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Abstract

Activating transcription factor 3 (ATF3), which is encoded by an adaptive-response gene induced by various stimuli, plays an
important role in the cardiovascular system. However, the effect of ATF3 on cardiac hypertrophy induced by a pathological
stimulus has not been determined. Here, we investigated the effects of ATF3 deficiency on cardiac hypertrophy using in
vitro and in vivo models. Aortic banding (AB) was performed to induce cardiac hypertrophy in mice. Cardiac hypertrophy
was estimated by echocardiographic and hemodynamic measurements and by pathological and molecular analysis. ATF3
deficiency promoted cardiac hypertrophy, dysfunction and fibrosis after 4 weeks of AB compared to the wild type (WT)
mice. Furthermore, enhanced activation of the MEK-ERK1/2 and JNK pathways was found in ATF3-knockout (KO) mice
compared to WT mice. In vitro studies performed in cultured neonatal mouse cardiomyocytes confirmed that ATF3
deficiency promotes cardiomyocyte hypertrophy induced by angiotensin II, which was associated with the amplification of
MEK-ERK1/2 and JNK signaling. Our results suggested that ATF3 plays a crucial role in the development of cardiac
hypertrophy via negative regulation of the MEK-ERK1/2 and JNK pathways.

Citation: Zhou H, Shen D-F, Bian Z-Y, Zong J, Deng W, et al. (2011) Activating Transcription Factor 3 Deficiency Promotes Cardiac Hypertrophy, Dysfunction, and
Fibrosis Induced by Pressure Overload. PLoS ONE 6(10): e26744. doi:10.1371/journal.pone.0026744

Editor: Gangjian Qin, Northwestern University, United States of America

Received September 5, 2011; Accepted October 2, 2011; Published October 28, 2011

Copyright: � 2011 Zhou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the National Natural Science Foundation of China [30901628, 30972954, 81000036 and 81000095](http://www.nsfc.gov.cn/
Portal0/default106.htm); and the Fundamental Research Funds for the Central Universities of China [20103020101000200](http://kfy.whu.edu.cn/kfy/
inforead_2017_1.html). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: qztang@whu.edu.cn

. These authors contributed equally to the work.

Introduction

Cardiac hypertrophy occurs in response to stresses, such as

pressure and volume overload, neurohormones and mutations in

genes encoding sarcomeric proteins [1]. It can provide mechanical

advantages that help maintaining normal ejection performance to

endure increased workload [2]. However, in the long term, cardiac

hypertrophy predisposes individuals to heart failure, arrhythmia

and sudden death [3]. Although a series of studies have illustrated

that signaling pathways, including mitogen activated protein

kinases (MAPKs), phosphatidylinositol 3-kinase (PI3K)/AKT

and calcineurin/nuclear factor of activated T cells (NFAT), play

important roles in hypertrophic responses [3], the mechanisms

that regulate these pathways have not been clearly elucidated.

Therapies for cardiac hypertrophy still primarily focus on

modulating hemodynamics; therefore, it is important to clarify

the mechanisms involved in cardiac hypertrophy and to discover

new antihypertrophic targets.

Activating transcription factor (ATF) 3 is a member of the

activating transcription factor/cAMP responsive element-binding

protein (ATF/CREB) family of transcription factors, which bind

to a consensus DNA sequence (TGACGTCA) and share a leucine

zipper (bZIP) element [4,5,6]. Members of this family bind to

specific DNA via the basic region in this domain, and form

homodimers or heterodimers with other bZIP-containing proteins

via the leucine zipper region [4,6]. ATF3 has a low expression

level in quiescent cells, but is increased under stress conditions,

such as injury, ischemia, ischemia/reperfusion or chemical toxin,

and is considered as an adaptive-response gene [5,7]. Signals

including cytokines, chemokines, growth factors/hormones or

DNA damage can induce ATF3 expression [5,7,8].

In the cardiovascular system, ATF3 expression is induced by

TNF-a and acute hypoxia in vascular endothelial cells [9,10]. A

variety of stimuli, including serum, angiotensin II (Ang II) and

H2O2, can increase the ATF3 expression in vascular smooth

muscle cells (VSMCs), and, knockdown of ATF3 induces VSMCs

apoptosis, caspase-3 cleavage and cytochrome c release [11]. In

addition, doxorubicin-treated neonatal rat cardiomyocytes have

high ATF3 expression via the JNK pathway, while ATF3

overexpression protects cardiomyocytes from doxorubicin-induced

apoptosis [12]. In vivo, the cardiac expression of ATF3 is induced

by ischemia/reperfusion [13] and Ang II [14], and transgenic

mice with cardiac-specific expression of ATF3 exhibit atrial

enlargement, atrial and ventricular hypertrophy, fibrosis, reduced

contractility and aberrant conduction[13]. However, the effect of

ATF3 deficiency on cardiac hypertrophy, especially, when

induced by pathological stimuli, has not been determined. For

this study, we used ATF3-knockout (KO) mice and cultured
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neonatal mouse cardiomyocytes from ATF3-KO mice to investi-

gate the role of ATF3 in the hypertrophic response. We show that

ATF3 deficiency in mice promotes cardiac hypertrophy, dysfunc-

tion and fibrosis in response to pressure overload, suggesting a

crucial role for ATF3 in modulating cardiac remodeling.

Materials and Methods

Animals and animal models
All animal procedures were performed in accordance with the

Guide for the Care and Use of Laboratory Animals published by the US

National Institutes of Health (NIH Publication No. 85-23, revised

1996) and approved by the Animal Care and Use Committee of

Renmin Hospital of Wuhan University (protocol number:

00013274). Male ATF3-KO mice (C57 background) and their

wild-type (WT) littermates aged 8 to 10 weeks were used in the

studies. The ATF3-KO mice were kindly provided by Dr.

Tsonwin Hai from Department of Molecular and Cellular

Biochemistry and Center for Molecular Neurobiology, Ohio State

University, Columbus, Ohio, USA. Genotyping was performed by

PCR as described previously [15]. Aortic banding (AB) was

performed as described previously [16,17]. Hearts and lungs of the

sacrificed mice were harvested and weighed to compare heart

weight/body weight (HW/BW, mg/g), lung weight/body weight

(LW/BW, mg/g), and heart weight/tibia length (HW/TL,

mg/mm) ratios in KO and WT mice.

Echocardiography and hemodynamics
Echocardiography was performed in anesthetized (1.5% isoflur-

ane) mice using a Mylab 30CV (ESAOTE S. P. A) with a 10-MHz

linear array ultrasound transducer. The left ventricle (LV)

dimensions were assessed in parasternal short-axis view. End-systole

or end-diastole was defined as the phase in which the smallest or

largest area of the LV was obtained, respectively.

For hemodynamic measurements, mice were anesthetized with

1.5% isoflurane, and a microtip catheter transducer (SPR-839,

Millar Instruments, Houston, TX, USA) was inserted into the right

carotid artery and advanced into the left ventricle. The signals were

continuously recorded using a Millar Pressure-Volume System

(MPVS-400, Millar Instruments, Houston, TX, USA), and the data

were processed by PVAN data analysis software.

Histological analysis and immunohistochemistry
Hearts were excised, washed with PBS, arrested in diastole with

10% KCl, weighed, fixed by perfusion with 10% formalin, and

embedded in paraffin. Hearts were cut transversely close to the

apex to visualize the left and right ventricles. Several sections of

each heart (4–5 mm thick) were prepared, stained with hematox-

ylin and eosin (H&E) for histopathology or picrosirius red (PSR)

for collagen deposition and then visualized by light microscopy.

For myocyte cross-sectional area, the sections were stained with

FITC-conjugated WGA (Invitrogen) to visualize membranes and

DAPI to visualize nuclei. A single myocyte was measured with a

quantitative digital image analysis system (Image Pro-Plus, version

6.0). The outline of 100 myocytes was traced in each group. For

immunohistochemistry, the heart sections were heated using the

pressure cooker method for antigen retrieval, incubated with anti-

ATF3 (Santa Cruz Biotechnology, sc-188) and subsequently an

anti-rabbit EnVisionTM+/HRP reagent, and stained using a

DAB detection kit.

Quantitative real-time RT-PCR
Real-time PCR was used to detect the mRNA expression levels of

hypertrophic and fibrotic markers. Total RNA was extracted from

frozen mouse cardiac tissue or cultured cardiac myocytes using

TRIzol (Invitrogen, 15596-026), and their yields and purities were

spectrophotometrically estimated using the A260/A280 and A230/

260 ratios via a SmartSpec Plus Spectrophotometer (Bio-Rad). The

RNA (2 mg of each sample) was reverse-transcribed into cDNA using

oligo (DT) primers and the Transcriptor First Strand cDNA Synthesis

Kit (Roche, 04896866001). The PCR amplifications were quantified

using a LightCycler 480 SYBR Green 1 Master Mix (Roche,

04707516001) and the results were normalized against glyceralde-

hyde-3-phosphate dehydrogenase (GAPDH) gene expression.

Western blotting
Cardiac tissue and cultured cardiac myocytes were lysed in

RIPA lysis buffer, and the protein concentration was measured

with the BCA protein assay kit (Themo, 23227) by ELISA

(Synergy HT, Bio-tek). The cell lysate (50 ug) was used for SDS/

PAGE, and the proteins were then transferred to Immobilon-FL

transfer membranes (Millipore, IPFL00010). The primary anti-

bodies included antibodies specific for p-MEK1/2 (Cell Signaling

Technology, 9154), T-MEK1/2 (Cell Signaling Technology,

9122), p-ERK1/2 (Cell Signaling Technology, 4370), T-ERK1/

2 (Cell Signaling Technology, 4695), p-P38 (Cell Signaling

Technology, 4511), T-P38 (Cell Signaling Technology, 9212),

p-JNK (Cell Signaling Technology, 4668), T-JNK (Cell Signaling

Technology, 9258), p-p90RSK(Cell Signaling Technology, 9335),

T-p90RSK (Cell Signaling Technology, 9347), p-AKT (Cell

Signaling Technology, 4060), T-AKT (Cell Signaling Technology,

4691), GAPDH (Cell Signaling Technology, 2118), and ATF3

(Santa Cruz Biotechnology, sc-188). The secondary antibody was

goat anti-rabbit (LI-COR, 926-32211) IgG. The blots were

scanned by a two-color infrared imaging system (Odyssey, LI-

COR). Specific protein expression levels were normalized to

GAPDH protein for total cell lysates and cytosolic proteins.

Neonatal mouse cardiomyocyte culture and surface area
Primary cultures of mouse ventricular cardiomyocytes were

prepared as described previously [18] with minor modifications.

Newborn (1–2-day old) WT and KO mice (C57 background) were

killed by swift decapitation, and the ventricles were minced and

digested in PBS (HyClone, SH30256.01B) containing 0.03%

trypsin (HyClone, SH30042.01) and 0.04% collagenase type II

(Sigma, C6885-1G). The harvested cells were centrifuged, and the

sediment was resuspended in Dulbecco’s modified Eagle’s medium

(DMEM)/F12 1:1 medium (HyClone, SH30023.01B) supplement-

ed with 20% fetal bovine serum (FBS; HyClone, SV30087.02),

100 U/ml penicillin/100 mg/ml streptomycin (Gibco, 15140) and

0.1 mmol/L bromodeoxyuridine (BrdU; Sigma, B5002). The

fibroblast content of the cell suspension was removed by a

differential attachment technique. Cell-rich medium was planted

to 35-mm dishes coated with gelatin. After 48 h, the culture

medium was changed to serum-free DMEM/F12 for 12 h before

the experiment, and then, the cultured myocytes were stimulated

with 1 mM Ang II (Sigma, A9525).

To identify the cardiomyocytes and assess cardiomyocyte

hypertrophy, we characterized cells by immunocytochemistry for

cardiac a-actinin. The cells were washed with PBS, fixed with

RCL2 (ALPHELYS, RCL2-CS24L), permeabilized in 0.1%

Triton X-100 in PBS, and stained with anti-a-actinin (Millipore,

05-384) at a dilution of 1:100 in 1% goat serum. The secondary

antibody was Alexa FluorH 568 goat anti-mouse IgG (Invitrogen,

A11004). The myocytes on coverslips were mounted onto glass

slides with SlowFade Gold antifade reagent with DAPI (Invitro-

gen, S36939).
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Human heart samples
Samples of human failing hearts were collected from the left

ventricles of dilated cardiomyopathy (DCM) patients undergoing

heart transplants. Control Samples were obtained from the left

ventricles of the normal heart donors. The samples were obtained

with the approval of the local Ethical Committee (Renmin

Hospital of Wuhan University Human Research Ethics Commit-

tee, Wuhan, China). The investigation conformed to the principles

outlined in the Declaration of Helsinki. Informed written consent

was obtained from all subjects.

Statistical analysis
Data are expressed as the means 6 SEM. Differences among

the groups were determined by two-way ANOVA followed by a

post hoc Tukey test. Comparisons between the two groups were

performed by the unpaired Student’s t-test. P,0.05 was

considered to be significantly different.

Results

ATF3 expression in patients with dilated cardiomyopathy
and the pressure overload-induced hypertrophic mouse
model

We compared the cardiac expression of ATF3 in DCM patients

to that of healthy donators, and found that it was increased by 3.6-

fold (Figure 1A). Then we examined ATF3 expression in response

to pressure overload in mice. ATF3 expression Levels in the

murine heart were gradually elevated from 1 day to 4 weeks after

the AB operation (Figure 1B, C).

ATF3 deficiency promotes cardiac hypertrophy and
dysfunction in response to AB

To evaluate the effect of ATF3 on cardiac hypertrophy, we

performed the AB surgery or a sham operation on ATF3-KO

mice and WT littermates. After 4 weeks, echocardiography was

Figure 1. ATF3 expression in hypertrophic heart. A, Western blot analysis of cardiac expression of ATF3 in normal donators and in DCM
patients (n = 4). *P,0.05 vs normal donators. B, Western blot analysis of cardiac ATF3 protein from WT mice after aortic banding at the time points
indicated (n = 6). *P,0.05 vs sham. C, Immunohistochemistry of cardiac ATF3 protein from WT mice after aortic banding at time points indicated.
doi:10.1371/journal.pone.0026744.g001
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performed to assess the chamber diameter, wall thickness and

function of the left ventricle. There were no significant changes

between the sham-operated KO and WT mice; however, KO

mice exhibited deteriorated cardiac hypertrophy and dysfunction

compared to WT mice, as measured by LVEDD, LVESD,

interventricular septal thickness at end-diastole (IVSD), left

ventricular posterior wall thickness at end-diastole (LVPWD),

and fractional shortening (FS) after 4 weeks of AB (Figure 2A).

Pressure-volume (PV) loop analysis further revealed the exacer-

bated hemodynamic dysfunction of the LV in ATF3-KO mice, as

measured by parameters that reflect the volume, systolic function

and diastolic function of LV (Table 1). The HW/BW, HW/TL

and LW/BW ratios and the cardiomyocyte cross-sectional area

(CSA) were also strikingly increased in the pressure-overloaded

KO mice compared to the WT mice (Figure 2B). The gross

hearts, H&E staining and WGA staining confirmed the adverse

effect of ATF3 deficiency on cardiac remodeling (Figure 2C). In

addition, we used real-time PCR analysis to examine the mRNA

expression of markers of cardiac hypertrophy, including atrial

natriuretic peptide (ANP), B-type natriuretic peptide (BNP), b-

myosin heavy chain (b-MHC), a-myosin heavy chain (a-MHC)

and sarcoendoplasmic reticulum Ca2+-ATPase (SERCA2a). AB-

induced up-regulation of cardiac fetal genes including ANP, BNP

and b-MHC were greater in ATF3-KO mice, which was

accompanied with the down-regulation of a-MHC and SER-

CA2a (Figure 2D). These results suggested that ATF3 deficiency

promotes cardiac hypertrophy and deteriorates impaired cardiac

function after pressure overload.

ATF3 deficiency augments myocyte hypertrophy in vitro
To further confirm the effect of ATF3 on cardiac hypertrophy,

we used an in vitro model with Ang II (1 mM) in cultured neonatal

mouse cardiomyocytes. After stimulation with Ang II, myocytes

from KO mice showed enlarged cell surface area compared to

those from WT mice (Figure 3A). Moreover, RT-PCR demon-

strated that ATF3 deficiency markedly enhanced the induction of

ANP and BNP mRNA expression by Ang II (Figure 3B). These

findings indicated that ATF3 deficiency promotes cardiac

hypertrophy in vitro.

Effects of ATF3 on MEK-ERK1/2 and JNK signaling
To examine the molecular mechanism by which ATF3 affects

the hypertrophic response, we investigated the activation of

MAPK in KO and WT heart induced by pressure overload.

Our data indicated that MEK-ERK1/2, JNK and p38 were

significantly activated in AB mice and that ATF3 deficiency

enhanced the phosphorylation of MEK-ERK1/2 and JNK.

However, we did not find an difference in phosphorylated p38

levels between KO and WT mice. Furthermore, we examined the

activation of 90-kDa ribosomal S6 kinase (p90RSK), a down-

stream effector of ERK1/2, and found that ATF3 deficiency

amplified the phosphorylation of p90RSK in response to AB. Akt

is another important signaling molecule involved in cardiac

hypertrophy, and our data showed that Akt activation was

increased in AB mice, although there was no striking difference

between the KO and WT group (Figure 4A, B). In vitro data

confirmed that the activation of MEK-ERK1/2, JNK and

p90RSK in myocytes from KO mice was greater compared to

WT mice in response to AngII (Figure 4C, D).

ATF3 deficiency exacerbates the fibrotic response
induced by pressure overload

Fibrosis is an important feature of developing pathological

cardiac hypertrophy. To detect fibrosis, heart sections were stained

with PSR. Striking perivascular and interstitial fibrosis was

observed in the WT mice in response to AB, and the extent of

cardiac fibrosis was remarkably increased in the KO mice

(Figure 5A, B). No significant difference in fibrosis was detected

between the WT and KO mice after the sham operation.

To further elucidate the effect of ATF3 on collagen synthesis,

we examined the mRNA expression of connective tissue growth

factor (CTGF), transforming growth factor (TGF)-b1, TGF-b2,

collagen I, collagen III, and fibronectin, which are responsible for

cardiac fibrosis. Our data showed that ATF3 deficiency enhanced

the increase of CTGF, TGF-b1, TGF-b2, collagen I, collagen III,

and fibronectin expression 4 weeks after AB (Figure 5C).

Discussion

Previous studies have proven that the ATF/CREB family plays

an important role in the cardiovascular system [11,12,13,14,19].

Figure 2. Effects of ATF3 on cardiac hypertrophy. A, Echocardiography results from 4 group mice at 4 weeks after AB or sham surgery (n = 8).
B, Statistical results of the HW/BW, LW/BW, HW/TL and myocyte cross-sectional areas of indicated groups. C, Gross hearts, HE staining and WGA-FITC
staining of sham and AB mice at 4 weeks post surgery. D, Expression of transcripts for ANP, BNP, b-MHC, a-MHC and SERCA2a induced by AB were
determined by RT-PCR analysis (n = 6). *P,0.05 vs WT/sham. # P,0.05 vs WT/AB after AB.
doi:10.1371/journal.pone.0026744.g002

Table 1. Hemodynamic parameters in mice after 4 weeks of
surgery.

Parameter Sham AB

WT(n = 6) KO(n = 6) WT(n = 6) KO(n = 6)

P–V loop analysis

HR (min21) 47968 46068 461611 460610

ESP (mmHg) 108.262.3 110.862.5 152.764.9* 155.467.8*

EDP (mmHg) 10.960.6 11.660.9 17.962.3 25.462.9*

ESV (ml) 10.260.5 11.360.4 21.660.9* 29.262.2#

EDV (ml) 2760.7 26.861 34.260.6* 37.961.7#

Systolic function

dP/dt max (mmHg/s) 102796415 99426538 81076265* 66646567#

Ea (mmHg/ml) 5.660.1 6.460.4 10.860.8* 14.660.9#

EF(%) 66.761.2 61.861.5 41.362.7* 27.961.7#

CO (ml/min) 93566211 81576438 66556398* 49576224#

Stroke volume (ml) 19.560.3 17.861.0 14.561.0* 10.860.4*

Diastolic function

dP/dt min (mmHg/s) 293406422 293086286 278746419* 256986519#

Tau_w(ms) 7.460.2 7.460.4 9.260.4 12.361.4#

HR, heart rate; ESP, end-systolic pressure; EDP, end-diastolic pressure; ESV, end-
systolic volume; EDV, end-diastolic volume; Ea, arterial elastance; EF, ejection
fraction; CO, cardiac output; dp/dtmax, maximal rate of pressure development;
dp/dtmin, maximal rate of pressure decay; Tau_w, time constant of isovolumic
pressure decay.
*P,0.05 vs WT/sham.
#P,0.05 vs WT/AB after AB.
doi:10.1371/journal.pone.0026744.t001
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In this study, we demonstrated that ATF3 deficiency worsened

cardiac hypertrophy induced by pressure overload in vivo and by

Ang II in vitro. The effects of ATF3 on cardiac hypertrophy,

dysfunction and fibrosis are probably mediated by negative

feedback to the ERK and JNK pathways and regulation of pro-

fibrotic cytokines. These results suggest that ATF3 may play a

protective role in pathological hypertrophy in the heart and may

be an effective therapeutic target for cardiac hypertrophy and

heart failure.

ATF3, a member of the ATF/CREB family, contains the

bZIP element and plays a role as either a repressor or activator

of transcription via forming homodimers or heterodimers with

other bZIP-containing proteins such as ATF2 and c-Jun [4].

ATF3 is an adaptive-response gene and is induced by various

environmental stresses, including injury, ischemia, ischemia/

reperfusion, chemical toxin, cytokines, chemokines, and growth

factors/hormones [5,7,8]. Previous studies have shown increased

ATF3 expression in mice injected with Ang II, isoproterenol or

phenylephrine [14,20]. We demonstrated that high ATF3

expression was not only in response to aortic banding in mice

but also in the hearts of patients with DCM, which suggests that

ATF3 is involved in the development of cardiac hypertrophy.

Mice with cardiac-specific over-expression of ATF3 exhibited

atrial enlargement and cardiac hypertrophy in a previous report

[13]; however, our results demonstrated that ATF3 deficiency

promotes pathological hypertrophy. It seems obscure that the

role of ATF3 in cardiac hypertrophy is whether detrimental or

protective. The first possibility for the discrepancy is that the

transgenic mice have a persistent expression of ATF3. Previous

study showed that adenovirus-mediated expression of ATF3

could inhibit doxorubicin-induced cardiomyocytes apoptosis

[12], which indicated that transient expression of ATF3 may

be protective on cardiomyocytes. Loss of ATF3 may impair the

resistant ability of heart under stress. Secondly, the expression

level of ATF3 in the transgenic mice may be too high for the

homeostasis. Thirdly, ATF3 have dual roles in the regulation of

transcription: as either a repressor or activator [4]. Therefore, it

is likely that ATF3 is necessary in the defense against

pathological stress in the heart, and its up-regulation may be

protective in the progression of cardiac hypertrophy. However,

persistent overexpressed ATF3 may play as a transcriptional

activator rather than repressor of pro-hypertrophic genes, which

is detrimental to the heart, indicating that it is important to

regulate the level and duration of ATF3 expression to resist

hypertrophic stress.

Fibrosis, which is an integral feature of cardiac remodeling, is a

disproportionate accumulation of fibrillar collagen leading to

expansion of the extracellular matrix (ECM) and cardiac

dysfunction [21]. Myocardial fibrosis following pressure overload

is associated with increased accumulation of type I and III

collagen within the adventitia of coronary arteries (perivascular

fibrosis), which progressively extends into the neighboring

interstitial spaces (interstitial fibrosis) [22]. We found enhanced

deposition of collagen in ATF3-KO mice after AB and

demonstrated that ATF3 deficiency promotes collagen synthesis,

with up-regulated mRNA levels of collagen I and III. TGFb and

CTGF are two major extracellular signals that promote fibrosis in

the hypertrophic heart [23,24], and our study showed increased

mRNA expression of these cytokines in ATF3-KO mice after AB.

These results suggest that ATF3 could protect against cardiac

remodeling through regulation of pro-fibrotic cytokines and

collagen content.

The molecular mechanisms by which ATF3 affects cardiac

remodeling remain unclear. Recent evidence has suggested that

the MAPK cascade is involved in cardiac hypertrophy and

fibrosis [25,26]. The MAPK cascade is initiated in cardiac

myocytes by various stress stimuli. After activation, downstream

p38, JNKs, and ERKs each phosphorylate a wide array of

Figure 3. ATF3 deficiency augments myocyte hypertrophy in vitro. A, Effect of ATF3 deficiency on the enlargement of myocyte induced by
Ang II (1 mM for 48 h). B, RT-PCR analysis of the mRNA levels of ANP and BNP induced by Ang II at the time points indicated. *P,0.05 vs WT group at
the 0 time point. # P,0.05 vs WT group at the same time point.
doi:10.1371/journal.pone.0026744.g003
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intracellular targets, including numerous transcription factors,

resulting in the reprogramming of cardiac gene expression [27].

ATF3 expression is also regulated by the MAPK cascades

[28,29]. ERK pathway is necessary in serum-induced ATF3

expression, which was evidenced by that the specific MEK1

kinase inhibitor PD98059 almost completely abolished the serum

induction of ATF3 by suppressing the phosphorylation of ERK

[30]. And, the activation of the ERK is essential for ATF3

induction in the left atrium following acute angiotensin II

stimulation [14]. JNK pathway is involved in the induction of

ATF3 by acute hypoxia and homocysteine in endothelial cells,

which was confirmed by using specific inhibitor or expressing

dominant negative upstream moleculars of JNK [10,31].

Furthermore, ATF3 is also activated by JNK in doxorubicin-

treated neonatal rat cardiomyocytes [12]. On the other hand,

ATF3 could suppress tumorigenesis stimulated by Ras [32]

which is upstream of MEK-ERK1/2 and JNK, and prevent

JNK-induced neuronal death [33]. Results of these studies

indicated the interaction between ATF3 and MEK-ERK1/2 and

JNK. In our study, we found that pressure overload induced the

activation of ERK1/2, JNK and p38, as well as MEK1/2, the

upstream activator of ERK1/2. We then demonstrated that

ATF3 deficiency enhanced the increased phosphorylation of

MEK-ERK1/2 and JNK after AB but did not affect p38

phosphorylation. P90RSK, a downstream effector of ERK1/2,

regulates a number of transcription factors and interacts with

other kinases involved in hypertrophic response [34,35]. Our

results showed that ATF3 deficiency increased the phosphory-

lation of p90RSK in response to AB. Akt is another pathway that

play crucial role in cardiac hypertrophy [36]. A recent study

reported that ATF3 affected mast cells development and function

via the Akt pathway [37]; however, we did not detect the

influence of ATF3 on Akt phosphorylation. Previous studies have

described ATF3 as a ‘‘hub’’ of the cellular adaptive-response

network [8], indicating the complex role of ATF3 in diseases.

Our results demonstrated that ATF3 provides negative feedback

to the ERK and JNK pathways to modulate cardiac remodeling,

providing more clues into the functional network of ATF3.

Figure 4. Effects of ATF3 on the ERK and JNK signaling pathways. (A and B) The levels of total and phosphorylated MEK1/2, ERK1/2, JNK, P38,
P90RSK and AKT in the heart tissues of mice in the indicated groups (n = 6). A, Representative blots. B, Quantitative results. *P,0.05 vs WT/sham.
# P,0.05 vs WT/AB after AB. (C and D) The levels of total and phosphorylated MEK1/2, ERK1/2, JNK and p90RSK in cardiac myocytes treated with
Ang II at the indicated time points. C, Representative blots. D, Quantitative results. *P,0.05 vs WT group at the 0 time point. # P,0.05 vs WT group
at the same time point.
doi:10.1371/journal.pone.0026744.g004
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However, further experiments are needed to determine the molecular

mechanism by which ATF3 regulates ERK and JNK pathways.

In conclusion, this study reveals a previously unknown effect of

ATF3 on cardiac hypertrophy, dysfunction and fibrosis in

response to hypertrophic stimuli by the negative feedback to

the ERK and JNK pathways and regulation of pro-fibrotic

cytokines and collagen content. Our study provides new insight

into the pathogenesis of cardiac remodeling and may have

important implications for the development of strategies for the

treatment of cardiac hypertrophy and heart failure through

targeting ATF3.
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