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Tropical cyclones have massive economic, social, and ecological
impacts, and models of their occurrence influence many planning
activities from setting insurance premiums to conservation plan-
ning. Most impact models allow for geographically varying cyclone
rates but assume that individual storm events occur randomly with
constant rate in time. This study analyzes the statistical properties
of Atlantic tropical cyclones and shows that local cyclone counts
vary in time, with periods of elevated activity followed by relative
quiescence. Such temporal clustering is particularly strong in the
Caribbean Sea, along the coasts of Belize, Honduras, Costa Rica,
Jamaica, the southwest of Haiti, and in the main hurricane devel-
opment region in the North Atlantic between Africa and the Car-
ibbean. Failing to recognize this natural nonstationarity in cyclone
rates can give inaccurate impact predictions. We demonstrate this
by exploring cyclone impacts on coral reefs. For a given cyclone
rate, we find that clustered events have a less detrimental impact
than independent random events. Predictions using a standard
random hurricane model were overly pessimistic, predicting reef
degradation more than a decade earlier than that expected under
clustered disturbance. The presence of clustering allows coral reefs
more time to recover to healthier states, but the impacts of cluster-
ing will vary from one ecosystem to another.
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The devastating economic, social, and ecological impacts of
tropical cyclones are well established (1–3). Estimates of hur-

ricane rates are needed to model the dynamics of many ecological
(4–6), social (7), and economic (8) processes. A key implicit as-
sumption of virtually all such models is that cyclones occur ran-
domly in time with a constant rate that can vary geographically.
Using a century of cyclone tracks from the Atlantic (9), we begin
by testing whether such a model of hurricanes is indeed appro-
priate. In areas where such models are found to be inappropriate,
because hurricane events are in fact clustered in time rather than
obeying a constant rate, we then investigate whether this depar-
ture from a Poisson process matters when predicting the health of
Caribbean coral reefs. Important theories of disturbance ecology
originated from coral reefs (2), making them a convenient system
to pose this question. It should be noted that clustering of natural
hazards such as hurricanes can also have a profound impact on
nonecosystem features: For example, clustering can induce a sub-
stantially enhanced probability of multiple large insured losses
within the duration of a single reinsurance contract (10).

Results and Discussion
Clustering of Hurricanes. We examine tropical cyclone tracks from
the Atlantic Basin Hurricane Database (HURDAT) between
1901 and 2010. Following the approach of Villarini et al. (11),
we consider tracks lasting only for more than 2 d, to address par-
tially the issues that have been raised about the quality of the
HURDAT database in the early 20th century (12–16). Our ana-
lysis reveals clear patterns of geographic variability in the mean
rates of tropical cyclones and hurricanes, the latter having more
intense wind speeds that exceed 119 kmh−1 (Fig. 1 A and B).

Storm arrival rates vary in time because of the influence from
large-scale modes of climate variability. Such variation causes
storm counts to be more variable than expected for random in-
dependent storms having constant rate. Overdispersion, the ex-
ceedance of the variance of the counts above the mean of the
counts, provides a simple method for quantifying this “clustering”
above that expected for a constant rate Poisson process (10, 17).
Note that this definition of clustering should not be confused with
that arising from a clustered process caused by dependency be-
tween neighboring events (e.g., secondary cyclogenesis).

The dispersion statistic of the tropical cyclone transits (Fig. 1C)
is significantly greater than zero over much of the eastern Atlantic
and particularly in the main hurricane development region, be-
tween the coast of Africa and the Caribbean Sea (18, 19). From
the main development region, two large patches of overdisper-
sion emerge. The first extends northward in the eastern Atlantic,
and the second forms a “corridor” extending toward the Carib-
bean Sea. Significant overdispersion occurs within the Caribbean,
and for some of the largest areas of reef development such as
the south of Cuba and Jamaica, the Bahamas archipelago, the
Florida Keys, and the Mesoamerican Barrier Reef System, which
borders the land mass of Central America (Fig. 1D).

It is interesting to ask whether time variation in local rates can
be related to changes in large-scale climate patterns. One way to
answer this question is to perform a Poisson regression of counts
on the large-scale flow indices, as has been done in previous
studies but generally only for landfall or basinwide counts (20);
also see refs. 21–29). The Atlantic Multidecadal Oscillation
(AMO) can be seen to have a pronounced effect on the yearly
impact rates for all tropical cyclones and hurricanes (Fig. 2 A
and C). The AMO is known to be linked to long-term variability
of tropical cyclone and hurricane activity (30, 31). The North
Atlantic Oscillation and the Southern Oscillation indices have
a much smaller effect (Fig. 2 B and D), in broad agreement with
earlier studies (30, 31).

Impact of Clustered Hurricane Events on Ecosystems. We asked
whether the observed levels of hurricane clustering (Fig. 1) are
sufficient to cause a significant change in coral reef state. To do
this we used a spatial simulation model of a Caribbean coral reef
under realistic levels of hurricane disturbance. The model simu-
lates the population dynamics of several growth forms of coral
under both chronic and acute disturbance. A detailed model
parameterisation is given in SI Text, and its predictions have been
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validated against a long-term empirical dataset from Jamaica dur-
ing which multiple hurricanes occurred (32).

For three representative rates of annual hurricane incidence
(0.05, 0.10, 0.20) we compared the overall health of reefs under
four models of temporal dispersion: a null model of random hur-
ricane events, and three representative levels of overdispersion
(0.1, 0.3, 0.5). We initialized reefs with a moderately healthy cor-
al cover of 30% and assumed that reefs were well managed with
high fish herbivory, high natural algal productivity, and no sedi-
mentation. The long-spined sea urchin, which was decimated by
disease in 1983 (33), was assumed to be functionally absent in
the reef habitat and depth modeled. Background levels of coral
mortality were included, but we ignored ocean acidification and
coral bleaching so as to focus specifically on the impact of hur-
ricanes.

Under fairly intense hurricane rates (>0.1 per annum), overall
coral cover declined during the century, emphasizing the pro-
blems faced by today’s reefs, which often lack a major class of
branching corals (34) and experience an undergrazed environ-
ment lacking a major group of herbivores (32). However, indivi-
dual reef trajectories under clustered hurricanes tended to be
healthier for longer than those experiencing random hurricane
events at the same rate (Fig. 3A). Indeed, average coral cover
was always greater under clustered hurricanes and the magnitude
of this “mitigation” increased, often nonlinearly, with mounting
overdispersion (Fig. 3 B and C). Comparing the response across
different rates of hurricane, the effects of clustering were also
nonlinear; reefs experiencing intermediate rates of disturbance
(0.1) responded relatively strongly to modest clustering in distur-
bance (Fig. 3C). The exceptional response of reefs under inter-
mediate disturbance arises because more frequent events main-
tain the system in a highly degraded state, thereby attenuating the
scope for recovery, and reefs experiencing less frequent events

spend so little time in a degraded state that the century-averaged
response to hurricanes is minor.

To synthesize our results, we determined the year at which
reefs become functionally degraded under a sustained hurricane
regime. We loosely define “degraded” as having occurred once at
least 95% of the subsequent reef observations remain in a de-
graded state of <10% cover. Degradation was found only under
the higher hurricane rates but clustering delayed the onset of de-
gradation considerably: by 6 y under frequent hurricanes and 14 y
under intermediate hurricane rates (Fig. 4).

Although cyclones damage reefs, our results imply that a
strongly clustered hurricane regime will allow ecosystems to
remain in a later successional state for a greater proportion of
the time. If a system has not been struck for some time, the first
hurricane event will often have a devastating impact and remove
many of the vulnerable organisms (35). If the next hurricane
occurs before much recovery has taken place (i.e., as part of a
cluster of events), its impact may be relatively weak because few
vulnerable individuals remain and ecosystem recovery remains at
a nascent stage that limits the addition of new susceptible colo-
nies (36, 37). Indeed, a metaanalysis of hurricane impacts on 286
reefs found that time elapsed since the previous hurricane event
was a major positive correlate of subsequent damage (38), which
provides supporting empirical evidence that clustered events
should, on average, damage the ecosystem less. Comparable var-
iations in hurricane impact during successive events have been
reported in other ecosystems including tropical forests (6, 39)
and oyster beds (40).

Our conclusions are likely to be conservative in that the
“mitigative benefits” of clustered disturbance are likely to be un-
derestimated in our analysis of reef ecosystems, largely because
our simple model captures some, but not all, of the vulnerability
among individual corals to hurricane damage. In our model,
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Fig. 1. Mean yearly counts of (A) tropical cyclones and (B) more intense tropical cyclones (hurricanes) passing over circular regions with 300-km radius centered
on points on a regular latitude–longitude grid with 1° spacing. The circles in A have equal radius of 300 km with distances measured along a great circle.
Dispersion statistic of (C) tropical cyclones and (D) hurricanes.
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vulnerability is implemented as a function of coral size, but addi-
tional variability is likely among individuals by virtue of their
phenotypic expression (e.g., shape) and local microhabitat (e.g.,
proneness of their underlying substrate to collapse). Our model
does not resolve such small-scale effects, but these would tend to
increase the disparity of impacts between successive hurricane
events and increase the “mitigative effect” of clustered versus
Poisson processes.

The reef framework built by living corals underpins several
important ecosystem services including coastal protection from
storms, reef fisheries, and the generation of sand for building
materials and beach tourism. Given that reefs are increasingly
disturbed by the El Niño–Southern Oscillation phenomenon,
climate change, and overexploitation (41), most exist in a transi-
ent state, rarely reaching a truly late successional community
composition. However, the principle remains that a reef in a
higher state of recovery will tend to have higher cover, a later
successional state, and offer higher levels of reef-based ecosystem
services.

Hurricanes are a major structuring force in terrestrial (42, 43),
estuarine (44), and aquatic systems (45). The impact of hurricane
clustering on ecosystems will depend on their vulnerability to
hurricane damage, the consequences of remaining in a damaged
state during successive clustered hurricane events (even if fol-

lowed by an extended recovery phase), and the relative rates of
ecosystem recovery and hurricane incidence. For example, an
ecosystem experiencing severe Allee effects (46) after a hurricane
might be negatively impacted by clustering. The next Intergovern-
mental Panel on Climate Change assessment will place renewed
effort in determining the effects of climate change on cyclone
activity. Predictions of climate change in hurricane-prone ecosys-
tems should consider the clustered nature of events as these can
have a significant bearing on results. For coral reefs in the Atlan-
tic, hurricanes are sufficiently clustered to alter the predictions of
ecosystem degradation by more than a decade.

Methods
We considered cyclones passing over disks of radius 300 km in order to cap-
ture the damaging footprint of strong surface winds distributed asymmetri-
cally about the eye of the storms (47). We count the yearly number of impacts
of tracks on disks of radius R ¼ 300 km centered at grid points with spacing 1°
on a domain surrounding the North Atlantic. This gives a time series
Y ¼ fy1;…;y10g of counts for each grid point. The dispersion statistic is de-
fined as φ ¼ s2y∕y−1, where y is the sample mean and s2y is the sample variance
of the counts. If the process of cyclone transit is totally random (that is, events
are independent of each other) and stationary, then the counts should follow
a Poisson distribution and so have φ ¼ 0. Therefore, φ > 0 indicates overdis-
persion compared to a constant mean Poisson distribution and provides a
measure of serial (temporal) clustering of the cyclone transit process (10,
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Fig. 2. Poisson regression coefficients of the indexes of Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and Southern Oscillation (that is,β1, β2,
and β3 in Eq. 1) for the yearly impact counts of all tropical cyclones (A–C) and hurricanes only (D–F).
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11). The same analysis is performed for hurricane impacts, which are counted
when the maximum wind speed within a disk is larger than 119 kmh−1.

For Poisson regression we fitted the model

Y jX1;X2;…;Xm ∼ Poission ðμÞ;
logðμÞ ¼ β0 þ β1X1 þ β2X2 þ β3X3:

This expresses the rate μ as a function of the time-varying covariates, which
in our case are indexes for the Atlantic Multidecadal Oscillation (AMO, the
undetrended unsmoothed data), from National Oceanic and Atmospheric
Administration: http://www.esrl.noaa.gov/psd/data/timeseries/AMO/, the
North Atlantic Oscillation (NAO) and the Southern Oscillation (SO), from
the Climate Research Unit: http://www.cru.uea.ac.uk/cru/data. Following
Elsner et al. (23), for every year in the record we took August–October
averages of the monthly values of the AMO and SO indices and May–June
pre-hurricane-season averages of the monthly values of the NAO index.

Each coral reef simulation was run for a period of 100 y. Each combination
of hurricane rate and dispersion was repeatedly simulated 100 times and the
mean response reported in figures. Although the simulation of disturbances
was probabilistic, only those disturbance regimes that conformed exactly to
the overall long-term disturbance rate (e.g., five events over 100 y for a rate
of 0.05) were included, which ensured that comparisons between distur-
bance regimes were not confounded by minor statistical noise. Statistical
analyses were not undertaken because they would have limited meaning:
We could always increase the number of simulations to obtain a significant
difference among treatments. Further details of the model are given in
SI Text.
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