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Abstract

Most live-attenuated tetravalent dengue virus vaccines in current clinical trials are produced from Vero cells. In a previous
study we demonstrated that an infectious cDNA clone-derived dengue type 4 (DEN-4) virus retains higher genetic stability
in MRC-5 cells than in Vero cells. For this study we investigated two DEN-4 viruses: the infectious cDNA clone-derived DEN-4
2A and its derived 39 NCR 30-nucleotide deletion mutant DEN-4 2AD30, a vaccine candidate. Mutations in the C-prM-E,
NS2B-NS3, and NS4B-NS5 regions of the DEN genome were sequenced and compared following cell passages in Vero and
MRC-5 cells. Our results indicate stronger genetic stability in both viruses following MRC-5 cell passages, leading to
significantly lower RNA polymerase error rates when the DEN-4 virus is used for genome replication. Although no significant
increases in virus titers were observed following cell passages, DEN-4 2A and DEN-4 2AD30 virus titers following Vero cell
passages were 17-fold to 25-fold higher than titers following MRC-5 cell passages. Neurovirulence for DEN-4 2A and DEN-4
2AD30 viruses increased significantly following passages in Vero cells compared to passages in MRC-5 cells. In addition,
more severe DEN-induced hemorrhaging in mice was noted following DEN-4 2A and DEN-4 2AD30 passages in Vero cells
compared to passages in MRC-5 cells. Target mutagenesis performed on the DEN-4 2A infectious clone indicated that single
point mutation of E-Q438H, E-V463L, NS2B-Q78H, and NS2B-A113T imperatively increased mouse hemorrhaging severity. The
relationship between amino acid mutations acquired during Vero cell passage and enhanced DEN-induced hemorrhages in
mice may be important for understanding DHF pathogenesis, as well as for the development of live-attenuated dengue
vaccines. Taken together, the genetic stability, virus yield, and DEN-induced hemorrhaging all require further investigation
in the context of live-attenuated DEN vaccine development.

Citation: Lee H-C, Yen Y-T, Chen W-Y, Wu-Hsieh BA, Wu S-C (2011) Dengue Type 4 Live-Attenuated Vaccine Viruses Passaged in Vero Cells Affect Genetic Stability
and Dengue-Induced Hemorrhaging in Mice. PLoS ONE 6(10): e25800. doi:10.1371/journal.pone.0025800

Editor: K. T. Jeang, National Institute of Health, United States of America

Received May 28, 2011; Accepted September 11, 2011; Published October 28, 2011

Copyright: � 2011 Lee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the National Science Council of Taiwan (98-2313-B-007-004 and NRPGM 98-3112-B-002-042) and the Veterans General
Hospitals-University System Taiwan (VGHUST100-G6-1-1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: scwu@mx.nthu.edu.tw

Introduction

The four dengue serotype viruses DEN-1 to DEN-4 (genus

Flavivirus, family Flaviviridae) are single stranded, positive-sense

RNA viruses transmitted to humans primarily by Aedes aegypti

mosquitoes [1]. Their shared RNA genome contains coding

sequences for three structural protein genes (core C, precursor

membrane prM, and envelope E), seven non-structural protein

genes (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5), and two

flanking non-translating regions (NTRs) [2]. DEN infections in

humans result in illnesses ranging from dengue fever (DF) to

dengue hemorrhagic fever (DHF) and dengue shock syndrome

(DSS). Approximately 50–100 million infections occur annually,

including 500,000 cases of DHF and DSS [3,4,5,6,7]. DEN is

endemic in Southeast Asia, where severe forms of DHF and DSS

have become major causes of hospitalization among young

children [8]. Increases in DEN-related diseases in the past two

decades are likely the result of growing human populations, rapid

urbanization, the effects of global warming on mosquito vector

control, and expanded international travel [9].

There is an urgent need for a safe and effective dengue vaccine. A

live-attenuated DEN vaccine would deliver a complete set of

protective antigens to achieve long-lasting immunity [7]. The use of

live-attenuated tetravalent DEN vaccines against each of the four

serotypes would have the potential of minimizing the risk of severe

DEN-related diseases [7,10,11,12,13,14,15]. Wild type DEN strains

1 through 4 have been attenuated by serial passages in primary dog

and monkey kidney cells [10,13,14], and bulk vaccines have been

produced using diploid fetal rhesus monkey lung cells (FRhL) or

aneuploid African green monkey kidney epithelial cells (Vero)

[12,16,17]. Results from several clinical trials indicate that each

monovalent DEN vaccine is both immunogenic and safe [12,17].

However, tetravalent vaccine formulation trials have not resulted in

predicted responses, with immune imbalance or reactogenicity

occurring for certain DEN serotypes [13,14]. Although an attempt

has not been made for production of DEN vaccines, human diploid

MRC-5 cells have been used for the production of several live-virus

vaccines such as oral polio, rubella, small pox, and varicella zoster

[18]. Other vaccine developers have applied cDNA cloning via

chimeric virus technology and strategic modifications to generate
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viruses containing growth restriction phenotypes—for example,

DEN-4 with a deletion in 39 NTR, attenuated 17D yellow fever

vaccine, and DEN-2 strain PDK-53 [7,19,20,21,22,23,24,25,

26,27,28,29,30]. All of these cDNA-derived candidate vaccines

have been produced using Vero cells.

Passages of DEN viruses or their derived chimeras in Vero cells

generate mutations that are specific in terms of host cell

adaptation, virus attenuation, or other properties [31,32]. When

spot-checking sequences during chimeric DEN-2 PDK-53 vaccine

component manufacturing, Stinchcomb et al. (2007) observed the

loss of attenuating mutation markers in a number of seed stocks

during initial passages in Vero cells; these vaccine seeds were

rejected for further use [33]. It is possible that virus passage in

certain cells produce host cell-specific mutations that contribute to

innate immunity response in vaccinees.

We previously demonstrated that the infectious cDNA clone-

derived DEN-4 2A virus retains higher genetic stability in MRC-5

cells compared to Vero cells [34]. For the present study we

investigated the effects of serial passages in Vero cells and MRC-5

cells on two DEN-4 viruses: a recombinant version of wild type

virus DEN-4 2A, and its derived 39 NCR 30-nucleotide deletion

mutant vaccine candidate DEN-4 2AD30 [21,35]. DEN-4 2A and

DEN-4 2AD30 viruses were generated in Vero and MRC-5 cells

via the transfection of in vitro RNA transcripts synthesized using

SP6 RNA polymerase (Fig. 1A). For purposes of analyzing genetic

mutations that occur during cell passages, we collected ten plaque-

purified clones following passages P4 and P10 and sequenced the

DEN genomic fragments C-prM-E, NS2B-NS3 and NS4B-NS5

(Fig. 1B), since most mutations described in previous reports

occurred in those regions [34].

In addition to focusing on the genetic stability of DEN-4 2A and

DEN-4 2AD30 viruses following passages in Vero and MRC-5

cells, we also studied associated neurovirulence, neutralizing

antibodies, and DEN-induced hemorrhaging in mice. Specifically,

DEN neurovirulence attenuation was evaluated in newborn mice

and DEN-induced hemorrhaging was examined in an immuno-

competent mouse model [36,37]. Target mutagenesis on DEN4-

2A virus E and NS2B proteins were used to confirm the amino

acid mutations correlated with mouse hemorrhaging severity. We

found additional evidence indicating that (a) the genetic stability of

live-attenuated DEN candidate vaccine viruses varies according to

the cell line used for vaccine production, and (b) DEN-induced

hemorrhaging was much more severe following passages in Vero

cells compared to passages in MRC-5 cells.

Results

C-prM-E gene mutations resulting from Vero and MRC-5
cell passages

Mutations in the C-prM-E genes of DEN-4 2A viruses resulting

from passages in Vero and MRC-5 cells are shown in Table 1. We

found 7 nucleotide mutations in the C and E genes following Vero

cell passage P4, resulting in 1 amino acid mutation in the C protein

(C-F37L) and 5 in the E protein (E-R99K, E-T138P, E-G427R, E-

V439F, E-V463L). For viruses obtained following Vero cell passage

P10, we found 8 nucleotide mutations in the DEN-4 2A viruses of C-

prM-E genes, resulting in 1 amino acid mutation in the C protein (C-

F37L) and 6 in the E protein (E-R99K, E-T138P, E-G328S, E-G427R,

E-Q438H, and E-V463L). Amino acid mutations at E-G328S and E-

Q438H were only detected following P10, with respective mutation

Figure 1. Experiment design. (A) Preparatory passages were performed for 10 cloned DNA-derived DEN-4 2A and 2AD30 strain virus plaque-
purified clones. Both strains were passaged 10 times each in Vero and MRC-5 cell lines. Virus clones were prepared from discontiguous passages P4
and P10. (B) The dengue virus genome and the sequenced gene fragments C-prM-E, NS2B-NS3 and NS4B-NS5 were used in this study.
doi:10.1371/journal.pone.0025800.g001

Dengue Viruses Passaged in Vero and MRC-5 Cells
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frequencies of 50% and 100%. The E gene amino acid mutation at

E-V439F was only detected following Vero cell passage P4. In

contrast, following DEN-4 2A passage P4 in MRC-5 cells we found 3

nucleotide mutations in C-prM-E genes (corresponding to amino acid

changes E-E345K, E-N362K, and E-G427R), and 3 mutations

following passage P10 (E-E345K, E-N362K, and E-Q438H).

Whereas no C-prM-E gene mutations were identified from

DEN-4 2AD30 sequencing following Vero cell passage P4

(Table 1), 4 (indicating 5 nucleotide changes) were identified

following passage P10 (E-R410G, E-V443A, E-T468K, and E-

T491P). No C-prM-E mutations for the DEN-4 2AD30 virus were

found following MRC-5 cell passages P4 or P10 (Table 1). The

reduced number of DEN-4 2AD30 virus mutations yielded only 4

amino acid changes following Vero cell passage P10; no DEN-4

2AD30 virus mutations were found following Vero cell passage P4

or MRC-5 cell passages P4 and P10.

NS2B-NS3 and NS4B-NS5 gene mutations during Vero
and MRC-5 cell passages

DEN-4 2A virus mutations in full-length NS2B-NS3 and NS4B-

NS5 genes are shown in Table 2. The P4 Vero cell passage of the

DEN-4 2A virus produced only 1 nucleotide change in NS2B-NS3

genes (amino acid mutation NS3-R418T); in contrast, 5 nucleotide

changes in NS2B-NS3 genes resulted from Vero cell passage P10 of

the same virus (mutations NS2B-G69R, NS2B-Q78H, NS2B-G108R,

NS2B-A113T, and NS3-R418T). For the DEN-4 2A virus, no

nucleotide mutations were found following MRC-5 cell passages P4

or P10 (Table 2); furthermore, no nucleotide mutations were

observed in NS4B-NS5 genes following DEN-4 2A virus passages

P4 or P10 in either Vero or MRC-5 cells (Table 2).

For DEN-4 2AD30, Vero cell passage P4 did not produce any

sequence mutations in NS2B-NS3 genes, but mutations at NS2B-

P31T, NS2B-E54D, NS2B-S71R, NS2B-E75Q, and NS2B-V76 M

were noted following P10 (mutation frequencies 100%, 100%,

30%, 100%, and 60%, respectively) (Table 2). No nucleotide or

amino acid mutations were observed in the NS3 gene of the DEN-

4 2AD30 virus following Vero cell passage P10, nor in NS2B-NS3

genes following MRC-5 cell passage P4 or P10 (Table 2). Finally,

results from sequencing the NS4B-NS5 region indicate no

nucleotide mutations for either DEN-4 2A or DEN-4 2AD30

following Vero or MRC-5 cell passages.

DEN-4 2A and DEN-4 2AD30 virus titers following Vero
and MRC-5 cell passages

We also investigated the effects of Vero and MRC-5 cell

passages on DEN-4 2A and DEN-2AD30 virus growth. Virus titer

Table 1. Nucleotide (nt) and amino acid (aa) changes in C-prM-E fragments from plaque-purified Vero- and MRC-5-passaged DNA-
derived DEN-4 2A and DEN-4 2AD30 virus clones.

Virus Cell Passage Number Virus Gene Segment Mutation

Frequency
Plaque-purified
Clone Number

Nucleotide
Position

Amino Acid
Position

DEN-4 2A Vero 4 C 2/10 1, 8 T 210 C F 37 L

DEN-4 2A Vero 4 E 4/10 1, 3, 5, 8 G 296 A R 99 K

DEN-4 2A Vero 4 E 2/10 4, 9 A 412 C T 138 P

DEN-4 2A Vero 4 E 7/10 1, 2, 3, 6, 7, 9, 10 T 1050 A Silent

DEN-4 2A Vero 4 E 3/10 4, 8, 10 G 1279 C G 427 R

DEN-4 2A Vero 4 E 1/10 9 G 1315 T V 439 F

DEN-4 2A Vero 4 E 3/10 2, 5, 7 G 1387 T V 463 L

DEN-4 2A Vero 10 C 3/10 1, 3, 8 T 210 C F 37 L

DEN-4 2A Vero 10 E 10/10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 G 296 A R 99 K

DEN-4 2A Vero 10 E 8/10 2, 3, 4, 5, 7, 8, 9,10 A 412 C T 138 P

DEN-4 2A Vero 10 E 5/10 3, 4, 7, 8, 9 G 982 A G 328 S

DEN-4 2A Vero 10 E 8/10 1, 2, 3, 5, 6, 7, 9, 10 T 1050 A Silent

DEN-4 2A Vero 10 E 5/10 2, 4, 5, 8, 10 G 1279 C G 427 R

DEN-4 2A Vero 10 E 10/10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 G 1314 T Q 438 H

DEN-4 2A Vero 10 E 9/10 1, 2, 3, 5, 6, 7, 8, 9, 10 G 1387 T V 463 L

DEN-4 2A MRC-5 4 E 9/10 1, 2, 3, 4, 5, , 7, 8, 9, 10 G 1033 A E 345 K

DEN-4 2A MRC-5 4 E 4/10 2, 5, 8, 10 C 1086 A N 362 K

DEN-4 2A MRC-5 4 E 2/10 3, 7 G 1279 A G 427 R

DEN-4 2A MRC-5 10 E 10/10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 G 1033 A E 345 K

DEN-4 2A MRC-5 10 E 3/10 5, 8, 10 C 1086 A N 362 K

DEN-4 2A MRC-5 10 E 1/10 3 G 1314 C Q 438 H

DEN-4 2AD30 Vero 10 E 2/10 1, 8 C 2169 G R 410 G

DEN-4 2AD30 Vero 10 E 8/10 1, 2, 5, 6, 7, 8, 9, 10 T 2231A Silent

DEN-4 2AD30 Vero 10 E 2/10 1, 8 T 2266 C V 443 A

DEN-4 2AD30 Vero 10 E 7/10 1, 2, 6, 7, 8, 9, 10 C 2341 A T 468 K

DEN-4 2AD30 Vero 10 E 4/10 1, 5, 7, 8 A 2370 C T 491 P

doi:10.1371/journal.pone.0025800.t001

Dengue Viruses Passaged in Vero and MRC-5 Cells
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data (measured at 8 dpi) for DEN-4 2A and DEN-4 2A D30

following P4 and P10 passages in both cell types are shown in

Figures 2A and 2B. The data indicate cell growth following DEN

virus infection at a MOI of 0.01, with no significant differences

between the two viruses following Vero cell passages P4 and P10.

Also for both viruses, a slight increase in virus titers was found for

MRC-5 cell passage P10 compared to P4. Titers of both viruses

following Vero cell passages were between 17-fold to 25-fold

higher compared to titers measured after MRC-5 cell passages.

DEN-4 2A and DEN-4 2AD30 virus neurovirulence
following Vero and MRC-5 cells passages

To further evaluate DEN-4 2A and DEN-4 2AD30 neurovir-

ulence following Vero and MRC-5 cell passages, we intracranially

inoculated a group of newborn ICR mice with 104 PFU/30 ml of

either virus stock. Survival data are shown in Figures 3A and 3B.

As shown, higher neurovirulence was observed in both the DEN-4

2A and the DEN-4 2AD30 viruses following passages P2, P4 and

P10 in Vero cells. In contrast, a significant less extent of mouse

neurovirulence was observed in the DEN-4 2A virus following

passage P2, P4, and P10 in MRC-5 cells. The DEN-4 2AD30

viruses passaged in MRC-5 cells did not show any neurovirulence.

Overall, neurovirulence for DEN-4 2A and DEN-4 2AD30 viruses

increased significantly following passages in Vero cells compared

to passages in MRC-5 cells.

DEN-induced mouse hemorrhage pathogenicity
following DEN-4 2A and DEN-4 2AD30 passages in Vero
and MRC-5 cells

We examined DEN-induced hemorrhaging in an immunocom-

petent mouse model [36,37]. C57BL/6 mice were injected

intradermally with DEN-4 2A or DEN-4 2AD30 viruses that

had been passaged in Vero or MRC-5 cells (P4 and P10). Data

from two independent experiments are shown in Table 3. DEN-

induced hemorrhaging was observed in epidermal and subcuta-

neous tissues at day 3 (Fig. 4). Between Vero cell passages P4 and

P10, average hemorrhage rate (6 S.D.) increased from 58611%

to 100% for the DEN-4 2A virus, and from 0% to 4567% for the

DEN-4 2AD30 virus. In contrast, between MRC-5 cell passages

P4 and P10, the average rate changed from 58611% to 33646%

for DEN-4 2A, and 17623% to 2363% for DEN-4 2AD30. In

other words, more severe DEN-induced hemorrhaging occurred

following DEN-4 2A and DEN-4 2AD30 passages in Vero cells

compared to the same passages in MRC-5 cells.

Table 2. Nucleotide (nt) and amino acid (aa) changes in NS2B-NS3 fragments of plaque-purified Vero- and MRC-5-passaged DNA-
derived DEN-4 2A and DEN-4 2AD30 virus clones.

Virus Cell Passage Number Virus Gene Segment Mutation

Frequency
Plaque-purified
Clone Number

Nucleotide
Position

Amino Acid
Position

DEN-4 2A Vero 4 NS3 2/10 3, 8 G 5776 C R 418 T

DEN-4 2A Vero 10 NS2B 5/10 2, 4, 5, 6, 9 G 4338 C G 69 R

DEN-4 2A Vero 10 NS2B 10/10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 G 4367 T Q 78 H

DEN-4 2A Vero 10 NS2B 7/10 1, 3, 4, 7, 8, 9, 10 G 4455 C G 108 R

DEN-4 2A Vero 10 NS2B 3/10 2, 5, 6 G 4470 A A 113 T

DEN-4 2A Vero 10 NS3 5/10 3, 4, 5, 8, 10 G 5776 C R 418 T

DEN-4 2AD30 Vero 10 NS2B 10/10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 C 4224 A P 31 T

DEN-4 2AD30 Vero 10 NS2B 10/10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 G 4295 C E 54 D

DEN-4 2AD30 Vero 10 NS2B 3/10 1, 5, 8 A 4344 C S 71 R

DEN-4 2AD30 Vero 10 NS2B 10/10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 G 4356 C E 75 Q

DEN-4 2AD30 Vero 10 NS2B 6/10 1, 2, 3, 5, 8, 9 G 4359 A V 76 M

doi:10.1371/journal.pone.0025800.t002

Figure 2. Virus growth properties in Vero and MRC-5 cells. Shown are the highest virus titers following passages P4 and P10 in Vero and MRC-
5 cells for (A) DEN-4 2A (B) DEN-4 2AD30.
doi:10.1371/journal.pone.0025800.g002

Dengue Viruses Passaged in Vero and MRC-5 Cells
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DEN-induced mouse hemorrhage pathogenicity by DEN-
4 2A mutant of E-T138P, E-G328S, E-Q438H, E-V463L, NS2B-
G69R, NS2B-Q78H, NS2B-G108R, or NS2B-A113T

Target mutagenesis by using DEN-4 2A infectious clone was

finally conducted to examine the mutations of E-T138P, E-G328S,

E-Q438H, E-V463L, NS2B-G69R, NS2B-Q78H, NS2B-G108R, and

NS2B-A113T on DEN-induced mouse hemorrhage pathogenicity.

Data are shown in Table 4 and Table 5 for E and NS2B mutants,

respectively. DEN-induced hemorrhaging by DEN-4 2A mutant

viruses was observed in epidermal and subcutaneous tissues at day

3 compared to wild type DEN-4 2A virus. Recombinant DEN-4

2A with single mutations at E-Q438H, E-V463L, NS2B-Q78H, and

NS2B-A113T had increased severity of DEN-induced mouse

hemorrhaging as compared to the wild-type DEN-4 2A viruses.

Collectively, our data suggest that the E-Q438H, E V463L, NS2B-

Q78H and NS2B-A113T mutations, which were acquired from

DEN-4 2A virus passaged in Vero cells, enhanced hemorrhaging

in the immunocompetent mouse model, irrespective of other E

Figure 3. Neurovirulence assay results for newborn mice injected with cloned DNA-derived DEN-4 2A and DEN-4 2AD30 virus
strains following passages in Vero and MRC-5 cells. Shown are survival rates for newborn mice infected with (A) DEN-4 2A and (B) DEN-4
2AD30.
doi:10.1371/journal.pone.0025800.g003

Dengue Viruses Passaged in Vero and MRC-5 Cells
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Table 3. Hemorrhage assessment in immunocompetent C57BL/6 mice of passage 4 and 10, DEN-4 2A and DEN-4 2AD30 in Vero
cells and MRC-5 cells.

Virus Strain Cell Line Passage Number Mouse No. DEN-induced hemorrhaging in mice

Skin Subcutaneous
% Hemorrhage
Development

Average % of Mice with
Hemorrhage Development

DEN-4 2A Vero 4 1-1 2 2 66% 58611%

4 1-2 ++ +

4 1-3 +++ ++

4 2-1 2 2 50%

4 2-2 2 2

4 2-3 + 2

4 2-4 + 2

10 1-1 ++ + 100% 10060%

10 1-2 ++ +

10 2-1 2 ++ 100%

10 2-2 ++ +

10 2-3 + 2

10 2-4 2 +

10 2-5 ++ +

MRC-5 4 1-1 2 2 66% 58611%

4 1-2 ++ +

4 1-3 ++ +

4 2-1 + 2 50%

4 2-2 2 2

4 2-3 2 2

4 2-4 + 2

Virus Strain Cell Line Passage Number Mouse No. DEN-induced hemorrhaging in mice

Skin Subcutaneous
% Hemorrhage
Development

Average % of Mice with
Hemorrhage Development

DEN-4 2A MRC-5 10 1-1 2 ++ 66% 33646%

10 1-2 2 ++

10 1-3 2 2

10 2-1 2 2 0%

10 2-2 2 2

DEN-4
2AD30

Vero 4 1-1 2 2 0% 060%

4 1-2 2 2

4 1-3 2 2

4 2-1 2 2 0%

4 2-2 2 2

4 2-3 2 2

4 2-4 2 2

10 1-1 + 2 40% 4567%

10 1-2 2 2

10 1-3 2 2

10 1-4 + +

10 1-5 2 2

10 2-1 2 + 50%

10 2-2 2 2

10 2-3 2 2

Dengue Viruses Passaged in Vero and MRC-5 Cells
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and NS2B mutations acquired during DEN-4 2A virus passaged in

Vero cells.

Discussion

Since live-attenuated vaccines require limited seed virus passage

levels to prevent unsafe reversion, seed viruses must maintain their

genetic stability during cell passages as part of the vaccine

manufacturing process. Based on 74% of DEN genome sequenc-

ing (including all C-prM-E structure protein genes and full-length

NS2B, NS3, NS4B, and NS5 genes), our results indicate stronger

genetic stability for the infectious cDNA clone-derived viruses

DEN-4 2A or DEN-4 2AD30 following passages in MRC-5 cells

compared to passages in Vero cells. This corresponds to

significantly lower DENpol error rates when the DEN virus is

used for genome replication.

Pugachev et al.’s (2004) method for analyzing plaque-purified

clones following different cell passages provides a systematic means

for qualitatively and quantitatively examining the genetic stability

of vaccine viruses [38]. In an earlier study we examined DEN-4

2A virus mutations following Vero and MRC-5 cell passages by

sequencing multiple clones of DNA fragments synthesized from

DEN-4 2A RNA by RT-PCR [34]. This approach may not

accurately identify viable viruses with identical mutations by

sequencing multiple virus stock clones, but we found that plaque

purification supports the selection of viable mutant viruses for

sequencing multiple virus clones. We found that the number of

mutations detected by plaque-purified clone virus sequencing was

generally larger than the number detected by sequencing multiple

virus clones. In our previous study, the sequencing of multiple

DEN-4 2A virus clones supported the identification of mutations

occurring at E-G104C (70%), E-F108I (60%), E-G427R (20%), E-

V439F (10%), and E-V463L (10%) following passage P3 in Vero

cells [34]. In the present study, the sequencing of 10 plaque-

purified DEN-4 2A virus clones during passage P4 (equivalent to

P3 in our earlier work) in Vero cells resulted in the detection of

mutations at C-F37L (20%), E-R99K (40%), E-T138P (20%), E-

G427R (30%), E-V439F (10%), and E-V463L (30%). The differences

may be due to the low sensitivity associated with sequencing

multiple clones compared to mutations detected by sequencing

plaque-purified clones.

Differences in nucleic acid mutations detected after DEN-4 2A

and DEN-4 2AD30 passages P4 and P10 in Vero and MRC-5 cells

are shown in Tables 1 and 2. In our genetic stability analyses we

did not include mutations induced by SP6 RNA polymerase when

synthesizing RNA transcripts in vitro, or early stage mutations

from passages P1, P2, and P3. In a separate study we used direct

sequencing to analyze the full-length DEN genomes of (a) the

DEN-4 2A virus following passage P1 in Vero cells and (b) the

DEN-2AD30 virus following passage P2 in Vero cells; we observed

6 nucleotide changes in the former and 16 in the latter (data not

shown). If these mutations were mistakes resulting from the

introduction of SP6 RNA polymerase during a single round of

DNA-dependent RNA synthesis, then our error rates would have

been 5.6361024 per nucleotide copied for the DEN-4 2A

infectious clone (6 misincorporations per genomic RNA molecule

with a length of 10,649 nucleotides), and 1.561023 per copied

nucleotide for the DEN-4 2AD30 infectious clone (16 misincor-

porations per genomic RNA molecule with a length of 10,619

nucleotides). These results are comparable to the SP6 RNA

polymerase error rate of 1.3461024 per nucleotide reported by

Pugachev et al. [38]. To calculate estimated error rates for DEN

virus RNA polymerase in C-prM-E, NS2B-NS3 and NS4B-NS5

genes, we divided the number of DENpol mistakes by the number

of sequenced full genome equivalents, the estimated number of

RNA synthesis rounds during one plaque formation cycle, and the

Virus Strain Cell Line Passage Number Mouse No. DEN-induced hemorrhaging in mice

Skin Subcutaneous
% Hemorrhage
Development

Average % of Mice with
Hemorrhage Development

DEN-4
2AD30

MRC-5 4 1-1 2 2 33% 17623%

4 1-2 + 2

4 1-3 2 2

4 2-1 2 2 0%

4 2-2 2 2

4 2-3 2 2

4 2-4 2 2

10 1-1 2 2 20% 2363%

10 1-2 + 2

10 1-3 2 2

10 1-4 2 2

10 1-5 2 2

10 2-1 2 2 25%

10 2-2 + 2

10 2-3 2 2

10 2-4 2 2

Rates represent hemorrhage percentage in each independent experiment. A three-level bleeding scoring low (‘‘+’’), medium (‘‘++’’), high (‘‘+++’’), and no bleeding (‘‘2‘‘)
was used to indicate the severity of hemorrhaging between different experimental cases.
doi:10.1371/journal.pone.0025800.t003

Table 3. Cont.
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number of plaque purification steps for each clone [38]. As shown

in Table S1, we identified 37 and 28 DENpol mistakes in the

DEN-4 2A virus during Vero cell passages P4 and P10 for the C-

prM-E and NS2B-NS3 genes, respectively; in contrast, only 2 C-

prM-E and 0 NS2B-NS3 mistakes were found following MRC-5

cell passages P4 and P10. The estimated C-prM-E gene error rates

following DEN-4 2A Vero and MRC-5 cell passages were 1.05–

1.1661026 and 6.29–7.3061028 per copied nucleotide per

genomic RNA molecule (10,649 nt). Compared to MRC-5 cell

passages, the estimated C-prM-E gene error rate in the DEN-4 2A

virus increased 17.5-fold following Vero cell passages. Estimated

C-prM-E gene error rates for the DEN-4 2AD30 virus following

Vero and MRC-5 passages were 6.57–7.2661027 and 0 per

copied nucleotide, respectively. Regarding NS2B-NS3 gene

mutations during Vero cell passages, estimated error rates were

7.98–8.8161027 and 1.11–1.2361026 per copied nucleotide for

DEN-4 2A and DEN-4 2AD30 viruses, respectively. In all cases,

DENpol error rates for both viruses were significantly higher

following Vero cell passages compared to MRC-5 cell passages.

However, we can not rule out other cellular factors interacted with

viral factors and play a role in the selection of specific mutations.

The replication kinetics of DEN-4 2A and DEN-4 2AD30

viruses have been investigated in Vero and MRC-5 cells which are

now being used to develop several human vaccines [18]. The viral

yields of DEN-4 2A and DEN-4 2AD30 viruses produced in

MRC-5 cells on microcarriers (at P4 or P10) were approximately

10-fold lower compared to those in Vero cells with more amino

acid mutations during the , respectively (Table 2). One research

team that has introduced mutations into the 39-NTR of DEN

(using the DEN-4 2AD30 infectious cDNA clone for purposes of

attenuating vaccine candidates) describes the DEN-4 2AD30

cDNA clone as balancing between attenuation and immunoge-

nicity in a non-human primate model [11,15,21,35,39]. We used

newborn ICR mice to evaluate the attenuation of neurovirulence

of DEN-4 2A and DEN-4 2AD30 viruses following passages P2,

P4, and P10 in Vero or MRC-5 cells. In a previous study, Huang

et al. evaluated the neurovirulence of DEN-4 1036 virus (collected

from an Indonesian child with dengue fever) by injecting 104 PFU

of the virus intracranially into newborn ICR mice; average

survival time was 8.660.6 days [26]. Average survival times for

newborn ICR mice intracranially injected with passaged DEN-4

2A and DEN-4 2AD30 viruses were longer than that for DEN-4

1036-treated mice, indicating less neurovirulence for the DEN-4

2A and DEN-4 2AD30 viruses. Neurovirulence for DEN-4 2A and

DEN-4 2AD30 viruses increased significantly following passages in

Vero cells compared to passages in MRC-5 cells.

In addition to being the major determinant of tropism and

virulence, the DEN virus E protein is the primary target of

Figure 4. Hemorrhage assessment of immunocompetent C57BL/6 mice. DEN-4 2A viruses following passages in (A) Vero and (B) MRC-5 cells
and DEN-4 2AD30 viruses following passages in (C) Vero and (D) MRC-5 cells were intradermally injected with 46107 PFU DENV (in 0.4 ml) at four
sites on the upper back. To determine degree of hemorrhaging, mice were sacrificed at 3 days post-inoculation, and subcutaneous tissues in the
back, abdomen, axillary areas, and thorax were exposed.
doi:10.1371/journal.pone.0025800.g004
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neutralizing antibodies. The P10 Vero cell passages of the two

DEN-4 infectious clone viruses resulted in mutations at residues E-

R99K, E-T138P, E-G328S, E-G427R, E-Q438H, and E-V463L in the

DEN-4 2A virus, and residues E-R410G, E-V443A, E-T468K, and

E-T491P in the DEN-4 2AD30 virus. In contrast, the P10 MRC-5

cell passages produced mutations at residues E-E345K, E-N362K,

and E-Q438H of the DEN-4 2A virus only—no DEN-4 2AD30

virus mutations were observed. Our results using target mutagen-

esis at E-Q438H and E-V463L to generate mutant viruses had

increased severity of DEN-induced mouse hemorrhaging (Table 4).

The E-Q438H amino acid mutation, which is located in the second

helix domain (E-H2) of the E protein stem region, was detected

following passage P10 only (100% mutation frequency). The E-

V463L mutation in the DEN-4 2A virus resulting from the P10

Vero cell passage is located in the N-terminus of the first (E-T1)

helix of the E protein transmembrane domain (TMD), which also

contains an endoplasmic reticulum retention signal. Our results

indicate more severe DEN-induced hemorrhages in mice following

DEN-4 2A and DEN-4 2AD30 passages in Vero cells, but not

following passages in MRC-5 cells.

A cluster of NS2B mutations also appeared during Vero cell

passage P10 in both DEN-4 2A and DEN-4 2AD30 viruses

(Tables 3 and 4). Flavivirus-specified protease activity for cytosol

cleavages at dibasic sites in polyproteins requires both NS2B and

NS3 [40,41]. The dual-component NS2B-NS3 protease executes

most of this segmentation at the NS2A/NS2B, NS2B/NS3, NS3/

NS4A, and NS4B/NS5 junctions. The cleavage mediated by

NS2B and NS3 is an essential step in viral replication. The NS3 N-

terminus encodes the enzymatic core, while a hydrophilic core

within NS2B (NS2Bc) provides an essential cofactor function

[42,43]. NS2Bc unravels to increase the basal proteolytic activity

of NS3 protease by 3,300-fold to 7,600-fold [44]. It was reported

that the C-terminal region of NS2Bc (residues 67 to 95) plays a

substrate-binding role in the proteolytic activity of NS3 protease

[45]. The NS2B-G69R and NS2B-Q78H mutations from DEN-4

2A passages in Vero cells and the NS2B-S71R, NS2B-E75Q, and

NS2B-V76M mutations from DEN-2A D30 passages in Vero cells

are located in the C-terminal region of NS2Bc. Target

mutagenesis on NS2B mutant viruses also indicated that single

point mutation of NS2B-Q78H and NS2B-A113T imperatively

increased mouse hemorrhaging severity. As the NS2B is a cofactor

for NS3 protease activation, the mutation of NS2B-Q78H is

located in a hydrophobic stretch of NS2B residues Gly70-Glu81,

which located in a hydrophilic cofactor domain as previously

Table 4. Hemorrhage assessment in immunocompetent C57BL/6 mice of DEN-4 2A E gene single amino acid mutant viruses.

Virus Strain

Substitution
Mutation
Viruses Mouse No. Severity of Hemorrhage % of Hemorrhage Development

Skin Subcutaneous

DEN-4 2A Wild type 1-1 + 2 20%

1-2 2 2

1-3 2 2

1-4 2 2

1-5 2 2

E-T138P 2-1 ++ 2 40%

2-2 + 2

2-3 2 2

2-4 2 2

2-5 2 2

E-G328S 3-1 2 2 20%

3-2 2 2

3-3 2 2

3-4 2 2

3-5 + 2

E-Q438H 4-1 2 2 60%

4-2 2 +

4-3 2 2

4-4 + +

4-5 ++ 2

E-V463L 5-1 2 2 80%

5-2 +++ 2

5-3 + +

5-4 + 2

5-5 ++ 2

Rates represent hemorrhage percentage in each independent experiment. A three-level bleeding scoring low (‘‘+’’), medium (‘‘++’’), high (‘‘+++’’), and no bleeding (‘‘2‘‘)
was used to indicate the severity of hemorrhaging between different experimental cases.
doi:10.1371/journal.pone.0025800.t004
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reported for all flaviviruses [46]. The side chain group changed

from amide group to imidazole group, and the electricity change

from no charge to positive charge of NS2B-Q78H may change the

NS2B cofactor efficiency to affect the NS3 protease activity [47].

The NS2B-Q78H and NS2B-A113T had the same virus replication

patterns in human microvascular endothelial (HMEC-1) cells with

the wild type virus, and these mutations had no influence on

affecting the cell survival signaling or introduce cell death pathway

in the infected cells which then leads to hemorrhaging phenotypes

(data not shown). The relationship of the NS2B/NS3 protease

interactions contributed to DEN-induced hemorrhaging in mice is

still unknown. The virus-host cell mechanism underlying DHF is

not fully understood, and the relationship between amino acid

mutations acquired during Vero cell passage and enhanced DEN-

induced hemorrhages in mice may be important for understanding

DHF pathogenesis, as well as for the development of live–

attenuated dengue vaccines.

Materials and Methods

Cells and Media
Vero, Vero E6, and MRC-5 cells were obtained from the

Bioresource Collection and Research Center (BCRC) of the Food

Industrial Research and Development Institute, Hsinchu, Taiwan.

Vero cells (African green monkey kidney cells) were derived from

ATCC CCL-81 (BCRC number: 60013). Vero E6 cells (BCRC

number: 60476; ATCC CRL-1586), derived from VERO 76 cells

(ATCC CRL-1587), were cloned by the microtiter plate dilution

method. MRC-5 cells (human embryonal lung fibroblasts) were

derived from ATCC CCL-171 (BCRC number: 60023). Vero,

Vero E6, and MRC-5 cells were grown in Dulbecco’s Modified

Essential Medium (DMEM) (Invitrogen) supplemented with 10%

heat-inactivated fetal bovine serum (FBS) and 100 U/ml of

penicillin G sodium-streptomycin (Invitrogen). Vero and MRC-5

cells were also cultured in M-VSFM serum free medium (Biogrow)

with 100 U/ml of penicillin G sodium-streptomycin. No prior

adaptation in reduced serum concentrations was required for the

serum free cultures. Trypsin inhibitor (GIBCO) was used at 0.25%

for cell detachment to protect cell damage by trypsin treatment

under serum-free conditions.

Viruses
Stock viruses were prepared from the supernatants of infected

C6/36 cells grown in Hank’s MEM medium (GIBCO) plus

supplements. Plasmids of DEN-4 2A and its 39NCR deletion

Table 5. Hemorrhage assessment in immunocompetent C57BL/6 mice of DEN-4 2A NS2B gene single amino acid mutant viruses.

Virus Strain

Substitution
Mutation
Viruses Mouse No. Severity of Hemorrhage % of Hemorrhage Development

Skin Subcutaneous

DEN-4 2A Wild type 1-1 2 2 40%

1-2 + 2

1-3 + 2

1-4 2 2

1-5 2 2

NS2B-G69R 2-1 2 2 20%

2-2 ++ 2

2-3 2 2

2-4 2 2

2-5 2 2

NS2B-Q78H 3-1 2 2 60%

3-2 ++ +

3-3 + +

3-4 2 ++

3-5 2 2

NS2B-G108R 4-1 2 2 0%

4-2 2 2

4-3 2 2

4-4 2 2

4-5 2 2

NS2B-A113T 5-1 + 2 100%

5-2 ++ ++

5-3 ++ ++

5-4 + +

5-5 + +

Rates represent hemorrhage percentage in each independent experiment. A three-level bleeding scoring low (‘‘+’’), medium (‘‘++’’), high (‘‘+++’’), and no bleeding (‘‘2’’)
was used to indicate the severity of hemorrhaging between different experimental cases.
doi:10.1371/journal.pone.0025800.t005
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mutant DEN-4 2AD30 contained full-length genomic sequences.

Plasmids were linearized by cleavage with the Kpn I restriction

enzyme and added to a transcription reaction mixture (Promega)

containing m7G(59)ppp(59)G (Merck) for a cap addition at the

RNA 59 end. After incubation at 37uC for 1.5 h, the RNA product

was purified with TRIzol reagent (Invitrogen) according to the

manufacturer’s instructions. Prior to RNA transfection, subcon-

fluent Vero cells and MRC-5 cells in 6-well plates were rinsed

once with serum-free medium and covered with 0.3 ml of Opti-

MEM medium (Invitrogen) per well. The transfection mixture was

prepared by adding 6 ml of DMRIE-C reagent (Invitrogen) to 1 ml

of Opti-MEM medium prior to mixing with 10 mg of the RNA

product. This mixture was added directly to the cell monolayer.

After 18 h of incubation at 37uC, either DMEM+10% FBS or M-

VSFM medium was added to each well. Culture supernatants

were collected 8 days post-transfection. All virus stocks were stored

at 280uC until further analysis.

Virus titers were determined by plaque assays of a Vero E6 cell

line. To prepare high-DENV titers (up to 109 plaque-forming

units/ml [PFU/ml]), virus supernatant was concentrated by

centrifugation with a Centriplus device (10-kDa cutoff) (Amicon;

Millipore). To confirm a homogenous virus population, biological

clones of passage regimens were generated via single rounds of

plaque purification in Vero or MRC-5 cells. Medium 199 (Gibco)

containing 3% FBS was used for plaque purification in six-well

culture plates (agarose overlays with neutral red staining). Agarose

plugs were carefully removed to avoid disturbing the monolayers.

Each selected clone was propagated once in Vero or MRC-5 cells

to confirm viability.

Microcarrier cultures
Cytodex 1 microcarriers (Amersham Biosciences) were prepared

according to the manufacturer’s instructions. Briefly, microcarriers

were immersed in PBS for at least 3 h and autoclaved for 15 min

before each experiment. Autoclaved microcarriers were washed

twice with culture medium. Bellco spinner flasks were used in the

experiments at a working volume of 50 ml. Flasks were stirred at

60 rpm and incubated with 5% CO2 at 37uC. Cells were detached

from tissue culture flasks using trypsin-EDTA, and transferred to

flasks containing 2 g/l Cytodex 1 microcarriers. Initial cell

densities were 36105 cells/ml in serum-containing cultures, and

66105 cells/ml in serum-free cultures. Cell cultures were infected

3 days post-inoculation; 70% of the medium was replaced with

fresh medium containing virus inoculum. Inoculation continued

without further medium replacement or supplement addition.

Virus titers were determined after each passage, with the

subsequent culture infected at 0.01 MOI. Microcarrier cultures

were used for the P4 to P10 passages from which we gathered

mutation data.

Cell density and virus titer determination
Numbers of cells attached to microcarriers were determined by

nuclei staining. Briefly, a 1 ml sample of microcarrier culture was

centrifuged at 200 g for 5 min to remove supernatant. Pellets were

treated with 1 ml 0.1 M citric acid containing 0.1% (w/v) crystal

violet and incubated at 37uC for 1 h. Released nuclei were

counted in a hemacytometer. Virus titer was determined by 10-

fold serial dilutions of culture supernatant in duplicate Vero-E6

cell monolayer infections in 6-well plates. After incubation for 1 h

at 37uC, 4 ml of medium containing 16 EMEM (Invitrogen),

1.1% methylcellulose, and 100 U/ml of penicillin G sodium-

streptomycin were added to each well. Virus plaques were stained

with 1% crystal violet dye 6 days following incubation. Infectivity

titers were determined in PFU/ml.

Plaque purification
Monolayer Vero cells individually infected with tenfold serial

dilutions of infectious clone cDNA-derived DEN-4 2A-Vero-P4,

DEN-4 2A-Vero-P10, DEN-4 2A-MRC-5-P4, DEN-4 2A-MRC-

5-P10, DEN-4 2AD30-Vero-P4, DEN-4 2AD30-Vero-P10, DEN-

4 2AD30-MRC-5-P4, and DEN-4 2AD30-MRC-5-P10 harvested

from passaged cell lines were cultured in 4 ml of Eagle MEM

containing 2.5% low-melting agar. Ten variant plaques derived

from each sample were collected from monolayer Vero cells 7 days

post-infection. At 5 days post-infection, cells were dyed with Eagle

MEM (2 ml) containing 2.5% low-melting agar and 16 neutral

red solution. These samples were used to infect Vero and MRC-5

cells. Amplified plaque-purified clones were used to sequence and

analyze mutation sites.

Plaque-purified clone sequencing
Three DNA fragments were synthesized from DEN-4 RNA by

RT-PCR using PlatinumH Pfx DNA polymerase and three forward

and reverse primer pairs: (i) W01F/W02R, (ii) W16F/W30R, and

(iii) W20F/W08R. The DNA products were purified using a Gel/

PCR DNA fragment extraction kit (Geneaid, Taiwan). The

nucleotide sequences of each fragment were determined by

Mission Biotech Inc., Taipei, Taiwan. Lasergene software (v.

6.0) was used to align sequences in the W01F/W02R (2,612-bp),

W16F/W30R (3,009-bp), and W20F/W08R regions (4,283-bp) to

generate a consensus sequence for each fragment.

DEN genomic mutation sequencing following Vero and
MRC-5 cell passages

DEN-4 infectious clone-derived viruses were generated by the

transfection of in vitro RNA transcripts synthesized using SP6

RNA polymerase with two infectious full-length cDNA clones of

DEN-4 2A and DEN-4 2AD30 passaged in Vero and MRC-5

cells. Ten consecutive passages (P1–P10) were investigated to

determine the genetic stability of viruses propagated by the two

cell types. To analyze genetic mutations that occurred during cell

passages, ten plaque-purified clones collected from virus stocks

after passages P4 and P10 were subjected to the genetic

sequencing of three DEN genomic fragments (C-prM-E, NS2B-

NS3 and NS4B-NS5), based on the rationale that in a previous

study most mutations occurred in these regions [34]. As described

by Pugachev et al. [38] for four chimeric yellow fever-DEN virus

vaccine candidates, it is possible to determine the RNA

polymerase fidelity of two infectious DEN-4 viruses propagated

in Vero and MRC-5 cells.

Estimated dengue virus RNA polymerase error rates
Estimated error rates for DEN virus RNA polymerase in C-

prM-E, NS2B-NS3, and NS4B-NS5 genes were calculated by

dividing the number of DENpol mistakes by the number of

sequenced full genome equivalents, the estimated number of

rounds of RNA synthesis during one plaque formation, and the

number of plaque purification steps for each clone, as previously

described [38]. The numbers of sequenced full genome equivalents

to the three genomic fragments were 2.2 kb for C-prM-E, 2.2 kb

for NS2B-NS3, and 3.4 kb for NS4B-NS5. As DEN4-2A and

DEN4-2AD30 virus growth reached peak titers of ,107 PFU/ml

in Vero cells and ,106 PFU/ml in MRC-5 cells, a plaque pick of

approximately 500 ml resulted in ,56106 infectious particles

being produced in Vero cells and ,56105 infectious particles

being produced in MRC-5 cells. Assuming that 100 to 1,000 times

additional RNA molecules are synthesized during flavivirus

replication [38], the estimated numbers of RNA synthesis rounds

Dengue Viruses Passaged in Vero and MRC-5 Cells

PLoS ONE | www.plosone.org 11 October 2011 | Volume 6 | Issue 10 | e25800



for a single plaque formation are 29–32 in Vero cells and 25–29 in

MRC-5 cells.

Target mutagenesis, construction of DEN-4 2A E-T138P, E-
G328S, E-Q438H, E-V463L, NS2B-G69R, NS2B-Q78H, NS2B-
G108R, and NS2B-A113T infectious cDNA clones, and
recovery of mutant viruses

The infectious clones DEN-4 2A, which contain infectious

DENV cDNA corresponding to the anti-genome of the DENV-4

vaccine candidate strain 814669, have been described elsewhere

[21]. The clone-derived virus, DEN-4 2A, exhibits the same

phenotypes as the DENV-4 vaccine candidate strain 814669 virus

and was used as wt control. Target mutagenesis generating the

mutant cDNA clones were performed by using overlapped PCR

method. To construct DEN-4 2A E-T138P infectious cDNA

clones, PCR fragments containing corresponding mutations were

amplified by two rounds of PCR reactions. The first round was

done by using primer pairs HpaI-f : 59-TGATTGGATTCAG-

GAAGGAG-39 and T138P-r: 59-ACAACCACTGGGTATT-

CAAG-39, and T138P-f: 59-CTTGAATACCCAGTGGTTGT-

39(this changed E gene amino acid no. 138 from Thr to Pro; from

ACA to CCA) and NsiI-r 59-AGTCCACTTCTGTGGCTCCA-

39 for construction of DEN-4 2A E-T138P. The second round was

done by using the same primer pairs HpaI-f : 59-TGATTG-

GATTCAGGAAGGAG-39 and NsiI-r 59-AGTCCACTTCT-

GTGGCTCCA-39. The 1,412 bp HpaI-NsiI PCR fragments were

cloned into the pJET1.2/blunt cloning vector (Fermentas Life

Sciences Corp.) for amplification. A 1,412 bp region flanked by

HpaI and NsiI restriction enzyme sites in DEN-4 2A infectious

clone was replaced with HpaI-NsiI fragment derived from

confirmed clones, which contained E-T138P mutation in DEN-4

2A infectious clones. To construct DEN-4 2A E-G328S, E-Q438H,

E-V463L, infectious cDNA clones, PCR fragments containing

corresponding mutations were amplified by two rounds of PCR

reactions. The first round was done by using primer pairs NsiI-f :

59-TTTAAGGTTCCTCATGCCAAG-39 and G328S-r: 59-

GCTCCAGCACTTTCATACTT-39, and G328S-f: 59-CAAG-

TATGAAAGTGCTGGAGC-39(this changed E gene amino acid

no. 328 from Gly to Ser; from GGT to AGT) and StuI-r 59-

CAACATGATGAGGGCTCGTA-39 for construction of DEN-4

2A E-G328S; primer pairs NsiI-f : 59-TTTAAGGTTCCTCA-

TGCCAAG-39 and Q438H-r: 59-CCAAAAACGTGGTGCACA-

GC-39, and Q438H-f: 59- GCTGTGCACCACGTTTTTGG-

39(this changed E gene amino acid no. 438 from Gln to His;

from CAG toCAC) and StuI-r 59-CAACATGATGAGGGC-

TCGTA-39 for construction of DEN-4 2A E- Q438H; primer

pairs NsiI-f : 59-TTTAAGGTTCCTCATGCCAAG-39 and

V463L-r: 59-ATCCACAACAGTAAGAACCC-39, and V463L-f:

59-GGGTTCTTACTGTTGTGGAT-39(this changed E gene

amino acid no. 463 from Val to Leu; from GTG toCTG) and

StuI-r 59-CAACATGATGAGGGCTCGTA-39 for construction of

DEN-4 2A E- V463L. The second round was done by using the

same primer pairs NsiI-f : 59-TTTAAGGTTCCTCATGCCA-

AG-39 and StuI-r 59-CAACATGATGAGGGCTCGTA-39. The

2,003 bp NsiI - StuI PCR fragments were cloned into the pJET1.2/

blunt cloning vector (Fermentas Life Sciences Corp.) for

amplification. A 1,412 bp region flanked by HpaI and NsiI

restriction enzyme sites in DEN-4 2A infectious clone was

replaced with HpaI-NsiI fragment derived from confirmed clones,

which contained E-T138P mutation in DEN-4 2A infectious clones.

To construct DEN-4 2A NS2B-G69R, NS2B-Q78H, NS2B-G108R,

and NS2B-A113T infectious cDNA clones, PCR fragments

containing corresponding mutations were amplified by two rounds

of PCR reactions. The first round was done by using primer pairs

StuI-f : 59-CACTCTTTGTGCTATCATCT-39 and G69R-r: 59-

GGCTTGAGCGTGTTATGTC -39, and G69R-f: 59-GACA-

TAACACGCTCAAGCC-39(this changed NS2B gene amino acid

no. 69 from Gly to Arg; from GGC to CGC) and BstBI-r 59-

CATTATAGTTAATCTTTTCTTTC-39 for construction of

DEN-4 2A NS2B-G69R; primer pairs StuI-f : 59-CACTCT-

TTGTGCTATCATCT-39 and Q78H-r: 59-TCTTCATCATG-

CTTCACTTC-39, and Q78H-f: 59-GAAGTGAAGCATGATG-

AAGA-39(this changed NS2B gene amino acid no. 78 from Gln to

His; fromCAG to CAT) and BstBI-r 59- CATTATAGTTAAT-

CTTTTCTTTC-39 for construction of DEN-4 2A NS2B-Q78H;

and primer pairs StuI-f : 59-CACTCTTTGTGCTATCATCT-39

and G108R -r: 59- GGGTAGAGACGTGACACTG-39, and

G108R -f: 59-CAGTGTCACGTCTCTACCC-39(this changed

NS2B gene amino acid no. 108 from Gly to Arg; fromGGT

toCGT) and BstBI-r 59- CATTATAGTTAATCTTTTCTTTC-

39 for construction of DEN-4 2A NS2B- G108R; and primer pairs

StuI-f : 59-CACTCTTTGTGCTATCATCT-39 and A113T-r: 59-

TGGAATTGTCAAGGGGTAG-39, and A113T-f: 59-CTACC-

CCTTGACAATTCCA-39(this changed NS2B gene amino acid

no. 113 from Ala to Thr; fromGCA toACA) and BstBI-r 59-

CATTATAGTTAATCTTTTCTTTC-39 for construction of

DEN-4 2A NS2B- A113T. The infectious cDNA clones of parental

virus DEN-4 2A was used as the template in PCR reactions. The

second round was done by using the same primer pairs StuI-f : 59-

CACTCTTTGTGCTATCATCT-39 and BstBI-r 59- CATTA-

TAGTTAATCTTTTCTTTC-39. The 1,503 bp StuI- BstBI PCR

fragments were cloned into the pJET1.2/blunt cloning vector

(Fermentas Life Sciences Corp.) for amplification. To introduce

changes at NS2B protein, a 1,453 bp region flanked by StuI and

BstBI restriction enzyme sites in DEN-4 2A infectious clone was

replaced with StuI-BstBI fragments derived from confirmed clones,

which contained NS2B-G69R, NS2B-Q78H, NS2B-G108R, or

NS2B-A113T mutations in DEN-4 2A infectious clones. The

mutant DEN-4 2A infectious clones were confirmed by sequencing

analysis. The mutant plasmids were first linearized by cleavage

with restriction enzyme KpnI and then added to a transcription

reaction mixture, transcribed using SP6 RNA polymerase within

the RiboMAXTM large scale RNA production system (Promega

Corp.). Full-length RNA transcripts were further capped with

m7G(59)ppp(59)G at the RNA 59-end by using Script Cap Capping

enzyme (EPICENTRE Corp.). After incubation at 37uC for

1 hour, the RNA product was purified with TRIzol LS reagent

(Invitrogen Corp.) according to manufacturer’s instructions. Prior

to RNA transfection, subconfluent Vero cells and MRC-5 cells in

a 6-well plate were rinsed once with serum-free medium and then

covered with 0.3 ml of DMEM medium per well. The transfection

mixture was prepared by adding 4 ml of DMRIE-C reagent

(Invitrogen) to 1 ml of DMEM, then mixing with 10 mg of the

RNA product. The transfection mixture was added directly to

cell monolayer. After 18 hours incubation at 37uC, either

DMEM+10% FBS or M-VSFM medium were added to the well.

Eight days after transfection, culture supernatants were collected.

All virus stocks were stored at 280uC freezer for further analysis.

The virus titer was then determined by plaque assay on a Vero-E6

cell line. To prepare high titers of DENV, virus supernatant was

concentrated with a Centriplus device (10-kDa cutoff) (Amicon;

Millipore) by centrifugation before the plaque assay. The virus

titer could reach 109 PFU/ml after concentration. The inoculum

was prepared by diluting virus stocks in Hank’s balanced salt

solution (Invitrogen) containing 0.4% bovine serum albumin

fraction V (Gibco) (HBSS-0.4% BSA fraction V) immediately

before inoculation.
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Mouse studies
All mice were housed at the National Tsing Hua University

barrier facility, and cared for according to protocols approved by

the university’s Institutional Animal Care and Use Committee

(Permit Number: 09734). We performed each neurovirulence and

in vivo hemorrhage experiment at least two times.

Neurovirulence in suckling mice
Litters of newborn (less than 24 hrs) outbred white ICR mice

(BioLASCO Taiwan Co., Ltd) were inoculated intracranially with

30 ml of mock diluent or diluent containing 104 PFU of DEN-4

2A-Vero-P4, DEN-4 2A-MRC-5-P4, DEN-4 2A -Vero-P10,

DEN-4 2A-MRC-5-P10, DEN-4 2AD30-Vero-P4, DEN-4

2AD30-MRC-5-P4, DEN-4 2AD30-Vero-P10, or DEN-4 2AD30-

MRC-5-P10 as described previously [26,48]. HBSS-0.4% BSA

fraction V (GIBCO) was used as a diluent. Each group consisted of

at least 10 newborn mice per treatment. Mice were observed for

18 days. We collected data on moribund status, paralysis, and

mortality.

Dengue virus-induced hemorrhaging mouse model
Immunocompetent C57BL/6 mice were obtained from the

Jackson Laboratory (Bar Harbor, ME) and bred at the Laboratory

Animal Center of the National Taiwan University College of

Medicine. All mice were housed in sterile cages fitted with filtered

cage tops and fed sterilized food and water. At 4–5 weeks of age,

mice were intradermally inoculated with 46107 PFU DENV (in

0.4 ml of PBS) at four sites on the upper back. Control mice were

given PBS and culture medium in the same manner. Mice were

sacrificed 3 days post-infection. Subcutaneous tissues in the back,

abdomen, and axillary areas and thorax were exposed to observe

hemorrhaging.
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