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Abstract
This note concerns the use of parametric bootstrap sampling to carry out Bayesian inference
calculations. This is only possible in a subset of those problems amenable to MCMC analysis, but
when feasible the bootstrap approach offers both computational and theoretical advantages. The
discussion here is in terms of a simple example, with no attempt at a general analysis.
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1 Introduction
Markov chain Monte Carlo (MCMC) is the great success story of modern-day Bayesian
statistics. MCMC, and its sister method “Gibbs sampling,” permit the numerical calculation
of posterior distributions in situations far too complicated for analytic expression. Together
they have produced a forceful surge of Bayesian applications in our journals, as seen for
instance in Li et al. (2010), Chakraborty et al. (2010), and Ramirez-Cobo et al. (2010).

The point of this brief note is to say that in some situations the bootstrap, in particular the
parametric bootstrap, offers an easier path toward the calculation of Bayes posterior
distributions. An important but somewhat under-appreciated article by Newton and Raftery
(1994) made the same point using nonparametric bootstrapping. By “going parametric,” we
can illustrate more explicitly the bootstrap/MCMC connection. The arguments here will be
made mainly in terms of a simple example, with no attempt at the mathematical
justifications seen in Newton and Raftery.

It is not really surprising that the bootstrap and MCMC share some overlapping territory.
Both are general-purpose computer-based algorithmic methods for assessing statistical
accuracy, and both enable the statistician to deal effectively with nuisance parameters,
obtaining inferences for the interesting part of the problem. On the less salubrious side, both
share the tendency of general-purpose algorithms toward overuse.

Of course the two methodologies operate in competing inferential realms: frequentist for the
bootstrap, Bayesian for MCMC. Here, as in Newton and Raftery, we leap over that divide,
bringing bootstrap calculations to bear on the Bayesian world. The working assumption is
that we have a Bayesian prior in mind and the only question is how to compute its posterior
distribution. Arguments about the merits of Bayesian versus frequentist analysis will not be
taken up here, except for our main point that the two camps share some common ground.

Section 2 develops the connecting link between bootstrap and Bayesian calculations, mainly
in terms of a simple component of variance model. The bootstrap approach to Bayesian
inference for this model is carried out in Section 3, and then compared with Gibbs sampling.
We end with some brief comments on the comparison.
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2 Bootstrap and Bayes computations
We consider the following components of variance (or random effects) model:

(2.1)

That is, a1, a2, …, an the unobserved random effects are an independent sample of size n
from a normal distribution having mean α0 and variance ; we get to see the n independent
normal variates yi

(2.2)

Marginally, integrating out the unobserved random effects ai,

(2.3)

where

(2.4)

is the total variance.

In this section we will concentrate on assessing the variability of the bivariate parameter

(2.5)

the maximum likelihood estimate (mle) of β is

(2.6)

;  is sufficient for β, with distributions

(2.7)

where  indicates a chi-squared variate having n − 1 degrees of freedom.

A parametric bootstrap replication  is obtained by substituting  for the
parameter value β = (α0, σ2) in (2.7),

(2.8)
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Here  is fixed at its observed value, while  varies according to (2.8).
To harmonize notation with that for Bayesian inference we will denote  simply “β”, that
now indicates any point in the sample space  of possible β's, not necessarily a true value.

Suppose that θ = t(β) is any function of β, for example θ = σ2/α0, or

(2.9)

Starting with a prior density π(β) on β, Bayes theorem says that θ has posterior expectation,
given 

(2.10)

where  is the likelihood function: the density of  in (2.7) (now fixed at its
observed value) as β = (α0, σ2) varies over . From (2.7) we calculate

(2.11)

for the components of variance problem, where c is a constant that does not depend upon β.

Define the conversion ratio

(2.12)

the denominator being the bootstrap density (2.8), with β = (α0, σ2) denoting .
We can rewrite (2.10) as

(2.13)

Now the integrals are over the bootstrap density  rather than the likelihood function in

(2.10). This allows  to be directly estimated via bootstrap sampling.

Suppose we draw a parametric bootstrap sample by independently sampling B times
according to (2.8),

Let Ri = R(βi), πi = π(βi), and ti = t(βi). Both the numerator and denominator of (2.13) are
expectations with respect to the density . These can be estimated by bootstrap sample

averages, leading to the estimate of ,
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(2.14)

In this way, any Bayesian posterior expectation can be evaluated from parametric bootstrap
replications.

None of this is very novel, except for the focus on the parametric bootstrap: (2.14) is a
standard importance sampling procedure, as described in Chapter 23 of Lange (2010). A
connection between the nonparametric bootstrap and Bayesian inference was suggested
under the name “Bayesian bootstrap” in Rubin (1981), and also in Section 10.6 of Efron
(1982). Newton and Raftery (1994) make the connection more tangible, applying (2.14) with
nonparametric bootstrap samples.

Parametric bootstrapping makes the connection more tangible still, since in favorable
situations we can write down and examine explicit representations for the conversion factor
R(β) (2.12). For our components of variance problem, (2.11) and the related expression for β
yield

(2.15)

The factor R is interesting in its own right. It relates “sample space integration to parameter
space integration,” to quote Fraser et al. (2010), investigating a related problem.

A considerable advantage of bootstrap estimate (2.14), compared to its Gibbs sampling or

MCMC analogues, is that an accuracy estimate for  is available from the same data
used in its calculation. In (2.14) define

(2.16)

so

(2.17)

Let  be the usual 2-by-2 sample covariance matrix calculated from the B vectors (si, ri),
say

(2.18)

(For example, .) Then standard delta-method calculations yield

(2.19)
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Formula (2.19) is possible because the bootstrap vectors (si, ri) are drawn independently of
each other, which is not the case in MCMC sampling.

3 An Example
As an example of the bootstrap/Bayes computations of Section 2, a simulated data vector y
was generated according to (2.1), with

(3.1)

Marginally, the independent obervations yi had distribution

(3.2)

as in (2.3). The maximum likelihood estimates (2.6) were

(3.3)

Here we will only concern ourselves with calculating the posterior distribution of σ2.

B = 25, 000 bootstrap replications (many times more than necessary, as we shall see), β1, β2,
…, βB, were generated from the bootstrap distribution  (2.8), and the conversion factors
Ri = R(βi) (2.12) calculated. The prior density π(β) was taken to be

(3.4)

(Or equivalently, π(β) = c/σ2 for any positive constant c, since c factors out of Bayesian
calculations, as seen in (2.10).) Formula (3.4) is Jeffreys' “uninformative” prior for
inferences concerning the total variance σ2. Finally, the adjusted factors ri = πiRi = π(βi)R(βi)
were calculated. We now have B = 25, 000 points βi, each with associated weight ri, and

these can be used to estimate any posterior expectation , as in (2.16)–(2.17).

Table 1 describes the posterior distribution of the total variance σ2. The interval [0.75,2.15],
which contains almost all of the bootstrap replications , has been divided into bins of
width 0.1 each. The top row of the table shows the bootstrap histogram counts, for example,
1707 of the  values fell into the third bin, . The bottom row shows the
Bayesian bin counts, weighted according to ri = πiRi,

(3.5)

scaled to sum to B. The weights ri were smaller than 1 in the third bin, resulting in fewer
Bayes counts, 1010 compared to 1707. The opposite happens at the other end of the scale.

Figure 1 graphs the Boot and Bayes counts of Table 1. We see that the Jeffreys Bayes
distribution is shifted to the right of the Boot distribution. It can be shown that the Jeffreys
prior π(β) = 1/σ2 is almost exactly correct from a frequentist point of view: for example, the
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upper 90% point for the Jeffreys posterior distribution is almost exactly the upper endpoint
of the usual 90% one-sided confidence interval for σ2. (The Welch–Peers theory of 1963
shows this kind of Bayes-frequentist agreement holding asymptotically for all priors of the
form π(β) = h(α0)/σ2, with h(·) any smooth positive function. The components of variance
problem is unusual in allowing a simple expression for the Welch–Peers prior; see Section 6
of Efron (1993).)

Table 2 shows the estimated posterior quantiles σ2[α] for σ2, given data (3.3) and Jeffreys
prior (3.4); for example, σ2[0.95] = 1.69 is the empirical 95th percentile of the 25,000
bootstrap replications weighted according to ri = πiRi as in (3.5).

Table 2 also shows standard errors derived from (2.19), i.e., the variability due to working
with B = 25, 000 bootstrap replications (rather than B = ∞). As an example, let θ = t(β) in
(2.9) equal 0 or 1 as  is greater or less than 1.69, the value of σ2[0.95]. Following through

(2.16)–(2.17) results in 0.0027 as the standard error of , and this is the se value
shown in the second column's next-to-bottom row, along with cv = 0.055 (= 0.0027/
(1−0.950)). The standard error for  is then obtained from the usual delta-method
approximation 0.0027/g[0.95] = 0.0072, where g[0.95] is the height of the Jeffreys prior
density curve at 1.69.

All of the standard errors are small. If we had stopped at B = 5000 bootstrap replications,
they would be multiplied by  ≈ 2.2, and would still indicate good accuracy. At B = 1000
the multiplying factor increases to 5, and we might begin to worry about simulation errors.

All of these calculations depend on the adjusted conversion factor ri = πiRi, with 
and Ri = R(βi) as in (2.15). Figure 2 plots ri versus  for the B = 25, 000 bootstrap
replications from (2.8). These are less or greater than 1 as  is less or greater than ,
accounting for the rightward shift of the Bayes posterior density in Figure 1.

Much of the simulation standard error seen in Table 2 comes from the large values of ri on
the right side of Figure 2. Strategems for decreasing simulation error exist. In this case we
might modify the bootstrap sampling recipe (2.8), say to

(3.6)

This would extend the dashed curve rightwards in Figure 1, reducing the large values of Ri
and ri. We will not worry further about estimation efficency here.

The Bca system of confidence intervals (“bias-corrected and adjusted,” Efron, 1987) adjust
the raw bootstrap distribution — represented by the dashed curve in Figure 1 — to achieve
second-order accurate frequentist coverage: a level-α Bca interval has true average
probability α + O(1/n), n the sample size, rather than α + O(1/ ) for the usual first-order
approximate intervals. The corresponding “confidence distribution” (e.g., assigning
probability 0.01 to the region between the 0.90 and 0.91 Bca interval endpoints) requires a
different conversion factor RBca(β), that does not involve any Bayesian input. In the example
of Figure 1, the Bca confidence density almost perfectly matches the Jeffreys posterior
density.

All of the calculations so far have concerned the total variance . We might be more
interested in  itself, the variance of the random effects αi in model (2.11). Simply shifting
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the posterior densities of Figure 1 a unit to the left has an obvious defect: some of the
probability (0.051 for the raw bootstrap, 0.021 for Jeffreys/Bca) winds up below zero,
defying the obvious constraint . We need a prior density π(β) that has only positive
support for .

The Jeffreys analogue  looks promising, but fails because of its infinite spike at
zero. (Unlike σ2,  has substantial likelihood near 0 given the observed data (3.3).)
The toy example in Spiegelhalter et al. (1996, Sect. 2.3) suggests using prior density

(3.7)

V0 = 10, 000 and ν0 = 0.01, in a situation similar to (2.11), with Gν0 indicating a gamma
distribution having shape parameter ν0. Prior or hyperprior assumptions like (3.7) are
familiar in the MCMC literature.

We can reweight our B = 25, 000 bootstrap replications βi to compute the posterior
distribution of  for prior (3.7), as in (3.5); Ri is still provided by (2.15) (with );
the Bayes prior is

(3.8)

from the inverse gamma distribution in (3.7), the  portion of the prior having
almost no effect.

The heavy pointed curve in Figure 3 shows the posterior distribution of  under model
(3.7), as calculated from the weighted bootstrap replications. It looks completely different
than a simple leftward translation of the curves in Figure 1. Now the posterior density has its
high point at the minimum allowable value , and decreases monotonically to the right.

A Gibbs sampling analysis was performed, as a check on the weighted bootstrap results.
Given the data y, or equivalently given the sufficient statistics ( ) (3.3), a Gibbs
analysis cycles through the three unobserved quantities in (2.11), namely α, α0, and . The
“complete conditional distribution” of each one given the other two is calculated from the
specifications (2.1) and (3.7):

(3.9)

Here n = 100 is the sample size, , 1 is a vector of n 1's, I is the n × n identity
matrix, and Gν indicates a gamma random variable with shape parameter ν. Starting from α0

= 0 and  as initial values, 25,000 cycles through (3.9) produced 25,000 values .
Their step histogram in Figure 3 agrees reasonably well with the bootstrap results. (Formula
(2.19) suggests that the bootstrap estimates are nearly exact.)
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A comparison of Figure 3 with Figure 1 raises some important points:

• The inverse gamma prior distribution (3.7)–(3.8) is far from uninformative. The
posterior distribution of  is strongly pulled toward zero, putting nearly
50% of its posterior probability on . This compares with 25% for σ2 ≤ 1.2
in the Jeffreys/Bca analysis of Figure 1.

• Changing ν0 = 0.01 to 0.001 in (3.7) substantially increases the posterior
concentration of  near 0. Inverse gamma priors are especially convenient for
Gibbs sampling implementation, as in (3.9), but should not be assigned casually.

•
The mle  in (2.6) ignores the constraint σ2 ≥ 1, the actual mle being
max(1, ). This suggests that for the dashed curve in Figure 3 we could erase the
portion below zero and replace it with a probability atom of size 0.051 at 0.

• More accurately, we could shift the Jeffreys/Bca density of Figure 1 one unit left,
replacing the part below zero with an atom of size 0.021 at 0.

• In a genuine random effects application, we might well allocate some prior
probability to  (as is not done in (3.7)). This makes for more difficult Bayesian
analysis. The Bca approach of the previous remark is an attractive option here.

• Priors that are convenient for MCMC or Gibbs sampling applications play no
special role in the bootstrap/Bayes approach of this paper. Convenience priors can
be risky, in my opinion, and should be avoided in favor of frequentist methods in
the absence of genuine Bayesian prior information.
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Figure 1.
Distribution of total variance σ2 given  (3.3); dashed curve counts from 25,000 parametric
bootstrap replications (2.8), “Boot” row of Table 1; solid curve weighted counts (3.5),
weights ri = π(βi)R(βi), with π(β) the Jeffreys prior 1σ2 and R(β) the conversion factor
(2.15). Corrected bootstrap distribution “Bca” agrees with Jeffreys.
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Figure 2.
Adjusted conversion factor ri = πiRi for the B = 25, 000 bootstrap replications, plotted versus
the bootstrap replications ; the factor is less or greater than 1 as  is less or greater than

, moving the Jeffreys posterior density rightward in Figure 1.
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Figure 3.

Heavy pointed curve indicates posterior density of  in model (2.1), data (3.3); inverse
gamma prior (3.7) as calculated from weighted bootstrap replications. Stepped curve is same
posterior density calculation by Gibbs sampling algorithm (3.9). Dashed curve shows
unweighted bootstrap counts of Figure 2 shifted one unit left.
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