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Abstract
Ranging from nano- to granular-scales, control of particle assembly can be achieved by limiting
the available free space, for example by increasing the concentration of particles (“crowding”) or
through their restriction to 2D environments. It is unclear, however, if self-assembly principles
governing thermally-equilibrated molecules can also apply to mechanically-excited macroscopic
particles in non-equilibrium steady-state. Here we show that low densities of vibrofluidized steel
rods, when crowded by high densities of spheres and confined to quasi-2D planes, can self-
assemble into linear polymer-like structures. Our 2D Monte Carlo simulations show similar finite
sized aggregates in thermally equilibrated binary mixtures. Using theory and simulations, we
demonstrate how depletion interactions create oriented “binding” forces between rigid rods to
form these “living polymers.” Unlike rod-sphere mixtures in 3D that can demonstrate well-defined
equilibrium phases, our mixtures confined to 2D lack these transitions because lower
dimensionality favors the formation of linear aggregates, thus suppressing a true phase transition.
The qualitative and quantitative agreement between equilibrium and granular patterning for these
mixtures suggests that entropy maximization is the determining driving force for bundling.
Furthermore, this study uncovers a previously unknown patterning behavior at both the granular
and nanoscales, and may provide insights into the role of crowding at interfaces in molecular
assembly.

Introduction
High concentrations of macromolecules, sometimes termed “macromolecular crowding”,
can lead to a shift in the equilibrium state of many supra-molecular assemblies. An
important driving force behind this effect is the minimization of steric interactions, as
determined by the size, shape, and density of the molecules1-4. Of particular interest are self-
assembly processes involving crowding in two-dimensions (2D)5, 6, as in protein
aggregation at cellular membranes7, 8 or fabrication of nanomaterials at interfaces9.

Under certain conditions, high concentrations of macroscopic objects can exhibit collective
ordering that is reminiscent of behavior shown by their molecular counterparts.
Interestingly, even though vibrofluidized granular materials display a wide variety of driven-
dissipative behaviors and usually demonstrate complex non-equilibrium phenomena10-16,
such particles can also spontaneously form equilibriumlike patterns11. A few recent studies
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have shown similarities between equilibrium, entropy driven, order-disorder type phase
transitions and steady-state granular experiments17-21, even when mechanically-driven
granular particles do not possess Gaussian velocity distributions20.

Entropy driven processes in hard classical particles arise only from variations in the number
density of particles. For any classical ensemble, the total energy is separable into kinetic
energy that depends on momentum, and potential energy that depends on particle
positions22. In addition, when only hard core interactions are present, the total system
potential energy of an ensemble of particles is the same for every allowed configuration.
This implies that, in such systems at thermodynamic equilibrium, the probability for all
allowed states is equal and independent of temperature (see “Thermodynamic depletion
interaction theory for rod binding” in Material and Methods). Thus, under certain
experimental conditions where the granular materials behave as microscopic hard core
particles, patterning can be independent of their kinetic energy.

For example, we previously demonstrated that macroscopic rods can exhibit a lyotropic
isotropic-to-nematic (I-N) transition17, which is driven, in simplest form, by increasing
density that leads to geometrical “hard core” constraints between particles23. In this
temperature independent (“athermal”) transition, crowding drives the competition between
two forms of entropy - rotational and translational - until ultimately one form of entropy
“wins” at the expense of another. This suggests that the transitions in these granular
experiments, as in their molecular analogues, simply result from maximization of
configurational entropy.

To further explore the analogy between driven granular media and thermal equilibrium, we
ask if entropy maximization can also determine pattern formation in granular mixtures in
terms of molecular self-assembly. We focus on binary mixtures in 2D, where one type of
particle is immersed in an excess of another, effectively “solvating” it. Although other
experimental factors can influence granular segregation11, evidence exists for entropy driven
separations related to particle sizes in bidisperse mixtures of granular spheres that involve
“depletion forces”19. Effective attractive interactions between large spheres result from a
competition between large (“solute”) and small (“solvent”) particle entropies. According to
Asakura-Oosawa (AO) theory24, originally developed for colloidal suspensions, this “force”
arises when the distance between two solute particles is less than the diameter of a solvent
particle (Fig. 1).

The free energy gain from depletion interactions between molecules or colloids can measure
up to several kT 25 (kT is thermal energy), comparable to many additional forces including
van der Waals, screened electrostatic, and hydrogen bonding26. While attractive interactions
are traditionally deemed necessary for mediating precise binding in self-assembly
processes26, here we show how depletion interactions together with particle shape are, in
fact, sufficient to induce specifically-oriented binding.

We report on fluidized mixtures of granular rods that self-assemble to form well defined
linear stacks in quasi-2D environments with the addition of spheres. By using equilibrium
2D Monte Carlo simulations and a modified AO theory, we find that depletion forces drive
the patterning in the granular and the analogous molecular systems, suggesting that these
forces can act on many different scales. Unlike the known equilibrium phases for rod-sphere
mixtures in 3D27-33, both 2D simulations and experiments show finite sized linear (1D)
aggregates, indicating that lower dimensionality prevents true phase separation.

This manuscript progresses as follows: We begin with a general description of the patterning
diagram for granular rod and sphere mixtures, delineating particle arrangements for different
densities of both particles. We then discuss the role of kinetic energy on the established
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granular analogue of the liquid crystal phase transition for vibrofluidized rods,
demonstrating that, in some cases, the specifics of granular motion can be irrelevant for
pattern formation. For the remainder of the manuscript, we focus on newly found
arrangements in the patterning diagram—finite-sized linear rod aggregates. We show that
these aggregates can be reproduced via equilibrium Monte Carlo simulations of hard rod and
sphere mixtures. Using a simple depletion interaction theory in combination with self-
assembly ideas, we then show that it is possible to fully predict the formation of these linear
rod aggregates. And, with the same depletion interaction theory, we account for fluctuations
of the stacking geometry in the rod aggregate structure. We conclude with a summary.

Results and discussion
Vibrofuidized granular rod-sphere mixtures form distinct patterns

We vertically vibrated stainless steel rods (r) and spheres (s) with equal diameters Dr= Ds,
constrained to a container of area A and thickness 20Dr enclosing Ns spheres and Nr rods of
length L (L/Dr =40) so that sphere area fraction is and rod area fraction is
φr=L Dr Nr/ A. These binary granular mixtures exhibit rich patterning behavior in (φs, φr)
space that is often visually similar to known liquid-crystalline phases (Fig. 2A-G).

For φs = 0, rods exhibit liquid crystal-like behavior with an isotropic-nematic (I-N)
transition17. This patterning appears to exist for low φs and low φr. As φr increases, the
spheres induce smectic-like ordering, where rods align and form bundles that are quasi-
periodic along the direction of the rod's long axis. However, unlike the stable smectic phase
that appears in 3D equilibrium rod-sphere mixtures30, the structure of the vibrofluidized
mixtures oscillates in time between “smectic” and nematic patterns (Fig. 2B,C). We attribute
this difference to non-equilibrium effects that arise from the details of kinetic energy input
and losses in these experiments10-16.

For high φs and low φr, we find that the rods coalesce, with their long axes in close
proximity (Fig. 2G). This pattern, designated as “aggregates”, has not been previously
described in granular mixtures and will be the focus of the remainder of this manuscript.
This regime is bounded above on the φr -axis of Fig. 2A by the formation of a new pattern
that we have called “aggregates+nematic”, which is evidently a non-equilibrium pattern, as
discussed later in this manuscript. In addition, the “aggregate” pattern is also bound on the
φs -axis, so that once φs + φr > 1, rods “float” on top of a bed of spheres and return to an
isotropic configuration, as is also discussed later in the manuscript.

The role of temperature
Before further discussing the patterning diagram, we first address how particle kinetic
energy can affect granular spatial arrangements. Due to the relatively large size of particles,
thermal temperature does not appreciably move granular materials10; instead, energy must
be supplied externally for particle motion to occur. In addition, energy is dissipated in the
form of heat with every particle collision. Many non-equilibrium effects are known to
emerge from this driven-dissipative combination of energy flow10-16. However, for granular
materials that behave as hard core particles, we propose that as long as all states are
accessible and equally probable, the specifics of particle motion can be neglected. Similar to
microscopic hard-core particles, the part of the free energy which dictates pattern formation
depends only on the potential energy. For these cases, the potential energy is both separable
from kinetic energy and independent of temperature.

Adding to the growing body of work on entropy driven transitions in granular materials that
support this idea17-21, we provide further experimental evidence based on the behavior of
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granular rods of different aspect ratios, L/Dr = 20, 40, and 60, in containers of various
shapes and areas. The rod patterning diagram with respect to dimensionless acceleration, Γ
≡ b(2πf)2/g has previously been reported, where b is the vibration amplitude, f is frequency,
and g is gravity34. Here, we focus on the granular I-N transition since this transition has
been shown to closely resemble that of microscopic particles17. In addition, extensive
experimental, theoretical, and computational studies on rods at equilibrium in 3D, 2D, and
quasi-2D serve as reference points for our results35-37. For 2D systems, the I-N transition is
expected to be continuous, with a critical density ρ*. Note, though, that our granular
experiments are not infinitely sized and, therefore, cannot show a true phase transition17, 38.

By holding Γ constant and varying f, we can alter the peak container velocity vp = b/2π f and
measure the resulting changes in the rod orientational order parameter Σ = 〈cos (2θi)〉, where
θi is the angle of the i th rod with the nematic director. Fig. S1 is a plot of Σ versus the
normalized density ρ =φrL/Dr that characterizes the I-N transition in 2D. For a given f, the
data for all rod aspect ratios and containers collapse to a single curve, within experimental
error (Fig. S1).

When f decreases, the critical density, ρ*, also increases. There are two potential causes for
this shift. First, the rods bounce higher with decreasing f, and, therefore, occupy more space
in the direction parallel to gravity. Indeed, in equilibrium simulations, increasing the
thickness of a quasi-2D sample was found to decrease the 3D critical normalized density36,
which, when using the measurement methods employed for these granular experiments,
leads to an apparent increase in the 2D ρ*. This shift roughly scales to the thickness of the
3rd dimension. Second, there may be a kinetic contribution to the I-N transition in granular
rods, where, for example, kinetic energy losses from rod collisions cause rod alignment.

We cannot accurately measure the locations of the rods in the direction parallel to gravity,
and are thus unable to determine the distribution of rods in this direction. As an alternative
control parameter, we have mechanically changed the height of the container. Decreasing
the container height-to-rod diameter ratio, H/Dr, from 20 to 14, does not significantly
encroach upon the rods, as is confirmed by the similarities in the results for those two
heights (Fig. S2). However, a further decrease in the container height results in lower values
of ρ*.

We find that a simple and purely geometric scaling of ρ, which accounts only for the
variations of the effective rod density due to changes in H/Dr (see Materials and Methods),
collapses the data from all f and all container heights to a single curve, within experimental
error (Fig. 3). We thus demonstrate that the I-N transition is robust to multiple variations in
experimental conditions. While we cannot exclude the possibility that these multiple
experimental variations also change the kinetic energy of the particles to yield this simple
geometrical scaling, our results suggest that it is mainly the excluded volume that controls
patterning in these experiments.

Vibrofuidized granular rod-sphere mixtures show rod-rod clustering
We now focus on the region in (φs, φr) space showing linear rod stacking in the presence of
spheres (Fig. 2A, designated as “aggregates”, △). As φs increases in this regime, we find
that rods coalesce, with their long axes in close proximity (Fig. 2F,G). After an initial
equilibration period of about 5 to 10 minutes, the size distribution of the aggregates remains
constant in time, although individual rods associate and disassociate from groups, and
aggregates merge and separate as they move over the container bottom. We find
experimentally that aggregate sizes depend on crowding and grow with increasing φr (Fig.
4A) and φs (Fig 4B, see discussion below). Correspondingly, the rod-rod correlation
function in the direction perpendicular to the rod axis reveals an increase in local rod density
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upon aggregation (Fig. S3A). This discrete aggregation differs from the known behavior of
3D thermally equilibrated molecular or colloidal rod-sphere mixtures, where
experiments27, 28, theory29, 30 and simulations31, 32 show that spheres induce a shift in the I-
N transition towards lower rod densities and cause layered-like phases of interlaced rods and
spheres and, even, complete separation into rod- and sphere-rich phases. We suggest that the
different behavior in 2D occurs because restriction to a plane favors the formation of linear
(1D) rod aggregates, for which there cannot be a phase transition39, 40.

Monte Carlo simulations of mixtures at equilibrium show rod-rod clustering
We performed equilibrium 2D Monte Carlo simulations to test if rod clustering in the
granular mixtures could result from sphere-induced depletion interactions. Simulations
included mixtures of “rods” (hard rectangles capped by semicircles) and “spheres” (circular
disks) in containers with reflecting boundaries. Like our granular experiments, the
simulations reveal finite aggregates (Fig. 2H, I) whose average size increases with crowding
(Figs. 4C and 4D, see discussion below). Rod-rod correlations exhibit the most dramatic
density variations with distance of all measured particle pair correlation functions. Upon
increasing φs, we find sharp rod-density undulations at distances < L/2, reflecting the
formation of highly ordered rod associations (Fig. S3B) and indicating that spheres can
induce an effective attractive force between rods in this thermally-equilibrated analogue of
our granular system.

Rod “binding” and the formation of 1D rod “polymer” stacks
Approximate relations for the effective strength of these depletion-induced attractive
interactions can be derived by extending the classical AO mean-field theory24 to rod-sphere
mixtures in 2D (derivation in Materials and Methods). Briefly, the dimensionless Helmholtz
free energy associated with the potential energy U for a sea of Ns spheres surrounding two
parallel rods (Fig. 1) is F̃ = FU/k = −Tln Q≈−lnqNs, with Q being the total configurational
partition function, and q the partition function for a single sphere. Here F̃ is calculated for a
particular rod separation x (Fig. 1A) and, as in the original AO theory, we make the
approximation that the partition functions of different spheres are independent. For particles
interacting though hard core potentials, entropy S fully determines the free energy F̃ = −S/k.
The thermodynamic temperature T is therefore irrelevant in this instance and need not
correspond to the so called granular temperature10. Since particles interact only through hard
core potentials, q relates to the area accessible to a sphere as determined by the mutual
positions of the rods (eqn [10] in Materials and Methods).

The area available to spheres is maximized when the rods are parallel and fully apposed
(Fig. 1A). This implies that depletion interactions cause rods to associate with a specific
orientation. We first assume this particular (parallel) orientation for rods at all separations x.
Therefore, F̃ is infinite for x ≤ Dr, zero for x > Dr + Ds, and negative at intermediate
separations with the minimum occurring when the rods touch (Fig. 1A). It can be shown that
the modified AO free energy difference ΔF̃ in 2D for a two-rod “dimer” (x = Dr) versus
fully separated rods (x = ∞), is (derivation in Materials and Methods)

[1]

Our experiments and simulations, however, not only show dimers but also aggregates
composed of multiple rods (Fig. 2G,I). This rod stacking is analogous to a linear self-
assembly process where individual rods act as monomers and reversibly bind to form “living
polymers” or 1D micelles40, 41. Hence, we next compare the granular experiments and
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Monte Carlo simulations with self-assembly theory to determine if the size distribution of
the observed aggregates can be predicted.

For a system in equilibrium, the chemical potential μ of monomers in all aggregates is
necessarily equal, so that

[2]

where μn and are the chemical potential and standard chemical potential, respectively, per
monomer, and Xn is the mole fraction of rods in clusters of size n. Using eqn [2] and
assuming αkT is the binding free energy between rods, we find the following size
distribution of aggregates (derivation in Materials and Methods),

[3]

The lines for the distributions of aggregate sizes in Fig. 4A,C are fits to eqn [3], obtained by
varying the parameters α and X1. The theory provides excellent predictions for granular
experiments at low φr, and for simulations at all tested φr and φs≠ 0. Fig. 4B, D shows how
α increases as a function of crowding in both experiments and simulations.

In principle, α is related to |ΔF̃|. Indeed, we find that values of α determined from
simulations and values of |ΔF̃| derived using the same parameters (Ns,Ds,L, A) are close in
magnitude and have similar slopes with increasing φs (Fig. 4D). Unlike α, however, ΔF̃ does
not account for all contributions to the changes in free energy upon binding, such as
misaligned rod association or “slip” (Fig. 1B), rod rotational entropy, multiple rod
interactions, and aggregate entropy. Interestingly, these additional contributions cause α to
vary linearly with φr, as shown in Fig. 4E, and thus shift α from the predictions of the AO
theory by only a constant. Finally, we further tested the predictions of eqn [3] by varying Ds
and found the behavior of α and |ΔF̃| comparable (Fig. 4F).

Note that, for the experiments, |ΔF̃| overestimates α. This most likely reflects the fact that
our experimental setup is quasi-2D, with a container thickness of 20Dr. Therefore, out-of-
plane sphere bouncing in experiments significantly decreases the effective φs that causes rod
aggregation, as we have similarly shown for rod-only systems. We can empirically account
for out-of-plane sphere configurations by dividing the sphere density used in eqn [1] by 7.5.
This value roughly agrees with previous estimates indicating that, on average, the centre of
mass of a sphere lies between 3 to 7 Ds above the container bottom for our experimental
conditions15.

Rod aggregation occupies a restricted region of the patterning diagram (Fig. 2A). As φs
approaches 1, rods begin to float on top of a bed of spheres, resulting in isotropic rod
patterns. This particle separation by gravity, where larger objects rise to the top, has been
shown in other granular mixtures11, 12. Also, as φr increases beyond 0.1, large nematic-like
rod tactoids transiently appear (“aggregates+nematic”, Fig. 2A,E), which increases the
probability of finding larger aggregate sizes than predicted. Two possible explanations can
account for these tactoids. First, because nematic phases are observed in 3D rod-sphere
mixtures, the presence of tactoids in our quasi-2D experiments may be a residual 3D effect.
To test this possibility, we performed quasi-2D simulations with container thickness ranging
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from 1.5Dr to 4Dr. Unlike the behavior in the experiments, we found that rods phase-
separated from spheres onto both planar surfaces of the container, forming isotropic patterns
for all φr and φs tested. This patterning has also been noted in simulations of similar rod-
sphere mixtures33. Second, the nematic-like aggregates may be a consequence of granular
cluster formation resulting from kinetic energy loss due to inelastic collisions14.

Rod “slip” in clusters diminishes with crowding
We also find that rods in aggregates may show a significant amount of “slip” (Fig. 1B), so
that the entire cluster appears as a skewed parallelogram rather than a rectangle (Fig. 2G,I).
However, experiments and simulations both show that the slip between the long axis of
neighboring rods decreases (clusters appear more rectangular) as crowding increases. To
analyze the dependence of slip on increasing φs and φr, we follow changes in Δy, defined as
the width at half height of the first peak in the rod-rod correlation function in the direction
parallel to the rod axis (Fig. S3C,D). Figures 5A and 5B show that, in both simulations and
experiments, Δy decreases with increasing φs and φr.

Clearly, maximum excluded volume overlap occurs when the midpoints of two contiguous
rods are aligned, as shown in Fig. 1A. In reality, the extent of overlap mismatch is controlled
by competition between the translational entropies of spheres and rods. Thus, as crowding
increases, the entropic penalty for rod misalignment becomes larger, thereby reducing rod
slip. We can quantify this behavior, with the same AO theory, by further considering rods
sliding past each other (Fig. 1B). The extent of rod slip that can be accounted for by
“thermal” fluctuations are those for which ΔFU/ kT ≈ 1 (or S/k ≈ 1). Therefore, we can
estimate (derivation in Materials and Methods) that the fluctuations in Δy should scale as,

[4]

To test for scaling behavior, we focus on the dependence of Δy on Ds in the simulations,
where we define Δy as the width at half height of the most prominent peak in g2,r–r(x*,y)
(Fig. S3). We find that Δy decreases with increasing Ds (Fig. 5C). Using eqn [4] to plot data
from Fig. 5C, we find that all points collapse to a single “universal” curve (Fig. 5D). While
the specific linear dependence predicted by eqn [4] holds only for low A/NsDs, the inclusion
of sphere-sphere excluded volume further extends the range for which the linear regime
seems applicable (Fig. S4). We also examined the dependence of sphere size in the granular
experiments, but found that larger, heavier spheres rolled on top of rods, rather than mixing
in the same plane.

Summary
Energy input (vibration) and losses (friction) make it difficult to predict a priori whether a
particular set of granular experimental conditions will result in equilibriumlike behavior. We
suggest, however, that as long as the experiments satisfy the requirement that all states are
equally probable and properly sampled, similar behavior can be expected for granular
materials and their molecular counterparts, irrespective of particle dynamics.

In this study we have shown that low densities of vibrofluidized steel rods, in a “solution” of
sphere crowders, self-assemble to form linear polymer-like structures when confined to a
quasi-2D plane. Simulations and theory demonstrate how similar aggregates should be
expected for the molecular-scale analogue when only depletion-interaction acts to induce
rod self-assembly. The qualitative and quantitative analogy that we find between the
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granular and molecular mixtures suggests that granular materials may behave as their
molecular counterparts in this part of the rod-sphere patterning diagram. Moreover, this link
between the different length scales also provides insight into molecular patterning, allowing
access to conditions that are difficult to probe directly at the nanoscale level. It is surprising
to find such close agreement between our granular experiments and equilibrium theory.
Additional work will be necessary to determine the depth and generality of this analogy;
therefore, the results described in this manuscript are likely to stimulate discussion and
further work.

Finally, this work highlights how particle assembly due to crowding in 2D yields
fundamentally different behavior than in 3D. Reduced dimensionality, combined with
anisotropic particle shape, leads to the formation of linear rod aggregates which, due to their
1D nature, do not undergo an order-disorder transition but instead form finite sized rod
stacks. More generally, understanding particle behavior in such confined environments
opens the possibility of controlling aggregations by using appropriately shaped particles that
will specifically bind, even without the assistance of attractive interactions.

Materials and methods

Granular experiments
The methods presented here are similar to those previously described17. Briefly, we used
stainless steel spheres (diameter Ds = 0.08cm) and stainless steel wire (diameter Dr =
0.08cm) cut into rods with aspect ratios of L/Dr = 20, 40, and 60 where L is rod length. The
lateral walls of the container were machined into a square (diagonal = 29cm) or circle
(radius = 7 or 15cm). Unless otherwise stated, the container chamber was covered by a
Plexiglas lid to give a thickness of 20Dr, and the rods were shaken by an Unholtz-Dickie
vibration system with a sinusoidal acceleration of 50Hz . All experiments had a constant
peak acceleration of 4 times gravity, as measured by an accelerometer. Possible effects of
the magnetic field of the shaker were minimized by distancing the chamber from the shaker,
and electrostatic forces were reduced by using aluminum components for the chamber and
applying an anti-static coating to non-metallic surfaces. To randomize initial conditions,
particles were dropped into the containers from above before experiments. In order to better
visualize the rods, spheres were anodized black; we found no significant differences
between the patterning with or without sphere coating. Images of rods in motion were
captured by a high speed digital camera. The position and orientation of each rod were
found by an image processing algorithm written in Matlab 6.5.

Because our experiments are not infinitely sized, a true istoropic-nematic phase transition
cannot be observed17, 38. We, therefore, approximate ρ* by performing a linear least squares
fit of the data in the transition zone17, 36. In order to perform the rescaling for Fig. 3, we set
the data from H/Dr = 4 (closest to 2D confinement) as the reference. For each set of
experimental conditions, we determined the ratio between the slopes from the least square
fits and the reference, and divided ρ by this ratio.

Monte Carlo simulations
We performed two-dimensional (2D) Monte Carlo simulations in the canonical (NVT)
ensemble with hard particles42: disks (referred to here as 2D “spheres”) and diskorectangles
(rectangles capped by two semi-circles, referred to here as “rods”). Particles were confined
to a square area bounded by hard walls, with dimensions similar to those in the granular
experiments: diagonal = 9.2L and Dr = Ds = 1. We also performed simulations with L/Dr =
20, 40, and 60. Data presented in this manuscript are from L/Dr = 20. While the majority of
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simulations with longer rods yielded jammed states, computations for low φs and φr showed
linear rod aggregates with similar scaling behavior as data with L/Dr = 20.

The interaction potential U(dmin) between spheres, rods, and walls was infinity if dmin < d*
and zero if dmin ≥ d*, where dmin is the minimum distance between two objects and d* is the
distance at which objects overlap. Initial particle positions (and orientations for rods) were
selected at random, except for simulations with very high densities where particles were
randomly inserted into previously equilibrated runs with lower rod densities. An attempted
move involved a change in a particle's midpoint position x, y (and also angle θ for a rod).
Attempted step sizes for moving both spheres and rods were equal and were adjusted to give
an acceptance ratio for a rod move of ≈ 15%. Simulations were considered equilibrated
when parameters that reflect the probability distribution of the rods stabilized: orientational
order parameter for runs without spheres, average rod group size for runs with spheres. At a
minimum, the first 1×105 cycles were discarded, where one Monte Carlo cycle is counted
when all particles undergo an attempted move. Simulations ran for approximately 9×108 to
9×109 cycles, and 1 out of every 104 cycles was saved for analysis.

Thermodynamic depletion interaction theory for rod binding
The partition function and Helmholtz free energy—Consider a 2D classical
microscopic system in equilibrium composed of two rigid rods immersed in an infinite bath
of rigid spheres. We start with the Hamiltonian ℋ (νNs, ξNS, x) of NS spheres each with
momentum ν, located at ξ and interacting with two (fixed) parallel rods that are separated by
a distance x, as depicted in Fig. 1A. At thermal equilibrium, the canonical partition function
is defined as22

[5]

where h is Planck's constant. In classical statistical mechanics, the total energy is separable
into a sum of kinetic K(νNs) and potential energy U(ξNs, x) terms 22, giving,

[6]

where we have defined the configurational integral:

[7]

and where k is the Boltzmann constant and T is temperature. The partition function is
associated with the (Helmholtz) free energy FTotal = −KTlnQNs = Fk + FU, expressed here as
a sum of the kinetic and potential energy contributions, FK and FU, respectively In eqn [6],
the integral containing K(νNs) can be considered as a scaling factor for QNs and as an
additive constant to FTotal. We, therefore, will only consider the configurational partition
function Q to determine configurations corresponding to the minimum free energy.

With analogy to the work of Asakura and Oosawa (AO)24, we obtain an approximation of
the partition function per sphere q. In AO theory, the spheres are modeled as an ideal gas
interacting only with rods through excluded volume; therefore, q is simply related to the free
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space available to the spheres, which only depends on the mutual positions of the rods. The
Helmholtz free energy for a given x is defined as

[8]

[9]

where A is the total area of the system. We therefore obtain

[10]

In our approximation, (L + Ds)(Dr + Ds) is the excluded area between a rod and a sphere,
and (L + Ds)(Dr + Ds–x) is area gained when two rod-sphere excluded areas overlap.

When discussing granular materials, the same derivations can be conducted in a similar
fashion as in molecular systems, noting that now kT refers to a granular analogue of thermal
excitation, rather than the thermal temperature. Granular materials often show non-Gaussian
velocity distributions16; therefore, the integral over K(νNs) may not be adequately described
by the Boltzmann distribution. However, these contributions to the granular analogue of QNs
would not affect the configurational integral Q for rigid particles, as long as all accessible
states are equally probable.

Free energy difference—Next, we derive the free energy difference between two rods
aggregated versus separated, ΔF̃ = F̃ (x = Dr) − F̃ (x → ∞), where x = Dr is the closest
distance attainable without rod overlap (Fig. 1A). Using eqns [8] and [10] we obtain,

[11]

Assuming that A ≫ 2(L + Ds)(Dr + Ds) and A ≫ Ds (L + Ds), we find

[12]

Self-assembly theory and the chemical potential—We consider rod aggregation in
both our experiments and simulations as an equilibrium 1D self-assembly process of
particles with analogy to “living polymers” or worm-like micelles40, 41. The chemical
potential of all monomers in all aggregate species must be equal, so that

[13]
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where μn is the chemical potential of a rod in an aggregate containing n rods,  is the
standard part of the chemical potential per rod in an aggregate containing n rods, and Xn is
the mole fraction of rods in aggregates containing n rods. In particular, for the monomer and
aggregate of size n, we find

[14]

Rearranging, we obtain

[15]

We now assume that αkT is the free energy for binding two rods. Therefore, the total free
energy of rod aggregates containing n rods is41

[16]

Combining eqns [15] and [16], we find that the size distribution of aggregates is

[17]

Thermodynamic depletion interaction theory for rod slip
The partition function and Helmholtz free energy—Again, we consider a 2D system
of two rigid rods immersed in a bath of rigid spheres. The Hamiltonian ℋ (νNs, ξNs, y) of NS
spheres now depends on its interaction with two parallel rods that are touching but offset by
a distance y (“slip”), as depicted in Fig. 1B. As before, we obtain an approximate expression
for q by modeling the spheres as an ideal gas that interacts only with rods via excluded
volume. Therefore, q depends only on the rods' mutual position. With the Helmholtz free
energy for the potential energy defined as in eqn [8], we now have

[18]

which results in

[19]

where Ds (L + Ds –y) is the area gained when two rod-sphere excluded areas overlap.
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Fluctuations in slip extent Δy—The maximum entropy gain for the spheres occurs
when the two rods are touching and their midpoints are aligned (y = 0); however, such strict
rod alignment reduces rod entropy. A balance between these two entropic terms can be
obtained when rods are allowed to fluctuate in their mutual alignment. We are interested in
small fluctuations (on the order of kT) of y, and derive the free energy difference between
two aggregated rods that are perfectly aligned (y = 0) versus offset (y = Δy), so that

[20]

We will only consider rods whose excluded volumes overlap, i.e., y < L + Ds. Therefore
using eqns [8] and [19] we find

[21]

Assuming that and A ≫ DsΔy, we get

[22]

It is also possible to incorporate sphere-sphere excluded volume on the level of the second
virial coefficient. This can be done by modifying eqn [19] to

[23]

where . Therefore, eqn [22] becomes

[24]

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Attractive depletion interactions between hard rods in the presence of sphere crowders favor
rod binding and suppress rod slip. Diagrams depict the area that rods exclude from spheres
(dashed regions) and excluded area overlap (shaded regions) when two rods are less than
one sphere diameter apart, shown for rod “binding” (A) and rod “slip” (B). The amount of
excluded area overlap depends on mutual rod positions and adds to the free area of spheres,
thereby increasing sphere entropy. With sufficient sphere density, the subsequent gain in
sphere entropy can offset the loss in rod translational entropy, causing rod binding. The
graphs show the scaled Helmholtz free energy F̃ = FU/ kT between two hard rods immersed
in a sea of hard spheres, as derived from the modified Asakura-Oosawa (AO) depletion
interaction theory (see text). The free energy is shown as a function of the relative separation
x and mutual “slip” y (as defined in respective diagrams) for various sphere area fractions φs,
where Dr=Ds=1 and L = 20.
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Fig. 2.
Rods aggregate in the presence of sphere crowders in both granular experiments and Monte
Carlo simulations. (A) Diagram indicating the various patterning regimes for rod-sphere
mixtures in quasi-2D granular experiments at steady-state, with Dr = Ds and L/Dr = 40. (B-
G) Representative enhanced contrast, experimental images from smectic+nematic regimes
(B, C, φr = 0.87, φs = 0.11, panels showing two snapshots of the same experiment at
different times), nematic (D, φr = 0.40, φs = 0), aggregates+nematic (E, φr = 0.20, φs =
0.87), isotropic (F, φr = 0.05, φs = 0) and aggregate (G, φr = 0.05, φs = 0.63) regimes. (F)
and (G) highlight sphere-induced rod aggregation at constant rod area fraction φr. In (E) and
(G), spheres were anodized black to blend with background. (H, I) Strict-2D Monte Carlo

Galanis et al. Page 16

Soft Matter. Author manuscript; available in PMC 2011 October 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



simulations of thermally equilibrated rods (H, φr = 0.1, φs = 0) and rods mixed with spheres
(I, φr = 0.1, φs = 0.3), with L Dr = 20 and with the following parameters matching those of
granular experiments: Dr = Ds, Nr, and L -to-container dimensions. For clarity, only sphere
midpoints are shown in (I). Strong visual similarities exist between experiments and
simulations, both showing sphere-induced rod aggregation into finite sized clusters.
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Fig. 3.
The isotropic-nematic phase transition for granular rods. Plot shows the rod orientational
order parameter S versus normalized density ρ. Data from Figs. S1 and S2 collapse to a
single curve when the normalized density ρ is rescaled as described in the section on
Granular Experiments in Material and Methods.
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Fig. 4.
The distribution of rod aggregate sizes n and “rod binding energy” α (see text) depends on
crowding. Size distribution of rod aggregates in granular experiments for φs = 0.39 (A,
symbols) and simulations for φs=0.1 (C, symbols). Corresponding lines are fits using eqn
[3]. The magnitude of α as determined from the fits for experiments (B, symbols as defined
in A) and simulations (D, symbols as defined in C). The line in (B) corresponds to the AO fit
with sphere density divided by 7.5, to compensate for a container thickness of 20Dr. The
lines in (D) denote the predictions from AO theory, where the offset between α and |ΔF̃| due
to changes in φr was taken from (E) (symbols as defined in C). Note, that since the entropy
gain for spheres drives rod aggregation, the linear relation of rod binding to φs is not
expected to hold as φs approaches zero in (D). Figure F shows variations of α due to Ds
based on simulations (symbols) and as predicted from AO theory (lines).
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Fig. 5.
Rod slip decreases with crowding and shows universal scaling behavior. The width at half
height of the first peak in the rod-rod correlation function in the direction parallel to the rod
axis, Δy, versus sphere density φs for experiments (A) and simulations (B) at various φr and
fixed Ds=1. (C) The dependence of rod slip on several sphere diameters in Monte Carlo
simulations. (D) Same data as (C), now collapsed when plotted versus a scaling parameter
derived from AO theory (symbols as in C). Dashed line in (D) shows the linear scaling
predicted from eqn [4]. The linear region of the data is extended when AO theory
incorporates sphere-sphere excluded volume (Fig. S4).
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