

with a simulated network. In order to extract information about the network topology and dynamics from

the discretized data, we use the network reconstruction method in Laubenbacher (2004). The goal of this

validation is to show that the discretized data preserved the information about the network that was

contained in the corresponding continuous data generated from the network. We used the A-Biochem

software system developed by Mendes (2003) to generate the simulated network. A-Biochem automatically

generates artificial gene networks with particular topological and kinetic properties. These networks are

embodied in kinetic models, which are used by the biochemical-network simulator Gepasi (Mendes, 1993,

1997) to produce simulated gene expression data. We generated an artificial gene network with five genes

and ten total input connections using the Albert-Barabási algorithm (Albert, 2000). In Figure 3A, the arrows

represent gene activation in the arrow’s direction and the segments stand for inhibition.

Gepasi uses a continuous representation of biochemical reactions, based on ordinary differential equa-

tions (ODE). With the parameters we specified, Gepasi generated an ODE system that represents the

network. Analyzing the dynamics of the ODE system, one finds that it has two stable steady states. As

Laubenbacher (2004) demonstrated, the performance of their algorithm dramatically improves if knockout

time series for genes are incorporated. For this reason, we supplied seven time series of 11 points each: two

wild-type time series and five knockout time series, one for each gene. The wild-type time series are

generated by solving the ODE system numerically for two different initial conditions. One can simulate a

gene knockout by setting the corresponding variable and initial condition to zero. The time points from

each of the seven time series constitute the input vectors. The discretization algorithm chose a state set X of

cardinality 5 and, based on the discrete data, the reverse-engineering method generated five polynomials

describing the discrete model. That is, the discrete model is given by a time-discrete dynamical system

f ¼ ( f1, . . . , f5) : X5 ! X5:

FIG. 3. (A) Dependency graph of the A-Biochem-generated artificial gene network on five genes Gi. (B) Dependency

graph of the reverse-engineered system.
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Now we compare the dynamics of the two models. First, the discretization maps the ODE’s stable steady

states to fixed points of the discrete model. To illustrate the matching dynamics of the two models, notice

how the discrete model’s trajectory in Figure 4B can be superimposed over the continuous trajectory in

Figure 4A, both ending at a fixed point=steady state. The same can be observed for the second steady-state.

Further evidence of the ability of SSD to retain information is the fact that the reverse-engineering

method in Laubenbacher (2004) was able to extract most of the information about the dependency graph of

the network. This can be seen by comparing the inferred diagram in Figure 3B to the diagram of the actual

direct interactions in Figure 3A.

3.10. Discretization in the presence of noise

Noise is naturally present in biological data and in microarray data in particular (Hassibi, 2005). Al-

though there are various techniques which increase the accuracy of the microarray measurements, the data

inevitably contain errors due to the probabilistic characteristics of the detection process, from sample

extraction and mRNA purification to hybridization and imaging. Consequently, it is crucial to study how

the proposed discretization algorithm performs in the presence of typical levels of noise in the experimental

data.

To study the effect of noise, we considered two types of data. We used the earlier mentioned gene

expression measurements generated for a study of rat cervical central nervous system development (Wen,

1998). We selected 18 genes whose nine-point time series have statistical variance of more than 1.

Although the data likely contain some noise, here we assume that the measurements are perfect and we add

noise of known proportion and distribution assuming it is the only noise in the data. The purpose is to work

with data which have the properties of real microarray time series. The second data set is an artificial ten-

point time series on 30 ‘‘genes.’’ The values are randomly generated real numbers in the range [0, 20] with

statistical variance greater than 10.

Two types of noise are added to the data at the same time: overall and point-specific (Hatzimanikatis,

1999). The overall noise is added by sampling from a normal distribution with zero mean and a standard

deviation equal to 12.5% of the standard deviation of each gene. The point-specific noise is simulated by

adding noise to each time point sampling from a different normal distribution with zero mean and standard

deviation equal to 12.5% of the standard deviation of the particular time point value. Thus, the total

proportion of added noise amounts to 25%. For each gene 100 noise containing replicates were generated

and discretized.

For each gene, we compare the way the original noiseless time series was discretized to the discretization

of the noise-containing replicates. We count the number of noise-containing replicates that got discretized

exactly the same as the original noiseless time series. For the gene expression data from Wen (1998),

78.72% of all the 18�100 noise-containing replicates were discretized exactly as their corresponding

noiseless originals. This number is significantly higher for the randomly generated data of variance 10 or

higher: 93.8% of all the 30�100 noise-containing replicates were discretized exactly as their corresponding

noiseless originals. The big difference between the two results can be explained by the different statistical

variance of the original data in the two cases. Only 5 out of the 18 genes in the expression measurements

time series in Wen (1998) have variance greater than 10 while the ‘‘genes’’ in the simulated time series had

variance of at least 10 with average variance of 34.5. Since the higher the variance of a time series, the

FIG. 4. (A) Wild-type time series generated by solving numerically the ODE system. (B) Corresponding discrete

point time series.
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better the chance of more distinct and easier to detect discrete states, the discretization of the data with

higher variance not surprisingly showed more robustness in the presence of noise.

4. COMPARISON OF DISCRETIZATION METHODS

We now compare the performance of SSD to two other common discretization algorithms: quantile and

interval. We point out that data discretization is a crucial step for modeling methods not based on reverse

engineering and such methods can also benefit from SSD. To enable the comparison, we use these algo-

rithms to provide discrete data for two reverse-engineering methods: dynamic Bayesian networks (Yu,

2002) and discrete polynomial dynamical systems ( Jarrah, 2005). The particular implementations used for

the study are outlined next. In 4.1, we describe the in silico gene regulatory networks that produced the

input data and our comparison metrics are given in 4.4. The data sets used for the comparison are available

at http:==polymath.vbi.vt.edu=discretization=Discretization Comparison=.

4.1. In silico gene regulatory networks

To evaluate the performance of the different discretization methods as part of a network inference

algorithm, we use data from four different artificial gene regulatory networks generated using the software

package of Mendes (2003). In these networks the interactions between genes are phenomenological and

represent the result of the effect of transcription and translation on the regulation of the genes in the

network, implemented as a system of ODEs in Copasi (Hoops, 2006).

The first network shown in Figure 5, referred to subsequently as ‘‘Network 1,’’ consists of 13 species: ten

genes and three different environmental perturbations. The perturbations affect the transcription rate of the

gene on which they act directly (through inhibition or activation) and their effect is further propagated

through the network by the interactions between the genes. The data used consist of six short time series

corresponding to different concentration values for the environmental perturbations, with a total of 144

time steps; this network has been previously used in Camacho (2007).

The second and third networks, ‘‘Network 2’’ and ‘‘Network 3,’’ respectively, consist of five genes that

interact with each other through inhibition or activation; the data generated consist of seven short time

series, with a total of 77 time steps. Similarly, the fourth in silico network, ‘‘Network 4,’’ consists of ten

genes; the data generated consist of seven short time series corresponding to the different given initial

conditions, with a total of 147 time steps. The three networks are shown in Figure 6.

FIG. 5. Network 1: 10 genes and three environmental perturbations. In this network, the three environmental per-

turbations P1, P2, and P3 directly affect the expression rate of genes G1, G2, and G5, respectively.
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4.2. Dynamic Bayesian networks

A Bayesian network is a graphical model that describes the causal relationships between variables. Such

relationships are represented by a family of joint probability distributions consistent with the independence

assertions embedded in the graph (Hartemink, 2002). A dynamic Bayesian network (DBN) (Friedman,

1998) extends the notion of a Bayesian network to model the stochastic evolution of a set of random

variables over time. The structure of a DBN thus describes the qualitative nature of the dependencies that

exist between variables in a temporal process (Bernard, 2005).

The software Bayesian Network Inference with Java Objects (BANJO) (Hartemink, 2006) is an im-

plementation of a DBN inference method. The type of data required for this method is in the form of

temporal response of the system to a perturbation. BANJO also requires as input a set of parameters, such

as search method, time lag (how far back in time each variable depends on the others), type of dis-

cretization, etc. The core algorithms in BANJO assume discrete variables, and BANJO provides a dis-

cretization functionality using either quantile or interval discretization algorithms with a default upper

bound of five states per variable.

The data discretization is handled as follows:

I. SDD Discretization of Data. The SDD method returned variables discretized into 5 and 11 states for

Network 1 and Network 4, respectively. Similarly, the SSD method returned variables discretized into

7 states for both Network 2 and 3. BANJO handles networks with discretized variables up to 5 states,

allowing us to use directly the data from Network 1; in order to use our discretization method for the

networks with 5 genes, we extracted the time step measurements that return variables discretized into

more than 5 states, to reduced the data to approximately 70 time steps in each data set. Due to the 11

state discretization values return by SDD we were unable to use Network 4, but were able to use it

with the discrete polynomial dynamical system reverse-engineering method.

II. Interval and Quantile Discretization of Data. BANJO provides a discretization functionality using

either quantile or interval discretization algorithms with a default upper bound of five states per

variable. Assuming no prior information about the ideal type or number of discretization states, we

explore all of the possible discretization methods available in BANJO: quantile and interval into 2, 3,

4 and 5 states to find the highest scored inferred DBN.

FIG. 6. Three in silico networks. The first network consists of 10 genes and the second and third networks consist of 5

genes. In these three networks, the interactions between genes are phenomenological and represent the result of the

effect of transcription and translation on the regulation of the genes in the network.
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Per each one of these different discretized data sets, we infer a DBN considering two important aspects:

1. As commonly needed for optimization based methods as BANJO, a set of input parameters should be

specified in order to infer a DBN (approximately 13 different parameter values), thus we need to

explore different combinations of parameter sets for each of the discretized data sets. A set of pa-

rameter values is selected based on BANJO’s scoring method.

2. Unless we assume an instantaneous time lag (i.e., time lag value 0), it is necessary to build a

consensus DBN from the DBNs inferred from each one of the 6 or 7 different input time courses of a

given network; this is done in order to avoid having to consider the state values of the first time step of

a given time series to depend on the last time step(s) of the previous time course.

Hence, for a given discretization type we first select the combination of sets of parameters that provide

a highest score. Then, in order to build a consensus sparse network (i.e., to avoid a high rate of false

positives) from the different DBNs obtained from each time series, we select edges that appear in at least

two of the output networks.

4.3. Discrete polynomial dynamical systems

We used the reverse-engineering algorithm of Jarrah (2005) together with their (S1, T1) scoring method1

for which only the network model(s) with the highest score is generated. In this method, the only input needed

for the algorithm is the discretized time series (i.e., unlike BANJO, there are no parameter values to explore).

We compare the network models obtained from the method of Jarrah (2005) when using the following

discretizations:

1. SSD: As mentioned in section 4.2, the SDD method returned variables discretized into 5 and 11 states

for Networks 1 and 4, respectively. Similarly, the SSD method returned variables discretized into 7

states for both networks of five genes (Network 2 and Network 3).

2. Quantile and Interval discretization into 5, 11 and 7 states to allow a direct comparison with SSD.

4.4. Metrics for method performance

For an unbiased evaluation of the performance of each reverse-engineering algorithms with the different

discretization methods, we quantify:

(a) Correct interactions inferred (true positives, TP)

(b) Incorrect interactions inferred (false positives, FP)

(c) Correct non-interactions inferred (true negatives, TN)

(d) Incorrect non-interactions inferred (false negatives FN)

The values of TPs, TNs, FPs, and FNs are calculated to build a confusion matrix. The confusion matrix is

a matrix that provides an assessment of the classification procedure, or how ‘‘confused’’ the algorithm

might be, by simply counting the interactions discovered. From the confusion matrix we compute the

Recall or True Positive Rate TPR¼TP=(TPþ FN), the False Positive Rate FPR¼ FP=(FPþTN), Accu-

racy ACC¼ (TPþTN)=TotI and Precision or Positive Predictive Value PPV¼TP=(TPþ FP). It is im-

portant to mention that coordinate points (FPR, TPR) represent coordinate points within the Receiver

Operator Characteristic (ROC) curves, whereas (TPR, PPV) represent coordinate points within the Recall

Precision Curve; both of these curves are commonly used for the evaluation of reverse-engineering

methods. Since we are presenting here pairs of coordinate points in both curves, we decided to compare

results in both metrics as well as to add the Accuracy (ACC) score for a broader view of the effect of each

discretization method. In particular, it is worth to comment how ROC points can be characterized: a perfect

reverse engineering method will ideally have score (FPR, TPR)¼ (0, 1), whereas the worst possible

network will have coordinates (FPR, TPR)¼ (1, 0) and methods with scores below the identity line (or

diagonal) are those that perform no better than a random guess.

The best scored consensus DBNs from BANJO are presented in Table 1. Notice that with respect to any

of the four metrics—TPR, FPR, ACC, or PPV—our discretization method performs best. The results for the

polynomial dynamical systems method are summarized in Table 2. We observe that using any metric, we

1For a Macaulay2 implementation of the (S1, T1) scoring method, contact R. Laubenbacher at reinhard@vbi.vt.edu.
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obtained the best results with SSD. From our analysis, we see that with both reverse-engineering algo-

rithms, the SSD performs consistently better, independently of the metric employed.

4.5. Correlation preservation comparison

We calculated the Spearman rank correlation coefficient between each gene’s continuous time series and

its time series discretized with SSD, interval, and quantile discretizations. 82% of the genes had SSD

discretizations that are either more strongly or as strongly correlated to the continuous data as interval and

quantile discretizations. Moreover, at level of significance 0.05, the correlation coefficient is large enough

to conclude that there is evidence that the continuous time series are strongly correlated to their SSD

discretizations.

5. CONCLUSIONS

Discretization of continuous experimental data into finitely many discrete states is important in several

contexts, in particular in systems biology when inferring biochemical networks from experimental data

such as time series data of DNA microarrays. Almost all methods using dynamic Bayesian networks as well

as other discrete methods rely on data discretization as a preprocessing step. A particular characteristic of

time series data sets is that they are still quite small, typically consisting of less than 10 time points. It is

natural to look at one of the many available clustering methods for this purpose. Upon closer study,

however, it becomes clear that discretization of this particular data type with standard clustering methods is

problematic. This has led us to develop the new method, SSD, described here. The main result of the paper

is a comparison to other commonly used discretization methods by means of their application to two very

different network inference methods, both of which give as output a most likely dependency. The com-

parison shows that network inference using either of these methods results in better predictions with SSD as

compared to the other commonly used methods.

Table 1. Dynamic Bayesian Network Approach

TP FP TN FN TPR FPR ACC PPV

SSD Net1 7 9 138 15 .318 .0612 .858 .438

BANJO Net1 2 5 142 20 .091 .0340 .852 .286

SSD Net2 4 2 17 2 .666 .105 .84 .666

BANJO Net2 2 4 15 4 .333 .210 .68 .333

SSD Net3 3 2 17 3 .5 .105 .80 .6

BANJO Net3 2 2 17 4 .333 .105 .76 .5

Best results for the DBNs obtained in BANJO. The first four columns are the four entries in the confusion matrix.

Table 2. Polynomial Dynamical Systems Approach

TP FP TN FN TPR FPR ACC PPV

SSD Net1 12 34 113 10 .5454 .231 .7396 .261

Quantile, 5 states Net1 9 49 98 13 .4090 .333 .6331 .155

Interval, 5 states Net1 7 46 101 15 .3181 .313 .6390 .132

SSD Net2 3 5 14 3 .5 .263 .68 .375

Quantile, 7 states Net2 5 13 6 1 .83 .684 .44 .277

Interval, 7 states Net2 4 11 8 2 .66 .579 .48 .266

SSD Net3 4 7 12 2 .66 .368 .64 .364

Quantile, 7 states Net3 5 13 6 1 .83 .684 .44 .277

Interval, 7 states Net3 5 12 7 1 .83 .632 .48 .294

SSD Net4 7 20 69 4 .63 .225 .76 .259

Quantile, 11 states Net4 10 49 40 1 .90 .551 .50 .169

Interval, 11 states Net4 6 34 55 5 .54 .382 .61 .15

The first four columns are the four entries in the confusion matrix.
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It has been our experience that, while SSD performs well in many cases, its output can often be improved

with human intervention. This would most likely be the case with any discretization method. Furthermore,

there are certain types of data that SSD does not handle well. We do not recommend using SSD whenever

long time series are available. In this case, a statistical method, such as Peer (2001), that can take advantage

of the statistical properties of the data may be more appropriate. Our method assumes no knowledge of

these properties and therefore cannot utilize this information. Another situation when virtually any dis-

cretization technique may not produce useful results is in the case when one or several of the system

variables change much more rapidly than the rest. In order to avoid inconsistencies in the discretized data,

one may need a very large number of discrete states which may be a disadvantage for the modeling process.

The authors also acknowledge that discretization possibly introduces spurious dynamic phenomena, such as

artificial periodic behavior, due to different time scales in the network. This has been well documented in

the literature (Hatzimanikatis, 1999). As a result, the output of any discretization algorithm needs to be

carefully examined in light of the original data.

Another problem that is specific for polynomial dynamical systems modeling is that discretization

sometimes results in a data set that is inconsistent, in the sense that it cannot be produced by a deterministic

dynamical system because a given state that appears more than once in the time series might transition to

two different subsequent states. While one can devise ad hoc solutions to this problem, a more systematic

way of dealing with this problem remains to be found.

Data discretization represents the transition from the continuous to the discrete data world and therefore

plays a crucial role in the construction of discrete models. If this transition is not done well, all subsequent

steps are flawed.
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