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Abstract
Respiratory monitoring is widely used in clinical and healthcare

practice to detect abnormal cardiopulmonary function during ordinary

and routine activities. There are several approaches to estimate respi-

ratory rate, including accelerometer(s) worn on the torso that are ca-

pable of sensing the inclination changes due to breathing. In this article,

we present an adaptive band-pass filtering method combined with

principal component analysis to derive the respiratory rate from three-

dimensional acceleration data, using a body sensor network platform

previously developed by us. In situ experiments with 12 subjects in-

dicated that our method was capable of offering dynamic respiration

rate estimation during various body activities such as sitting,

walking, running, and sleeping. The experimental studies also sug-

gested that our frequency spectrum-based method was more robust,

resilient to motion artifact, and therefore outperformed those algo-

rithms primarily based on spatial acceleration information.

Key words: dynamic respiratory monitoring, body sensor network,

acceleration-derived respiration rate, home health monitoring

Introduction

T
he necessity for early diagnosis of potentially dangerous con-

ditions, such as sleep apnea1, sudden infant death syndrome2,

and chronic obstructive pulmonary disease3 has fostered the

development of several methods for measuring respiratory ac-

tivity, especially in ambulatory settings. As the gold standard, the cap-

nograph device was routinely used in hospital and critical care centers to

monitor patients’ respiratory status.4 Other well-accepted respiratory

monitoring techniques and devices are respiratory inductive plethysmo-

graph (RIP)5, electrical impedance tomography6, thermistors for airflow

measurements7, piezoelectric transducers, and micro-electromechanical

systems (MEMS) accelerometers. Empowered by body sensor network

(BSN) technology these methods became more easily to deploy while

being less obtrusive to patients.8,9 More recently, Baltag and Popa10 de-

signed a microwave Doppler transducer and Li et al.11 proposed a radar-

basedapproachfornoninvasive respiratorymonitoring,but their attempts

are still premature for clinical employments.

Accelerometers have been increasingly used in recently years to derive

respiration rate. Accelerometers worn on the torso are capable of mea-

suring inclination and angular changes during breathing, and then re-

spiratory rate canbeestimatedusingdigital signalprocessing technology.

Hung et al.12 proposed a new approach based on a chest biaxial accel-

erometer to derive respiratory rate during static body conditions (e.g.,

sitting, standing and lying down).13 Anmin et al.14 suggested a hybrid

principal component analysis (PCA) method (using full angles and the

PCA) to derive respiratory rate with a three-dimensional (3D) acceler-

ometerduringstaticbodyconditions.Batesetal.15presentedawireless3D

accelerometer device to derive respiration rate, which tracked the axis of

rotation and obtained regular rates of breathing motion. The aforemen-

tioned methods mainly used spatial acceleration information. Therefore,

when the subject was changing position, the respiration rate estimation

inevitably deteriorated because the magnitude of the movement-induced

signal greatly exceeds that due to breathing, and the posture and orien-

tation of the 3D accelerometer shifted during the disturbance. To cancel

these problems, these authors simply removed the acceleration signal

episodes that were contaminated by motion artifacts.14,15

On another side of the spectrum, different frequency spectrum

analysis algorithms were developed to derive respiration rate from

various physiological signals such as electrocardiograph (ECG), pi-

ezoelectric pulse signal, and photoplethymograph (PPG). Band-pass

filter16 and Wavelet transform17–19 were applied to derive respiratory

rates from single-a lead ECG signal. Dash et al.20 used a time–fre-

quency analysis method to estimate the respiration rate from ECG,

PPG, and piezoelectric pulse transducer signals. Chon et al.21 used a

time–frequency spectral method to estimate respiratory rate from

PPG data. It is logical to attempt the spectrum analysis approach for

respiration rate estimation from wearable acceleration signals.

This article briefly described a wearable device to sense the 3D

acceleration. The device was based on a BSN platform developed by

us in previous studies.9 A novel spectrum analysis method was pre-

sented to derive respiration rate from 3D acceleration signals. Con-

sequently, experimental studies were carried out to verify our method

and conclusion was given at the end.

System and Methods
The complete system was comprised of hardware modules for 3D

acceleration signal acquisition, signal processing algorithms for
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energy expenditure (EE) estimation, and respiration rate estimation,

as detailed below.

HARDWARE MODULES
The BSN platform included the node boards that serve as the primary

BSN components; the RIP sensor interface board that interfaces with an

RIP belt sensor, the ECG interface board that was capable of detecting

heart rate from non-contact electrodes, a PPG sensor interface board

that interfaces with a generic PPG sensor, a base station board that

connects with a personal computer or a personal digital device; a battery

board with a wireless charger that provides power supply for the node

and sensor boards; and several prototyping boards for debugging pur-

pose. A low-power microprocessor, a radio transceiver, a memory

integrated circuit (IC), a 3D accelerometer, a power regulator, a 20-pin

expansion port, and affiliated discrete components were integrated on

the BSN node. An improved media access control (MAC) protocol was

presented to facilitate wireless data communications, which solved

collision voidance, message recovery, and power consumption bottle-

necks. All the boards, except the base station board, were designed in a

uniform form factor that is 23mm in diameter. There are well-defined

expansion ports in all, but the base station board so the boards could be

easily stacked. As shown later the BSN modules were assembled as a

waistband device for 3D acceleration signal monitoring. Figure 1 il-

lustrated the node board, the resiration belt, the mask, and the experi-

ment setup for 3D acceleration data acquisition.

ACCELEROMETER
The detection of body motions is important for behavior profiling and

biofeedback training.22 A digital built-in 3-axis accelerometer SCA3000

Fig. 1. The node boards for 3D acceleration detection (top, left); the
abdomen belt for respration detection (top, right); a mask for
BIOPAC CO2 100C module (bottom, left), the experiment setup
(bottom, right). 3D, three-dimensional.

Fig. 2. (a) The step-by-step procedures for motion-derived respi-
ratory rate estimation, (b) raw 3D acceleration signals for 1 min
episode, (c) the three vectors derived from 3D acceleration signals
by using the band-pass filter based on 1-minute EE, and (d) the
respiration wave derived from three vectors by using the PCA
method. EE, energy expenditure; PCA, principal component
analysis.
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was equipped in the node board. This device incorporates a 3D MEMS

element and a signal conditioning application-specific integrated circuit

(ASIC).23 With its integrated design, the BSN node became more compact

and immune to the noises induced by cables and connectors.

3D ACCELERATION-DERIVED RESPIRATION RATE
3D acceleration signals were monitored by the waist-worn device

(Fig. 1) during various body activities. In general, abdomen motion

includes body motion and respiration motion, and the frequency

band for respiration ranged from 0.1 to 0.6 Hz during various body

activities. The parameters of the band-pass filter were set, according

to the EE for every minute. Consequently, the adaptive filter was used

to obtain three respiration vectors from x, y, and z coordinates of the

3D acceleration signal, respectively. A PCA method was used to

obtain the weight of each vector and to extract the respiration

waveform. Finally, the respiration rate was estimated by power

spectrum analysis. Figure 2 demonstrated the procedures that res-

piration rate was derived from abdomen 3D acceleration signals

during different body activities. The algorithm was detailed step by

step, as below.

EE CALCULATION
Acceleration signals from the three axes were acquired at a sam-

pling rate of 25 samples per second (Sps). Typically, the acceleration

of a moving object consists of two parts: the gravity and acceleration

caused by movements, which were called static accelerations and

dynamic accelerations, respectively. It is the latter that was primarily

concerned in our experiments. A high-pass filter (-3dB bandwidth

was 1 Hz) was employed to eliminate the static portions. The accel-

eration signal Ai was defined as24:

DA(i) = [(x(i + 1) - x(i))2 + (y(i + 1) - y(i))2 + (z(i + 1) - z(i))2]1=2 (1)

The EE for the abdomenal part was calculated as:

EE = +DA(i) over 1 min (2)

The routine activities were classified based on EE as:

If EE <100, the activity was considered to be with low EE;

If 100 £EE <400, the activity was considered to be with median EE;

If EE ‡ 400, the activity was considered to be with high EE;

ADAPTIVE DIGITAL FILTER
The respiratory rate is approximately 0.1 to 0.6 Hz during different

body activities. According to the different EE values conducted from

abdomen motions, the parameters of Butterworth band-pass filter

were adaptively selected to derive respiration vectors from x, y, and z

co-ordinates of 3D acceleration signals, separately. The parameters of

Butterworth digital filter are shown in Table 1; the pass-band ripple

Rp denotes the maximum permissible pass-band loss in decibels, and

the stop-band attenuation Rs denotes the number of decibels that the

stop-band is down from the pass-band.

PRINCIPLE COMPONENT ANALYSIS
Because of the unpredicted posture changes during routine activi-

ties and the geometric deployment of the accelerometer, a PCA-based

method was proposed to obtain the weight of the respiration vectors

from the x-, y-, and z-axis accelerations.

Table 1. Bandpass Digital Filter Parameters

ABDOMEN
MOTION EE

BODY
ACTIVITIES

FREQUENCY
BAND (HZ)

STOP
BAND (HZ) COEFFICIENT

Low EE Sitting:

30 min sitting

with minor

movements

Strict sitting:

5 min

0.2–0.4 0.15–0.45 Rp = 6 Rs = 15

Sleeping:

normal

sleeping

for a night

0.2–0.4 0.15–0.45 Rp = 6 Rs = 15

Median EE Walking:

3 min slow

walk with

2.5 km/h

0.2–0.6 0.15–0.65 Rp = 9 Rs = 15

High EE Running:

5 min run

with 6.0 km/h

0.3–0.7 0.2–0.8 Rp = 3 Rs = 15

EE, energy expenditure.

Table 2. Motion-Derived Respiratory Rate Experiments with Abdomen Accelerometer

ACTIVITIES PROTOCOL GOLDEN STANDARD MAINLY MOTION

Stationary activity Strict sitting quietly for 5min CO2 analysis with Biopic CO2100C

module

abdomen motion

Sitting with minor movements for

30 min

Body/abdomen

Dynamic activity Walking for 3 min with 2 km/h Body motion

Running for 5 min with 6 km/h Body motion

Sleeping Sleeping for above 6 h Body/Abdomen
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PCA is generally used for dimension reduction of

multivariate datasets.25 In this article the implementa-

tion is as follows:

First, denoting the three co-ordinate acceleration

vectors time series as matrix + = {vectorx (k); vectory (k);

vectorz (k)}.

Second, the eigenvectors and corresponding eigen-

values (k1, k2, k3) of + was computed based on classic PCA

method.

Third, the weights for three co-ordinate acceleration

vectors were obtained as the following equations:

gi =
ki

k1 + k2 + k3
(i = 1, 2, 3) (3)

At last, the x0 represents the respiratory time sequence

by

x0 = g1vectorx + g2vectory + g3vectorz (4)

Where the vectorx, vectory, and vectorz denote the

vectors from x, y, and z co-ordinates of 3D acceleration

filtered using adaptive band-pass filter, respectively.

SPECTRUM ANALYSIS
Respiratory rate was estimated by using the power spectrum for

every 1-min episode.

Experiment
PROTOCOL OF THE EXPERIMENT

Twelve healthy subjects with a mean age of 23.5 years (between 21

and 32) have participated in experiment 1 as shown in Table 2. All

subjects were chosen randomly. The experiment protocol was illus-

trated in Figure 3:

The reference signal (being golden standard in our experiments)

was obtained by the airflow CO2 analysis with a BIOPAC CO2 100C

module (Fig. 1).

3D-ACCELERATION DERIVED RESPIRATION METHODS
To derive respiration rate from 3D acceleration signals, differ-

ent methods based on wavelet decompositions acceleration-

derived respiration (ADR)1–2 and nonadaptive band-pass filters

(ADR3–4) were used, based on the indications in the literature of

their potential merits and preliminary review of their implemented

results.

(1) ADR1: respiration rate was derived by using wavelet de-

composition, scale 6, and power spectrum from the 3D ac-

celeration signals.

(2) ADR2: respiration rate was derived by wavelet decomposition,

scale 5 plus scale 6, and power spectrum from the 3D accel-

eration signals.

(3) ADR3: respiration rate was derived with band-pass 0.2–0.8 Hz

and power spectrum, from 3D acceleration signals.

(4) ADR4: respiration rate was derived with band-pass 0.2–0.6 Hz

and power spectrum, from 3D acceleration signals.

(5) ADR5: our method, as detailed in the previous session.

STATISTICAL ANALYSIS
The accuracy of each method was estimated by the average per-

centage error of the measurements in comparison with the reference

Fig. 3. The experiment circuit.
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Fig. 4. The absolute error across all body activities (strict sitting,
sitting with minor movement, walking, and running). Mean – one
standard deviation was plotted. ADR1–2 meant 3D-ADR rate based
on wavelet; ADR3–4 meant 3D-ADR rate based on band-pass filter;
ADR5 as detailed in the previous article. ADR, acceleration derived
respiration.
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value, calculated by subtracting the test value from the reference

value and dividing the results by the reference value of each mea-

surement.16 Absolute value was used in our study to minimize error

offset between each experiment.

Error =
j(Derived - reference)j

Observed
· 100 (%) (5)

If Error >100, Error = 100 (6)

We did the statistical tests (with SPSS

v17.0) for all the experiments. Mean and

standard deviations were used to evaluate

the mean absolute error between the de-

rived results and the reference values.

Where two datasets were compared, we

performed two sample t-tests for each in-

dividual method. The significance level

was chosen as a = 0.05.

Results
OVERALL PERFORMANCE OF ALL
ACTIVITIES

Figure 4 depicts the mean absolute er-

rors for the derived values and the
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Fig. 5. The mean absolute errors of five methods during various body activates (e.g., strict sitting (a), sitting with minor movement (b),
walking (c), and running (d)); Mean – one standard deviation were plotted. ADR1–2 meant 3D-ADR rate based on wavelet; ADR3–4 meant
3D-ADR rate based on band-pass filter; ADR5 meant 3D-ADR rate based on PCA and band-pass filter that we designed in the article.

Table 3. Difference in Derived Respiratory Rate for Controlled 0.5-h Test

DERIVED RESPIRATION METHODS: MEAN – ONE STANDARD

ACTIVITIES ADR1 ADR2 AD3 ADR4 ADR5

Quiet 100 – 0 100 – 0 34.86 – 17.43 15.36 – 8.10 15.46 – 7.67

Sitting 44.26 – 26.03 42.36 – 30.67 19.85 – 15.45 12.39 – 3.38 11.79 – 4.35

Walking 43.03 – 63.22 42.83 – 63.03 10.35 – 12.63 15.86 – 15.59 7.45 – 8.62

Running 41.52 – 30.29 37.32 – 32.82 6.79 – 5.61 36.62 – 14.22 4.52 – 4.34

Mean absolute error difference with the reference value in breaths per minute (Bold values if significant difference

with the reference value at a = 0.05).

ADR, acceleration derived respiration.
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reference value during different body activities (strict sitting, sitting

with minor movement, walking, and running). The result demon-

strated that the ADR5 method achieved the least mean absolute error

against the reference value at 10% approximately. The wavelet-based

method (ADR1–2), which had the mean absolute error at 30%, had

more significant difference with the reference value. The band-pass -

based method (ADR3–4) had the mean absolute error at approximate

20%. This demonstrated that our method (ADR5) improved the

measure accuracy, comparing with other methods.

PERFORMANCE FOR DIFFERENT ACTIVITIES
The dataset was partitioned into the following activity categories:

strict sitting, sitting with minor movement, walking, and running.

Figure 5 indicates mean absolute differences for all methods. It is

clear that the wavelet decomposition methods (ADR1 and ADR2)

have the largest mean absolute error with the reference value during

each body activity. However, The ADR5 method we have presented

had the least mean absolute error with the reference value during

each body activity. The band pass method (ADR3) had the similar

performance to the ADR5 during walking and running, and the

ADR4 had also the similar performance to the ADR5 during strict

sitting and sitting with minor movement. The result demonstrated

our algorithm improved the measure accuracy.

Table 3 demonstrates the difference in derived respiratory rate

with reference value for all activities. Statistical testing shows that

the wavelet methods (ADR1–2) had significant differences with the

reference value at a = 0.05 during each body activity. The ADR5

method did not have significant difference during each activity.

The band-pass methods (ADR3–4) had significant differences with

the reference value at a = 0.05 during some activities, such as strict

sitting (ADR3) and running (ADR4).

PERFORMANCE FOR OVERNIGHT MONITORING
Simultaneous respiratory and acceleration monitoring were

performed for 10 subjects for overnight sleep monitoring. The

result in Figure 6 demonstrated that our algorithm outperformed

the other data processing methods used in this article.

Discussion
An adaptive and frequency spectrum-based method was designed

to estimate respiratory rate, because spatial acceleration information

could be easily contaminated during various body activities. For

example, Bates et al.15 used a threshold method to remove contam-

inated acceleration signals and only 45% of the whole dataset was

left for respiration rate estimation.15 In contrast with Bates et al.15 our

algorithm was able to estimate respiration rate from the complete

dataset without data tailoring. Figure 7 summarized the magnitudes

of the movement-induced signals during different body activities.

Denoting the respiration time series as x[k] and the reference

signal as y[k], the correlation coefficient qxy was calculated as

qxy = +
N - n

k = 1

(x(k) - x(k))(y(k + n) - y(k + n))

,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
N

k = 1

(x(k) - x(k))2 +
N

k = 1

(y(k) - y(k))2

s
(7)

Figure 8 indicates the variance of the correlation coefficient

across all body activities, which suggested larger correlation coeffi-

cient during walking and running activities. This is because the

frequency-domain expression (calculated with our ADR5 method)

caused by respirations was enhanced due to physical exercise. This is

clearly advantageous against those spatial acceleration-based

methods, in which the correlation coefficient was reduced due to

physical exercise.
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Conclusions
This article presents a respiration rate estimation method based on a

generalized BSN development platform. The frequency spectrum-

based algorithm, which combined PCA and adaptive band-pass fil-

tering, was designed to derive respiration rate from 3D acceleration

signal during various activities. In situ experiment results indicated

our method was capable of offering pervasive respiration rate moni-

toring during various body activities. Furthermore, the result dem-

onstrated that our method was more robust, resilient to motion artifact,

and, therefore, outperformed those algorithms primarily based on

spatial acceleration information. In the future we will investigate the

long-term monitoring of the respiration rate using our method.
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