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Abstract
Objective—To evaluate the combination of cerebrospinal fluid biomarkers of Aβ42, tau, and
phosphorylated tau (ptau181) with education and normalized whole brain volume (nWBV) to
predict incident cognitive impairment and test the cognitive/brain reserve hypothesis.

Design—Longitudinal cohort study.

Setting—Charles F. and Joanne Knight Alzheimer’s Disease Research Center of Washington
University, St. Louis, Missouri.

Participants—Convenience sample of 197 participants aged 50 years and above, with normal
cognition (Clinical Dementia Rating [CDR] of 0) at baseline, followed for a mean of 3.3 years.
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Main outcome measure—Time to cognitive impairment (CDR ≥ 0.5).

Results—Three-factor interactions between the baseline biomarker values, education, and
nWBV were found for Cox proportional hazards models testing tau (p=.03) and ptau (p=.008).
Among those with lower tau values, nWBV (hazard ratio [HR]=.54, 95% confidence interval
[CI]=.31–.91; p=.02), but not education, was related to time to cognitive impairment. For
participants with higher tau values, education interacted with nWBV to predict incident
impairment (p=.01). For individuals with lower ptau values, there was no effect of education or
nWBV. Education interacted with nWBV to predict incident cognitive impairment among those
with higher ptau values (p=.02). In models testing Aβ42, larger nWBV was associated with a
slower time to cognitive impairment (HR=.84, 95%CI=.71–.99, p=.0348), but there was no effect
of Aβ42 or education.

Conclusions—Among individuals with higher levels of CSF tau and ptau, but normal cognition
at baseline, time to incident cognitive impairment is moderated by education and brain volume as
predicted by the cognitive/brain reserve hypothesis.

Lower educational attainment and smaller brain, or head, size have been frequently studied
as risk factors for Alzheimer’s disease (AD).1–4 Educational attainment is a proxy measure
of cognitive reserve: the efficient use of brain networks or the ability to recruit alternate
brain networks or cognitive strategies.1,5 Brain size is thought to reflect brain reserve: the
number and health of neurons.5–8 Greater amounts of both types of reserve are thought to
provide resistance to brain damage due to AD, delaying the time to cognitive
impairment.1,5–8

Cross-sectional studies suggest that educational attainment4,7,9–11 and brain size4,6,7 interact
with AD pathology to determine current cognitive functioning, such that the impact of a
given amount of AD pathology on cognition varies depending on one’s education and brain
size. However, until the recent advent of biomarkers of AD pathology, it was not possible to
test whether education and brain size modify the association between AD pathology in
cognitively normal individuals with the later development of cognitive impairment. The
cerebrospinal fluid (CSF) biomarkers of amyloid-beta42 (Aβ42), the primary component of
amyloid plaques, are decreased among individuals with AD whereas levels of tau and
phosphorylated tau (ptau181), the primary components of neurofibrillary tangles, are
increased in AD.12 Abnormal levels of these biomarkers have also been found among
cognitively normal individuals and are predictive of later cognitive impairment.13–15

We tested how the CSF biomarkers of Aβ42, tau, and ptau181 combine with education and
brain volume to predict incident cognitive impairment in individuals with normal cognition
at baseline.

Methods
Participants

Data were collected prospectively from participants enrolled in longitudinal studies at the
Charles F. and Joanne Knight Alzheimer’s Disease Research Center at Washington
University. Study protocols were approved by the Washington University Medical Center
Human Subjects Committee, and written informed consent was obtained from all
participants. Detailed information on recruitment and assessment procedures are available.16

In brief, participants in these studies are recruited through word-of-mouth, advertisements,
and community events from the greater St. Louis, Missouri area for yearly assessment
sessions. Individuals with health conditions, such as metastatic cancer, that may interfere
with longitudinal follow-up are excluded from participation.
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Clinical assessment, CSF, and brain volume measurement
At the initial and each annual assessment thereafter, participants take part in neurological
and physical examinations, and are accompanied by a collateral source (CS) who knows the
participant well. Experienced clinicians obtain health and medication histories and conduct
semi-structured interviews with the participant and CS separately. The clinicians use the
information obtained from the participant and CS interviews to generate a Clinical Dementia
Rating (CDR),17–19 reflecting the presence or absence of dementia. The global CDR is
based on a standard scoring algorithm which integrates functioning in six individual
domains: memory, orientation, judgment and problem solving, community affairs, home and
hobbies, and personal care. The CDR Sum of Boxes (CDR-SB) is obtained by summing the
scores from the six domains.18 The CDR has established reliability.20,21 Global CDR scores
of 0=normal cognition; 1=mild dementia, 2=moderate dementia, and 3=severe dementia.
CDR 0.5 designates “uncertain dementia” if the etiology of the cognitive impairment cannot
be determined or very mild dementia if on clinical grounds an etiologic diagnosis can be
made.

Our participants with cognitive impairment at the CDR 0.5 stage can be diagnosed with very
mild dementia of the Alzheimer type (DAT) when there is a history of the gradual onset and
progression of cognitive problems that represent a decline from that individual’s prior level
of cognitive function and interfere to at least some degree with usual activities at home and
in the community. We have demonstrated that our CDR 0.5/DAT participants have
progressive cognitive deterioration typical for DAT and of those coming to autopsy, AD is
confirmed in 92%.22 Moreover, it is well recognized that some individuals rated as CDR 0.5
can merit a DAT diagnosis.23

To obtain CSF from participants, trained neurologists use a 22-gauge Sprotte spinal needle
to draw 20–30 mL of CSF at 8:00 AM following an overnight fast. CSF samples are gently
inverted and centrifuged at low speed to avoid possible gradient effects and then frozen at
−84°C24 after aliquoting into polypropylene tubes. CSF samples for Aβ42, tau, and ptau181
are analyzed using enzyme-linked immunosorbant assay (INNOTEST; Innogenetics, Ghent,
Belgium).

Normalized whole brain volume (nWBV), reflecting the percentage of the intracranial cavity
occupied by brain, was obtained using previously established methods.25 Briefly, the MP-
RAGE data were intensity normalized.26 A validated segmentation tool was then used to
classify brain tissue as cerebral spinal fluid (CSF), gray, or white matter.27,28 Correction of
intensity inhomogeneity was accomplished by an automated procedure to minimize intensity
variation within contiguous regions. Based on intensity limits and contour (intensity
gradient) detection, contiguous region boundaries were identified (without brain masking).
The bias field was modeled as a general, second-order polynomial in three dimensions (10
free parameters).26 Segmentation began with an initial estimation step to obtain and classify
tissue parameters. Using a three-step, expectation-maximization algorithm, class labels and
tissue parameters were then updated to iterate toward the maximum likelihood estimates of a
hidden Markov random field model. This model used spatial proximity to constrain the
probability with which voxels of a given intensity are assigned to each tissue class. Finally,
the brain volume estimate was taken as the sum of white and gray-matter voxels within the
atlas-based brain mask and expressed as the percentage of the mask.

Inclusion criteria
Archival data from participants who (1) donated CSF between June 18, 1998 and May 18,
2009; (2) were aged 50 years or older at the time of donation; (3) had normal cognition
(CDR 0) at the closest clinical assessment within one-year prior, or one month following,
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donation; (4) had magnetic resonance imaging (MRI) with measurement of brain volume
within one year of donation; and (5) had at least one subsequent clinical assessment were
used in this study.

Statistical analyses
Cox proportional hazards models were used to test the three-factor interaction of each of the
biomarker variables (Aβ42, tau, ptau) with education in years and nWBV in determining
time from the baseline assessment to cognitive impairment (i.e., CDR > 0). All predictor
variables were treated as continuous.

For models where the three factor interaction was significant, Cox proportional hazards
models were conducted separately for individuals with biomarker values above, and below,
the median; and the two-factor interaction between education and nWBV tested in these
models.

For models where the three-factor interaction was not significant, the models were repeated
testing two-factor interactions among the biomarker, education, and nWBV variables. If no
two-factor interactions were significant, the final model was comprised of the main effects
of each variable. All models included terms adjusting for, and simultaneously testing the
effects of, gender, age, race, the presence of an APOE ε4 allele, and the MRI scanner used.

To graphically display significant interaction effects, the biomarker, education, and nWBV
variables were each dichotomized, reflecting lower and higher values on the variable, using
a median split and Kaplan-Meier survival curves were generated for each combination of
these variables.

We also explored whether there were differences in the slope of scores across the follow-up
period as a function of these 8 possible combinations of higher and lower values of the
biomarker, education, and nWBV variables. In these analyses, mixed linear models tested
whether the slope of scores on the CDR Sum of Boxes, Mini-Mental State Examination29

(MMSE), and Short Blessed Test30 differed as a function of the combination variable while
adjusting for gender, age, race, and APOE4.

Results
One-hundred ninety-seven participants, followed for a mean of 3.3 (SD=2.0) years, met
inclusion criteria (Table 1). Of these, N=26 developed cognitive impairment a mean of 3.01
(SD=1.93) years following baseline. Table 2 shows the clinical diagnoses assigned at the
time of first CDR>0. We consider those individuals who received a DAT diagnosis to meet
“formal” criteria for very mild dementia, although we acknowledge that as the boundaries
for MCI and dementia overlap, others may classify these individuals as MCI. At the time of
first CDR=0.5, individuals with a DAT diagnosis had greater impairment than those with an
Uncertain diagnosis as reflected in worse mean performance on an autobiographical memory
test31 (1.25 vs. 1.68, p=.0432) and in higher mean CDR Sum of Boxes (1.94 vs. 0.85, p=.
0193).

In the survival models testing Aβ42, there were no interactions with education or nWBV.
The final model indicated that larger nWBV was associated with a slower time to cognitive
impairment (Hazard ratio [HR]=.81, 95% confidence interval [CI]=.68–.97, p=.02), but
there was no effect of Aβ42 (p=.24) or education (p=.07).

Three-factor interactions between the biomarker values, education, and nWBV were found
for models testing tau (p=.02) and ptau (p=.008).
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Among those with baseline tau values below the median, nWBV (HR=.54, 95%CI=.31–.91;
p=.02), but not education (p=.996), was related to time to cognitive impairment, and there
was no interaction between these variables (p=.39; Figure 1A). Of the 8 individuals with
lower tau values who developed cognitive impairment (all of whom had nWBV values
below the median nWBV) only 2 (25%) received a subsequent diagnosis of DAT at some
time during the follow-up period. The remaining 6 had diagnoses of uncertain dementia
(N=5; 3 of these with a secondary diagnosis of mood disorder) or vascular dementia with a
secondary diagnosis of Parkinson’s disease (N=1). By contrast, 8 of 15 (53.3%) participants
with smaller nWBV but with higher tau values received DAT diagnoses at some point over
follow-up. For those with tau values above the median, education interacted with nWBV to
predict incident impairment (p=.01; Figure 1B).

For individuals with lower ptau values, there was no effect of education (p=.89) or nWBV
(p=.14), and no interaction between them (p=.9373; Figure 1C). However, education and
nWBV interacted to predict incident cognitive impairment among those with higher ptau
values (p=.02; Figure 1D).

Other variables that independently predicted time to impaired cognition were minority race,
which was associated with a faster time to impairment in each of the biomarker models (p<.
007), and male gender (p=.04) which was associated with more rapid cognitive impairment
in the model including tau. There was no relationship between age, APOE4, or scanner type
and incident impairment after adjustment for other variables in the model.

In the mixed model analyses testing the 8 possible combinations of higher and lower values
of the biomarker, education, and nWBV variables, the slope of scores on the CDR-SB
differed as a function of the “combination” variable, for analyses testing Aβ42 (p=.0007), tau
(p<.0001), and ptau (<.0001); and on the SBT for the analysis testing tau (p=.0173). As
shown in Figure 2, the significant results generally confirm those found using CDR>0 as the
endpoint. The slope of scores on the MMSE did not differ across the combination variable
levels.

Comment
Accumulating evidence suggests that the presence of AD biomarkers in cognitively normal
persons is a harbinger of eventual cognitive impairment,13–15 and much current effort is
devoted to developing therapies that can halt the disease process. When these therapies are
ready for use, it is thought that they may be most effective if administered at the time that
biomarkers show abnormal values, but before dementia symptoms occur.15 However, since
biomarker levels may become abnormal a decade or more before clinical symptoms
appear,32 it is vital to understand the time course between abnormal biomarker values, the
onset of cognitive impairment, and characteristics that influence that time course, to avoid
exposing healthy individuals to medications, and their potential side effects, many years
before they are needed.

Our results indicate that among individuals with higher levels of CSF tau and ptau, but
normal cognition at baseline, the time to incident cognitive impairment is moderated by
education and brain volume. More education and larger nWBV appear to slow the rate of
impairment onset in the presence of tau-related pathology, whereas individuals with both
lower levels of education and smaller nWBV have the most rapid onset. As theorized by
others, greater education may provide resistance to dementia in the presence of brain
damage because more education may be associated with the use of particular cognitive
processing approaches or enlistment of compensatory processes, or, may serve as a proxy
for another factor, such as innate intelligence.5 Individuals with larger nWBVs may have
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sufficient neuronal resources to continue normal functioning in the presence of AD
pathology for a longer time,33 and/or, these individuals may have experienced less neuronal
neurodegeneration despite having similar abnormal biomarker levels as other individuals.
Education and nWBV do not interact to predict future cognitive impairment when lower
levels of brain tau and ptau are present.

Previously, cross-sectional autopsy studies including individuals with dementia as well as
those with normal cognition prior to death have suggested that education and brain volume
interact with AD pathology to predict concurrent cognitive performance.34,35 In these
studies, education was found to interact with amyloid plaque, but not tangle, pathology. 34,35

In the present study, conducted only with individuals who were cognitively normal at
baseline, we found a modifying effect of education and nWBV on incident cognitive
impairment for tau-based, but not amyloid-based, pathology. In fact, the main effect of Aβ42
itself was not significant in the primary multivariate analyses. This is consistent with our
previous finding, using a smaller subsample of these individuals, of only a marginally
significant effect (p=.09) of Aβ42 on incident AD when education and nWBV were included
in the same model.36 However, Aβ42 combined with education and nWBV to predict the
slope of CDR-SB scores across the follow-up period, suggesting that Aβ42 interacts with
education and nWBV in a similar manner to that exhibited by tau and ptau, although as
shown in Figure 2, the effect is less dramatic. With a longer follow-up period, or larger
sample size, it is possible that a significant 3-way interaction effect among Aβ42, education,
and nWBV would be found using the endpoint of CDR>0. The categorical variable
reflecting combined levels of the biomarkers, education, and nWBV was unrelated to the
slope of scores on the MMSE. As pointed out by others,37 the MMSE may be less sensitive
to cognitive decline compared to global dementia severity measures such as the CDR-SB
and SBT.

Interestingly, nWBV was found to be associated with incident cognitive impairment even
among individuals with tau levels below the baseline median. Brain volume decline, in
addition to occurring as a consequence of neuron loss in AD, also occurs as a function of
normal aging.38 Although based on small sample numbers, individuals with smaller nWBV
and lower tau levels who developed cognitive impairment were less likely to receive DAT
diagnoses as an explanation of their cognitive problems, compared to individuals with
smaller nWBV and higher tau values. This suggests that individuals with smaller nWBV
may be more vulnerable to cognitive impairment due to reasons other than underlying AD.
However, this interpretation should be viewed with caution, since the effect of nWBV was
not significant when examined in the presence of low ptau.

Relatedly, we found no effect of age on incident impairment in the multivariate models. As
previously noted, age and nWBV are tightly correlated among our participants.36 Thus,
when one variable is present in the model, the other adds little additional predictive power.

There were no significant effects of APOE4 status when considered together with the CSF
biomarkers in predicting incident cognitive impairment. This result is similar to our previous
finding that APOE4 did not increase the predictive accuracy of CSF biomarker models for
development of incident AD.36 That study also demonstrated that APOE4 was helpful in
distinguishing prevalent AD from normal cognition.36 It is possible that APOE genotype,
when tested together with CSF biomarkers, might show independent effects on incident
cognitive impairment in studies using a larger sample size or longer follow-up period.

Limitations of the study include the use of a convenience sample as well as a relatively short
average follow-up time of 3.3 years. Given these limitations, our results provide strong
support for the brain and cognitive reserve hypotheses,1,5–8 and suggest that education and
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nWBV are influential in mediating the time to cognitive impairment when tau-based
pathology is present.
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Figure 1.
Kaplan-Meier curves illustrating the 3-factor interactions among education, normalized
whole brain volume (nWBV), and the cerebrospinal biomarkers of tau and ptau.
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Figure 2.
Mean slope of global scale scores for combinations of higher and lower values of the
biomarker, education, and nWBV variables for significant mixed-model analyses.
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Table 1

Baseline demographics (N=197).

Characteristics

Age, mean (SD), y 68.6 (9.0)

Women, No. (%) 128 (65.0)

Minority race, No. (%) 16 (8.1)

Education, mean (SD), y 15.7 (2.9)

APOE genotype, No. (%)

 22 2 (1.0)

 23 26 (13.2)

 24 9 (4.6)

 33 98 (49.8)

 34 55 (27.9)

 44 7 (3.55)

nWBV, mean (SD), % of intracranial volume 77.7 (3.4)

MMSE, mean (SD) 29.0 (1.3)

Aβ42, mean (SD), pg/mL 616.8 (251.3)

tau, mean (SD), pg/mL 304.1 (161.4)

ptau, mean (SD), pg/mL 55.9 (24.7)

Follow-up time, mean (SD), y 3.3 (2.0)

Abbreviations: nWBV=normalized whole brain volume; MMSE=Mini-Mental State Examination; SD=standard deviation.
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