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Semen represents the main vector of HIV dissemina-
tion worldwide, yet the origin of HIV in semen re-
mains unclear. Viral populations distinct from those
found in blood have been observed in semen, indicat-
ing local viral replication within the male genital
tract. The seminal vesicles, the secretions of which
constitute more than 60% of the seminal fluid, could
represent a major source of virus in semen. This study
is the first to investigate the susceptibility of human
seminal vesicles to HIV infection both in vitro and in
vivo. We developed and characterized an organotypic
culture of human seminal vesicles to test for target
cells and HIV infection, and, in parallel, analyzed the
seminal vesicle tissues from HIV-infected donors. In
vitro, in contrast to HIV-1 X4, HIV-1 R5 exposure in-
duced productive infection. Infected cells consisted
primarily of resident CD163* macrophages, often lo-
cated close to the lumen. In vivo, HIV protein and RNA
were also detected primarily in seminal vesicle mac-
rophages in seven of nine HIV-infected donors, some
of whom were receiving prolonged suppressive
highly active antiretroviral therapy. These results
demonstrate that human seminal vesicles support
HIV infection in vitro and in vivo and, therefore, have
the potential to contribute virus to semen. The pres-
ence of infected cells in the seminal vesicles of treated
men with undetectable viremia suggests that this or-
gan could constitute a reservoir for HIV. (4m_J Pathol
2011, 179:2397-2408; DOI: 10.1016/j.ajpath.2011.08.005)

Every year, approximately 2.5 million persons become
newly infected with HIV, most through heterosexual trans-
mission (World Health Organization and United States
estimates). Although semen represents the foremost vec-

tor of HIV-1 dissemination,” the precise origins of the
infected leukocytes and free viral particles contaminating
the seminal plasma remain unclear. Phylogenetic studies
have established that HIV in semen arises from local
sources within the male genital tract and/or from passive
diffusion via the blood®=* (previous references in Le Tor-
torec and Dejucg-Rainsford®). The existence of produc-
tive sources in the male genital tract is further substanti-
ated through observations of several differences
between blood and semen, including i) detection of per-
sistent infectious HIV in the semen of 5% to 30% of men
with undetectable blood viral load receiving fully sup-
pressive antiretroviral therapy®®; ii) higher viral load in
semen in a subpopulation of treatment-naive men'®; iii)
different rates, kinetics of emergence, and diversity of
drug-resistant strains*'"'?; and iv) different ratio of in-
fected versus noninfected leukocytes.'®

At present, the nature of the sources of HIV in the male
genital tract remains unclear. This knowledge is crucial to
the understanding of the biology of HIV sexual transmis-
sion and to the design of targeted therapies for eradicat-
ing HIV from semen.

Semen is composed of secretions and cells from the
testes, epididymides, prostate, seminal vesicles, and
bulbo urethral glands. Vasectomy has little effect on sem-
inal shedding of HIV-1 RNA,™ which suggests that the
testes and epididymides are not the primary sources of
HIV particles in semen. The seminal vesicles, the secre-
tions of which represent more than 60% of the seminal
fluid, could be an important source of seminal HIV. We
recently demonstrated that the seminal vesicles of
asymptomatic macaques are productively infected by
simian immunodeficiency virus (SIV) in vivo and, together
with the prostate, exhibit the highest level of infection
among the male genital tract organs in this animal
model."® To date, infection of human seminal vesicles by
HIV has not been reported.
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To test the hypothesis that the human seminal vesicles
may represent a source of virus in semen, we developed
an organotypic culture of human seminal vesicle tissue to
assess whether the resident immune cells or other cell
types present in this organ are susceptible to in vitro
infection by HIV-1 strains with different cell tropism, and
searched for the presence of infected cells in the seminal
vesicles in HIV-infected men and analyzed the nature of
the infected cell types.

Materials and Methods

Materials

The following reagents were used: Dulbelcco’s modified
Eagle’s medium, and RPMI 1640 medium, fetal calf serum
(FCS), and glutamine (all three from Gibco-BRL, Life Tech-
nologies, Cergy-Pontoise, France), 5a-dihydrotestosterone
and phytohemagglutinin (both from Sigma-Aldrich Chimie
SNC, St. Quentin Fallavier, France), penicillin-streptomy-
cin (Eurobio Laboratories, Les Ulis, Courtaboeuf,
France), IL-2 (Boerhinger-Mannheim GmbH, Mannheim,
Germany), and human serum (Jackson ImmunoResearch
Europe, Ltd., Newmarket, Suffolk, England). Primary an-
tibodies, isotypic controls, and concentrations used were
as follows: mouse monoclonal antibodies against HIV
p24 (2 ng/mL, clone Kal-1), CD3 (T-lymphocyte marker,
7.3 ng/mL, clone F.7.2.38), CD1a (Langerhans/immature
dendritic cell marker, ready to use, clone 010), CD8 (20
pg/mL, C8/144B), HLA-DR a-chain (1.5 pg/mL, clone
TAL.1B5), a-actin (smooth muscle) antibody (smooth
muscle cells and myofibroblasts marker, 0.1 ug/mL,
clone 1A4), cytokeratin (epithelial cell marker, ready to
use, clone AE1/AE3), and Ki-67 (0.55 pg/mL, clone
MIB-1) (all from Dako SA, Trappes, France), CD4 (2.5
ng/mL, clone 4B12, Novocastra Laboratories, Ltd., New-
castle-upon-Tyne, England), CD83 (mature dendritic cell
marker, 1:20, clone 1H4b, Leica Biosystems Newcastle,
Ltd., Newcastle-upon-Tyne, England), CCR5 (25 ug/mL,
clone 183, R&D Systems, Inc., Minneapolis, MN), CXCR4
(10 pg/mL, clone 12G5, Dr. J Hoxie, NIBSC [National
Institute for Biological Standards and Control] Cen-
tralised Facility for AIDS Reagents, Potters Bar, Hertford-
shire, England); and matching mouse isotypic controls
lgG2a and IgG2b (R&D Systems, Inc.), IgG1 kappa
(Dako SA); rabbit polyclonal anti-CD3 (20 wg/mL, Sigma-
Aldrich Chimie SNC), CD163 (monocyte/macrophage
marker,'®"” 2 ug/mL, K20T, Novus Biologicals, LLC,
Littleton, CO), and control IgG rabbit (Jackson Immu-
noResearch Europe, Ltd.). Mounting medium with DAPI
was used for immunofluorescence (Vectashield; Vector
Laboratories, Ltd., Peterborough, England). Secondary
antibodies were either biotinylated (anti-mouse or anti-
rabbit IgG, 1:500, Dako SA) or fluorescently labeled [goat
anti-mouse Alexa Fluor 488 (4 wg/mL) or goat anti-rabbit
Alexa Fluor 594 (4 wg/mL)], Invitrogen BP, Cergy-Pon-
toise, France). HIV-1 clade B R5gr 6, and X4,z strains
were obtained from the NIBSC Centralised Facility for
AIDS Reagents. They were grown in peripheral blood
mononuclear cells (PBMCs) stimulated using phytohem-

agglutinin (3 ng/mL) and IL-2 (5%) or in C8166 cells (for
X4,,8) to provide viral stocks.

Organotypic Culture of Human Seminal Vesicle
Explants

The study protocol was approved by the local ethics
committee, and informed consent was obtained from all
donors. Normal seminal vesicles were obtained at
Rennes University Hospital from patients seronegative for
HIV-1 who underwent radical prostatectomy and had not
received hormone treatment. Immediately after surgery,
seminal vesicle tissues were placed at 4°C in fresh me-
dium supplemented with antibiotics and processed
within 1 hour. The absence of disease was assessed at
histologic analysis. Seminal vesicles were dissected into
2 X 2 X 6-mm longitudinal sections, and each section
was transferred onto a polyethylene terephthalate insert
in a well of a 12-well plate (Falcon Labware; Becton
Dickinson & Co., Lincoln Park, NJ) containing 1 mL me-
dium (RPMI 1640 with antibiotics, 10% fetal calf serum,
and 800 ng/mL 5a-dyhydrotestosterone). For each ex-
perimental condition, two wells were tested. The culture
was maintained for 15 days in a humidified atmosphere
containing 5% CO, at 37°C, and the medium was
changed every 2 days and stored frozen at —80°C. Every
3 days, seminal vesicle explants were either fixed in
neutral buffered 4% formaldehyde or frozen and stored at
—80°C.

Immunohistochemistry and Cell Count

Immunohistochemistry using the avidin-biotin-peroxidase
complex technique was performed on formaldehyde-
fixed, paraffin-embedded (FFPE) tissues as previously
described.' In brief, after antigen retrieval [1 mmol/L
EDTA (pH 9.0) or 10 mmol/L citrate (pH 6.0) for 20 min-
utes] and blockage of unspecific sites with 4% normal
human serum in PBS, tissues were reacted at 4°C over-
night using the appropriate antibody diluted in PBS con-
taining 2% normal human serum. The primary antibody
was replaced with the appropriate isotopic control at the
same concentration in control sections. Sections were
washed and reacted with a biotinylated secondary anti-
body at room temperature for 1 hour. After subsequent
washes, the sections were incubated using the avidin-
biotin-peroxidase complex (Vectastain ABC Kit; Vector
Laboratories, Ltd.) for 30 minutes, and bound antibodies
were visualized using aminoethyl carbazole substrate or
3,3’-diaminobenzidine (Dako SA). The nuclei were coun-
terstained using Masson’s hemalum. The sections were
observed and photographed using an Axiolmager M1
(Carl Zeiss Microlmaging GmbH, Goéttingen, Germany).
Cell staining was never observed for istotypic controls.
Cell counting was performed on tissues from a minimum
of three donors using Cast software (Olympus, Lille,
France). Cells that stained positive were counted at 40X
magnification in the total surface of one or several tissue
sections per individual (minimum surface, 30 mm?).



Real-Time Quantitative RT-PCR

Total RNA was extracted from the seminal vesicle explants
atdays 1,9, 13, and 15 of culture using the RNeasy isolation
kit (Quiagen SA, Courtaboeuf, France) and depleted of con-
taminating DNA via DNase treatment (Quiagen SA). cDNA
was generated from 2 ug total RNA using M-MLV reverse
transcriptase (SuperScript II; Gibco-BRL, Life Technolo-
gies). PCR was performed on 40-ng equivalent RNA with
the ABI 7500 Fast Real-Time PCR System (Applied Biosys-
tems, Inc., Foster City, CA) using commercially available
master mix and target probes (Applied Biosystems,
Inc.): Hs00181217_m1 (CD4), Hs00607978_s1 (CXCR4),
Hs00152917_m1 (CCR5), Hs99999901_s1 (18 S). For
steroid dehydrogenase (accession No. NCBI Gen-
Bank: NM_003104.4), the following primers and probes
were designed: forward, 5'-AGGATGCATTCTGTTGGAA-
TC-3’; reverse, 5'-GCAACACGATCACCTGGTT-3'; and
probe, 5'-TGGGACATGAAGCTTCGGGA-3'. The C+
value of each gene was calculated using the ABI se-
quence detection system 1.9 program (Applied Biosys-
tems, Inc.). The relative gene expression in a minimum of
three independent cultures at various times was normal-
ized to 18S expression and calculated using the compar-
ative C; method, as previously described.®

HIV-1 Infection of Seminal Vesicle Explants

Immediately after dissection, each explant was immersed in
200 to 500 ulL of a stock of HIV-1 R5gr6, OF X4, cell-free
viral supernatant [corresponding to 8 to 13 ng of reverse
transcriptase activity and 1 to 4 X 10* TCID,, (median
tissue culture infective dose)] for 3 hours (R5grq6, and
X4,,8) or overnight (X4,,g) at 37°C and then thoroughly
rinsed three times in PBS. The explants were placed in
culture as described previously, and the culture medium was
collected and replaced every 2 days throughout the culture.

Reverse Transcriptase Activity and Infectivity
Assays

HIV-1 reverse transcriptase activity in the seminal vesicle
supernatants was assayed using the Lenti-RT activity
assay (Cavidi AB, Uppsala, Sweden) as previously de-
scribed.'® For infectivity assay, 500 uL seminal vesicle
culture supernatants collected at the day of peak reverse
transcriptase activity or 500 ulL viral stock used for infec-
tion and maintained at 37°C for 9 days, used here as a
negative control, was ultracentrifuged for 3 hours at
39,500 X g. Supernatants were discarded, and the pel-
lets were dissolved in 500 uL RPMI 1640, which was
added to 4 X 10° phytohemagglutinin-activated PBMCs
for 3 hours at 37°C. PBMCs were resuspended in 2 mL
RPMI 1640 supplemented with 5% IL-2 and maintained at
37°C for 15 days. The culture medium was changed at day
1 and then every 3 days, and was stored frozen at —80°C
for subsequent reverse transcriptase assay.
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Measurement of HIV-1 DNA Using TagMan
Real-Time PCR

Total DNA was extracted using the QlAamp DNA Mini Kit
(Quiagen SA) according to the manufacturer’s instruc-
tions. Quantitative real-time PCR for HIV-1 LTR DNA and
for the albumin gene used as a reference was performed
on 250 ng DNA, as previously described.'® For each
donor and each time point, two separate blocks of tissue
were analyzed in duplicate.

Immunofluorescence

For co-localization experiments, the FFPE tissue sections
were analyzed via double-color immunostaining using
the antibodies described in Materials (polyclonal antibod-
ies anti-CD163 or anti-CD3 and monoclonal antibodies
against either p24 antigen, HLA-DR, CCR5, CXCR4, or
CD4). Antigen unmasking was performed via 10 minutes
of irradiation in a microwave oven of deparaffinized sec-
tions in 10 mmol/L citrate buffer (pH 6). Sections were
incubated with primary antibodies or isotypic controls for
1 to 2 hours at room temperature or overnight at 4°C,
washed with Tris-buffered saline solution, and sequen-
tially incubated with fluorescently labeled secondary an-
tibodies. Cell nuclei were visualized using nuclear chro-
matin staining (DAPI). Slides were examined under a
fluorescence microscope (Axiolmager M1; Carl Zeiss Mi-
crolmaging GmbH) equipped with a charge-coupled de-
vice camera. Individual channels were collected simulta-
neously using computer software (AxioVision, version
4.7.1; Carl Zeiss Microlmaging GmbH). The percentage
of double staining was calculated by counting co-labeled
cells in 200 positive cells for one marker in distinct areas
of the seminal vesicle from a minimum of three donors.
Data are given as the mean percentage = SEM of co-
labeled cells for the indicated number of donors.

Tissue Sections from HIV-Positive Donors

After approval of our research protocol by National Dis-
ease Research Interchange (Phildelphia, PA), seminal
vesicle tissues were obtained at autopsy from HIV-in-
fected men and underwent PFPE. Characteristics of the
donors are given in Table 1.

Simultaneous in Situ Hybridization and
Immunohistochemical Staining

Localization and identification of cells expressing HIV-1
RNA was performed by combining radioactive in situ hy-
bridization for HIV-1 Gag protein and immunohistochem-
ical staining for cell markers, as previously described.'®
The specificity of the hybridization signal was systemat-
ically checked by hybridizing sense probes on parallel
sections and anti-sense probes on seminal vesicles from
uninfected men.
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Table 1. Characteristics of Donors Infected with HIV-1
Plasma CD4" Plasma HIV-1 Duration of
cells RNA HIV-1 infection P24* cells
Donor  (count/ul) (copies/mL) (years) Co-infections ARV Cause of death in SV*
85 NA 139,000 NA HCV NA AIDS 2.20
108 <20 51,681 NA HCV/HBV Combivir, Sustiva AIDS 0.24
11 134 <50 NA HCV Atripla Lymphoma 0
1 month? 1 month’
110 219 <50 17 None Oxanadol, ltellence, End-stage renal 0.12
1 week 1 week (for Prezista, Viread, disease
4 years) Isentress, Norvir
112 256 <50 26 HBV Tenofovir, Epivir, Liver cancer 0.97
1 month® 1 month? Abacavir, Trizivir
103 269 <50 (for 5 NA HCV/HBV/HTLV Tenofovir, Sustiva, Nephropathy 0.61
years) Ziagen, Epivir
107 437 <50 17 HCV/HBV Epzicom, Reyataz,  Respiratory failure 0.04
1 dayt 1.5 month? Norvir due to pneumonia
(previous
AIDS)
139 495 <50 20 None Atripla Myocardial infarction 0
2 months® 4 months’
92 1076 <50 NA HCV/HBV Truvada (stopped Adenocarcinoma 0.74
2 months® 4 months’ 1 week before

death)

*Number of cells/mm?.
TTime of measurement before death.

ARV, antiretroviral drugs; HBV, hepatitis B virus; HCV, hepatitis C virus; HTLV, human T cell leukemia virus; NA, not available; SV, seminal vesicles.

Statistical Analysis

The significance of the differences or correlation between
values was evaluated using the appropriate nonparametric
test, as specified in the text or in the figure legends. P <
0.05 was considered statistically significant. Statistical anal-
yses were performed using commercially available software
(SAS version 9.1.3; SAS Institute, Inc., Cary, NC).

Results

Characterization of Human Seminal Vesicles in
Organotypic Culture

The architecture and expression of seminal vesicle cell
markers were compared in seminal vesicle explants be-
fore culture and throughout the culture period. Histologic
examination of seminal vesicle fragments revealed that
the tissue architecture was maintained throughout the
15-day culture period (Figure 1, A-D). Columnar epithe-
lial cells retained their height up to day 5 (Figure 1, B
versus A), and began to flatten therafter (Figure 1, C and
D). Positive staining for cytokeratin observed for the
pseudo-stratified epithelium before culture was main-
tained until the end of culture at day 15 (Figure 1, E and
F). Similarly, quantification of the transcript-encoding ste-
roid dehydrogenase, an enzyme produced by seminal
vesicle epithelial cells, demonstrated expression of this
cell marker throughout the culture period (Figure 1K).
Stromal cells were still abundant at day 11 of culture
(Figure 1, C versus A), with only a few patchy losses (data
not shown), whereas a more generalized decrease was
observed at day 15 (Figure 1D). Positive staining for
a—actin, a marker of smooth muscle cells and myofibro-
blasts, was observed in the stroma before and at the end

of the 15-day culture period (Figure 1, G and H). In the
explants before culture, only a small number of cells were
proliferating, as indicated by the detection of Ki-67 (Fig-
ure 11). The number of cells increased only slightly during
culture, primarily at the epithelial level (Figure 1J).

Detection and Quantification of Potential HIV-1
Target Cells in Human Seminal Vesicles

Cells that stained positive for the monocyte/macrophage
marker CD163, the T-lymphocyte marker CD3, and the
HIV receptor CD4 were evident within the fixed seminal
vesicle tissues from all donors before and during culture
(Figure 2A). CD163™ cells were observed both in the
stroma and inserted, or close to, the epithelium, whereas
CD4™" cells were primarily concentrated within the
stroma. In contrast, CD8* cells were consistently ob-
served, primarily inserted within the epithelium and rarely
in the stroma (Figure 2A). Some rare cells stained positive
for CD83, a marker of mature dendritic cells, whereas no
staining was observed for CD1a, a marker of Langer-
hans/immature dendritic cells (data not shown). The HIV
co-receptors CCR5 and CXCR4 (Figure 2A) were de-
tected in cells with immune cell~type morphologic features,
whereas no staining was present on epithelial cells. Quan-
titative immunohistochemistry revealed that the seminal
vesicle contained primarily CD163" macrophages and, to a
lesser extent, CD3* T lymphocytes and CD4* cells,
whereas stromal CD8* cells were scarce (Figure 2B). Cells
staining positive for CCR5 were far more abundant than
those staining positive for CXCR4 (Figure 2B). To assess the
nature of CD4", CCR5™, and CXCR4™ cells, double label-
ing was performed (Figure 2C). CD4 staining co-localized
with CD3" T lymphocytes but not with CD163* macro-
phages (Figure 2C), in line with the known low level of CD4
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Figure 1. Characterization of human seminal vesicles in organotypic
culture. A—-H: PFPE sections were examined morphologically (A-D) or
immunostained for several seminal vesicle cell markers (E=J) before (E,
G, and ) and after 15 days (F, H, and J) of culture. The overall architec-
ture of the organ was preserved throughout the culture (A, day 0; B, day
5; C, day 11; D, day 15). The markers used for characterization of seminal
vesicle cell types were cytokeratin for epithelial cells (E and F), a-actin
(smooth muscle) and myofibroblastic cells (G and H), and Ki-67 for
proliferating cells (I and J). K: The level of expression during the culture
period of the transcript encoding SDH, an enzyme produced by seminal
vesicle epithelial cells, was analyzed using real-time PCR and compared
with control (day 1 of culture). The results represent the mean = SD of a
minimum of three independent cultures performed on seminal vesicles
from three different donors (Kruskal-Wallis test, *P < 0.05; control, day 1).
Scale bars = 50 wm.
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expression on macrophages.?® CCR5 co-localized with
CD163* macrophages and co-labeled with 48.25% =+
27.8% (mean = SEM; n = 4 donors) of CD3* T lympho-
cytes (Figure 2C), whereas CXCR4 was exclusively de-
tected in T lymphocytes (Figure 2C).

Using real-time RT-PCR, we quantified the persistence
during culture of the expression of transcripts encoding HIV
receptors CD4, CCR5, and CXCR4. CD4 mRNA copy num-
bers were maintained throughout the culture period, and
only a slight decrease was observed at day 15 (Figure 3).
CCRS5 transcript copy number also demonstrated good
maintenance up to day 13, whereas a decrease was
observed at day 15. In contrast, although expressed
throughout the culture period, CXCR4 mRNA expression
decreased from day 9 onward, and was significantly
lower at days 13 and 15 compared with day 1 (Figure 3).

Infection of Seminal Vesicle Explants with HIV-1
R5 or X4 Strains

After incubation of R5g¢44, With seminal vesicle explants
from six donors, a significant increase in reverse trans-
criptase activity was consistently observed between days
9 and 11 (Figure 4A). In contrast, in supernatants of
seminal vesicle tissues from matched patients exposed
to X4,,g, NO increase in reverse transcriptase activity was
detected during the 15-day culture period (Figure 4A),
irrespective of the duration of exposure (3 hours or over-
night) and viral stock (X4, grown in PBMCs or in the
C8166 cell line). In line with this, the viral particles ob-
tained by ultracentrifugation of R5gr;g.-€xposed seminal
vesicle supernatants productively infected activated
PBMCs, whereas the ultracentrifuged supernatants from
X4,,s-€xposed seminal vesicle cultures did not lead to
any detectable PBMC infection (Figure 4B).

The accumulation of HIV DNA within the seminal ves-
icle explants exposed to either R5gr 6, OF X4,z Was
quantified using real-time PCR (Figure 4C). After expo-
sure to R5grqap, the HIV-1 DNA level increased almost
30-fold during culture, demonstrating productive infec-
tion. In contrast, no HIV DNA increase was observed in
seminal vesicle explants exposed to X4,s.

Localization and Characterization of HIV-1 p24™
Cells in Human Seminal Vesicle Explants

HIV-infected cells were localized in the explants by im-
munohistochemistry for the viral protein p24 (Figure 5A).
HIV p24™* cells were found in the stroma and close to the
epithelium of seminal vesicles exposed to HIV-1 R5g¢ 6.
In contrast, no infected cells were evident in explants
exposed to HIV-1 X4,,g (data not shown). Double staining
for p24 and either the macrophage marker CD163 or the
lymphocyte marker CD3 in HIV Rb5-infected explants
demonstrated that the vast majority of p24* cells co-
labeled with CD163 (Figure 5B), whereas labeling with
CD3 was observed much less frequently (Figure 5C).
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Figure 2. Analysis of potential HIV target cells in uninfected seminal vesicles. A: Immunohistochemistry performed on uninfected seminal vesicle sections before
and during culture (day 9) demonstrated the presence of scattered stromal cells staining positive for CD163, CD3, CD4, CCR5, and CXCR4. CD163™" cells were
also observed in close contact with epithelial cells (arrows). CD8™ cells were found primarily at the level of the epithelium. Scale bars = 20 um. B: Respective
percentages of CD68™, CD3™, CD4™, CD8", CCR5™, and CXCR4 ™" cells per surface unit before culture were evaluated in seminal vesicle sections from five donors.
Results represent the mean number of positive cells = SEM. C: HIV receptors bearing cells (CD4™, CXCR4™, and CCR5™") were characterized by double labeling
with either CD3 (T-lymphocyte marker) or CD163 (macrophage marker). Nuclei labeled with DAPI are shown (blue). Large panel represents a merged image
combining all channels. Side panels represent individual channels. Scale bars = 10 wm.

Analysis of Seminal Vesicles from HIV-Infected
Men

Fixed seminal vesicle tissues from nine deceased HIV-in-
fected men were obtained at autopsy. Donor characteristics
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Figure 3. Real-time RT-PCR quantification of transcripts encoding HIV re-
ceptor CD4 and co-receptors CCR5 and CXCR4 in seminal vesicle explants
during culture. The relative copy number of the ¢cDNA of interest is stan-
dardized to the copy number of the ubiquitous 18S housekeeping gene
¢DNA and expressed relative to control (day 1 of culture). Results represent
the mean * SD of three independent experiments corresponding to three
donors (Kruskal-Wallis test, *P < 0.05; control, day 1).

are given in Table 1. All HIV-infected donors had received
highly active antiretroviral therapy (HAART) and seven of
nine had a blood viral load below the detection threshold
of 50 copies per milliliter at the last measurement before
death (Table 1). Seven of nine donors were co-infected
with hepatitis C virus (HCV), hepatitis B virus (HBV), or
both, and one was also positive for human T-lymphotro-
pic virus. Histologic examination of the seminal vesicles
indicated normal architecture (data not shown). HIV p24*
cells were detected in the seminal vesicles of seven of
nine donors (Table 1 and Figure 6A). In situ hybridization
for HIV Gag RNA confirmed the presence of infected
cells in the seminal vesicles from these patients (Figure
6B). Most HIV Gag RNA-positive cells co-localized with
CD163 staining (Figure 6B). Double immunostaining for
HIV p24™ cells and cell markers further demonstrated
that infected cells co-localized primarily with CD163™
macrophages, and evidenced co-localization of HIV p24
with a few CD3™ T lymphocytes in six of seven patients
(Figure 6, C and D). Quantification of potential HIV target
cells (ie, macrophages and activated CD4* T cells) in
seminal vesicles revealed a heterogeneous distribution of
CD3", CD4™", CD163™, and HLA-DR™ cells among HIV-
infected patients compared with uninfected men (Figure 7).
The median number of CD163* macrophages was sig-
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Figure 4. HIV-1 R5g4p4, and X4y,;; infection of human seminal vesicles in
organotypic culture. A: Reverse transcriptase activity measured in superna-
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whereas no increased reverse transcriptase activity was detected after expo-
sure to HIVy 5 (square, dotted line) (72 = 6 donors in each case). B: Activated
PBMCs exposed to supernatants of R5¢p4, infected explants collected at
peak of reverse transcription demonstrated increased reverse transcriptase
activity in the supernatants during culture (2 = 3), whereas no increase was
observed after exposure of activated PBMCs to X4,;,;-infected seminal vesicle
supernatants collected at different times during culture (7 = 3; data
shown for day 9). C: Accumulation of HIV-1 DNA in seminal vesicle
explants between days 5 and 13 to 15 after exposure to either HIV-1
R5gp162 OF X4y, as assayed for LTR DNA using quantitative real-time PCR.
For each virus, six different explants from six donors were tested. Results
represent the mean * SEM [Mann-Whitney test, *P < 0.05; control, day 7
(A), day 4 (B), and day 5 (C)].

nificantly increased in the seminal vesicles of HIV-in-
fected compared with uninfected men (Figure 7). In con-
trast, despite a slightly decreased median value, there
was no statistically significant difference in the number of
CD4* and CD3™ cells in HIV-infected donors versus un-
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infected donors (Figure 7). Of note, in three HIV-infected
patients, CD4* and CD3™ cell numbers were either low
(two patients) or undetectable (one patient). Most CD3™
cells co-localized with CD4 labeling (mean = SEM,
71.2% * 29.1%; n = 7 donors). Whereas 80% * 28.5%
of HLA-DR™ cells co-labeled with CD163™ macrophages
(n = 9 donors), only 18.5% = 6.5% of HLA-DR™ cells
co-labeled with CD3" (n = 9 donors). No correlation was
found between the number of HIV p24* cells and the
number of CD4* cells in plasma or in the seminal vesi-
cles (nonparametric Spearman’s test, P < 0.05). Similarly
there was no correlation between the number of HIV
p24* cells in the seminal vesicles and the number of
CD3* T lymphocytes, HLA-DR™ cells, and macrophages
(nonparametric Spearman’s test, P < 0.05).

Discussion

The present study highlights the seminal vesicles as a
possible source of HIV in semen inasmuch as for the first
time, seminal vesicle infection was evident both in vitro
and in HIV-infected men. Paradoxically, while they are the
major quantitative contributors to the seminal fluid, the
seminal vesicles have been the least studied of the male
genital organs, both in the context of HIV infection and
insofar as their immunobiology. Indirect arguments that
suggest that the seminal vesicles represent an important
contributor to HIV shedding in semen are that selective
sampling of genital fluids from HIV-positive men and
prostate biopsy specimens indicated distal genitourinary
sources other than the prostate gland (ie, seminal vesi-
cles, urethra, and/or associated glands) as the major
sources of seminal HIV in men without urethritis or pros-
tatitis,?! and in animal models, seminal vesicle infection
by SIV was detected in rhesus macaques with AIDS%223
and in asymptomatic cynomolgus macaques.'® To date,
HIV infection of human seminal vesicles has not been
reported. The only data available are from an early study
of patients with AIDS that failed to detect HIV nucleic
acids in the seminal vesicles of the three individuals
tested using in situ PCR.?*

Based on our experience of human male genital tract
tissue culture,'®2526 we developed an organotypic cul-
ture of the human seminal vesicles to study the intrinsic
susceptibility of this organ to infection by HIV-1 strains
with different co-receptor requirements, CCR5 or CXCR4.
Our study revealed that the overall structure of the organ,
as well as all of the cell types observed before culture,
were maintained during the 15-day culture period. Of
note, in contrast to expression of HIV receptor CD4 and
co-receptor CCR5 mRNA, which were still strongly ex-
pressed at the end of the culture period, a decline in
expression of the transcript encoding the HIV co-receptor
CXCR4 was observed from day 9 onward, although it was
still expressed throughout the culture. Insofar as HIV po-
tential target cells, seminal vesicles encompassed pri-
marily resident macrophages bearing the CCR5 co-re-
ceptor, located either within the stroma, close to the base
of the epithelium, or occasionally inserted between epi-
thelial cells. As previously reported in uninfected men?”
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Figure 5. Localization and characterization of HIV p24—positive cells in human seminal vesicles infected in vitro. A: Localization of cells positive for HIV-1 (red)
within seminal vesicle explants infected for 9 days with R54p4,, as detected using immunohistochemistry for the capsid protein p24. B: Double immunostaining
for p24 (green) and cell markers CD163 (red) (B) or CD3 (red) (C) was performed to determine the nature of the infected cells. Nuclei labeled with DAPI are shown
in blue. Large panel represents a merged image combining all channels. Side panels represent individual channels. Scale bars = 50 um.

and macaques, 23 T lymphocytes were much less fre-
quently observed than were macrophages. CD4* T
helper cells were primarily detected in the stroma,
whereas CD8™ cells were observed almost exclusively at
the epithelial level, in agreement with earlier findings that
characterized these latter cells as cytotoxic T lympho-
cytes.?® The pseudostratified columnar epithelium of the
seminal vesicles did not exhibit detectable levels of the
HIV receptors CD4, CCR5, and CXCR4 using immuno-
histochemistry, unlike monostratified polarized epithelia
(gastrointestinal, genital, and mammary), which express
CCR5 and/or CXCR4 and can transcytose or endocytose
HIV.29%° However, a low level of expression of those
chemokine receptors and/or expression of alternative re-
ceptors for HIV binding/entry such as heparan sulfate or
galactosylceramide cannot be ruled out.

We next tested human seminal vesicle infection by two
prototypic HIV-1 strains, R5g¢44, and X4,,g. These strains
were chosen because of their distinct and well-charac-
terized co-receptor usage (CCR5 versus CXCR4) and
tropism (macrophage tropic versus non-macrophage

tropic). Such prototypic non-primary R5 and X4 strains
have been widely used to test the susceptibility to HIV
infection of a range of tissues including the cervix, pros-
tate gland, foreskin, and penis.?®3'-3% With use of these
two strains, we demonstrated that the human seminal
vesicles are selectively infected by macrophage-tropic
HIV-1 R5 ex vivo and release infectious virions. The
R54r162 Strain consistently replicated in the seminal ves-
icle tissues, as assessed by increased reverse transcrip-
tase activity in seminal vesicle supernatants during cul-
ture, increased level of viral DNA in the explants, PBMC
infection by the viral particles recovered from the infected
seminal vesicle supernatants, and in situ detection of
infected cells in the explants using immunohistochemis-
try for HIV p24. HIV R5-infected cells were primarily mac-
rophages, whereas only a small number of infected T
lymphocytes were observed. This is in line with the higher
number of CCR5™ macrophages over CCR5" T lympho-
cytes detected in the seminal vesicles. That infected
macrophages were often observed close to the epithe-
lium suggests that viral particles can be released in the

Figure 6. Localization and characterization of
HIV-infected cells in seminal vesicles from HIV-
positive donors. PFPE sections of seminal vesi-
cles obtained at autopsy of HIV-infected donors
were examined for the presence of HIV-infected
cells using immunohistochemistry for HIV p24
(A) and in situ hybridization for HIV Gag RNA
(B). Small arrows in A indicate infected p24™
cells. The open arrow in B indicates an infected
HIV RNA™" cell co-localized with CD163 cell
marker. Immunophenotyping of p24" cells
(green) using either CD163 (C) or CD3 (red) (D)
demonstrated the presence of infected macro-
phages and T lymphocytes. Nuclei labeled with
DAPI are shown (blue). Large panel represents a
merged image combining all channels. Side pan-
els represent individual channels. In C and D,
open arrows indicate co-labeled cells; the
small arrow in D indicates an infected cell in
the lumen of the seminal vesicle epithelium
(shown with dotted lines) that did not co-local-
ize with CD3. Scale bars = 50 pum.
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Figure 7. Quantification of CD163™, HLA-DR", CD4™, and CD3™" cells in seminal vesicles from uninfected versus HIV-infected men. The respective percentages
of CD163™, HLA-DRY, CD8™, CD4™, and CD3™ cells per surface unit were evaluated using immunohistochemistry in the seminal vesicles from a minimum of five
uninfected donors and from nine HIV-infected men (Wilcoxon test, *P < 0.05; control, uninfected).

secretory lumen. In contrast, no increase in reverse trans-
criptase activity or viral DNA was observed in seminal
vesicle explants after exposure to the HIV-1 X4, strain
despite similar or higher viral stock titer to HIV R5gr4g2,
prolonged incubation with the virus, and longer culture
period (data not shown). In agreement with this, the ex-
plant supernatants collected at various times during cul-
ture did not trigger productive infection of PBMCs, and
infected cells were not detected using immunohisto-
chemistry. HIV-1 X4 restriction has been reported for
different organs in vitro and inferred to be either a low
number of CD4*CXCR4 " target cells,®® unfavorable cy-
tokine environment (eg, high level of the CXCR4 ligand
SDF-138), or lack3* or suboptimal activation®® of T lym-
phocytes inducing post-entry block. In the seminal vesi-
cles, the small number of CD4*CXCR4™ T lymphocytes
in the explants and the marked decrease in expression of
the CXCR4 transcript during culture are likely involved in
X4 restriction, although additional mechanisms cannot be
ruled out. In the prostate gland, we have previously dem-
onstrated a similar restriction of X4 strain replication.?®
However, in that case, a different mechanism was prob-
ably involved because CXCR4™ cells and T lymphocytes
outnumbered macrophages and CCR5™" cells.?®

R5 strains are selectively transmitted over X4 strains,
which are rarely transmitted and are observed in only a
subset of individuals later during the natural history of
HIV. Therefore, X4 strains are selected against both dur-
ing transmission and over the course of the disease by a
range of potential mechanisms.®” Although X4 variants

can sometimes be detected in semen, R5 viruses seem
to predominate (reviewed by Duenas-Decamp et al®®),
which may reflect selective replication in the male genital
tract organs. Whether the restriction for CXCR4-using
variants occurs in the seminal vesicles and prostate
gland in vivo remains to be determined. In addition, it is
important to remember that the two prototypic strains
used in the present study cannot reflect the full diversity
observed for primary strains in terms of co-receptor us-
age and tropism.>® Hence, some CXCR4-dependent pri-
mary isolates can productively infect macrophages via
CXCR4.4°742 |n contrast, the prototypic X4, strain does
not replicate in macrophages.*'*? Therefore, it cannot be
excluded that a subset of X4 strains may be able to
replicate in the seminal vesicle resident macrophages.
Furthermore, although HIV-1 R54¢,4, behaves similarly to
primary macrophage-tropic R5 strains,*® not all CCR5-
using strains are macrophage-tropic (reviewed by Due-
nas-Decamp et al®®).

Our observation of HIV infection of the seminal vesicles
in vitro was confirmed in vivo via analysis of the seminal
vesicle tissues from nine HIV-infected men. Of the seven
men who tested positive for HIV RNA and protein in the
seminal vesicles, five were receiving HAART, with an
undetectable blood viral load at the last measurement
before death (ie, between 1 week and 4 months), and two
had prolonged suppression of viremia for up to 5 years.
Although we cannot ascertain that in all of these men the
viremia was still undetectable at the time of death, this
suggests that the seminal vesicles may constitute a viral
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reservoir resistant to HIV eradication by antiretroviral ther-
apy. Infected cells were primarily macrophages and, to a
lesser extent, T lymphocytes. Chronically infected tissue
macrophages are generally regarded as long-lived res-
ervoirs in which reverse transcriptase inhibitors are inef-
fective and protease inhibitors demonstrate lower antivi-
ral activity than in T lymphocytes.**4® That productively
infected CD3" T cells were detected in treated men
could reflect poor penetration of the antiretroviral drugs in
the seminal vesicles because infected activated T lym-
phocytes are short-lived and usually rapidly eliminated
after HAART.*® Infected cells were observed either in the
stroma, close to the epithelium, or in the lumen of the
seminal vesicles (Figure 6D), which suggests that they
could contribute to semen contamination. SIV-infected
cells, CD68™ macrophages, and T cells have similarly
been reported in the lumen of the seminal vesicles from
macagues with AIDS.?22% Quantitative analysis of the
potential HIV target cells present in the seminal vesicles
from HIV-infected men revealed a moderate but overall
significant increase in macrophages, in agreement with
previous observations in the seminal vesicles from ma-
caques with AIDS.222% |n contrast, the numbers of CD4*
and CD3™ cells in HIV-infected men were not statistically
different from those in uninfected donors. This differs
from the increase in T lymphocytes reported in both ma-
caques with AIDS?2?® and in asymptomatic macaques
chronically infected and demonstrating a high blood viral
load.”® In the latter, the HLA-DR™ T-lymphocyte infiltrates
were characterized as a mix of CD4* and cytotoxic
cells.’® However, the absence of a significant increase in
T lymphocytes in the seminal vesicles from the HIV-in-
fected patients is in agreement with our previous findings
in chronically infected macaques with both low viremia
and low level of infection of the seminal vesicles, in which
T-cell infiltrates were not observed.'® Thus, low viremia
and/or low level of infection of the seminal vesicles in the
HIV-infected patients receiving HAART may prevent infil-
tration of activated T lymphocytes. Of note, seven donors
were co-infected with HCV and/or HBV, and one donor
was additionally infected with human T-lymphotropic vi-
rus. HCV and HBV co-infection is relatively common,
estimated to occur in 4 million to 5 million and 2 million to
4 million, respectively, of the 33 million persons infected
with HIV worldwide.*” Whereas HIV increases HCV and
HBV replication and has a negative effect on the progres-
sion of both HCV and HBV infection,*®~°" the reverse
remains unclear.*®%%52 For example, although HIV repli-
cation in co-infected patients may, in theory, be stimu-
lated by the persistent state of immune activation in-
duced by chronic HBV replication and by the HBV protein
HBx,>® no significant effect of HBV carriage on HIV pro-
gression has been observed.®° After initiation of HAART,
virologic and immunologic responses are generally sim-
ilar in both HCV/HIV®*55 and HBV/HIV®®58 co-infected
patients compared with those with HIV alone. Whether
HBV, HCV, or human T-lymphotropic virus co-infection
could influence seminal vesicle infection by HIV is cur-
rently unknown.

The potential sources of HIV in semen are local pro-
duction within one or several of the male genital tract

organs and tissues, ie, testes, epididymides, prostate,
seminal vesicles, bulbourethral glands, and urethral tis-
sue, and/or spillover from the blood. Although the oligo-
clonal amplification of blood viral strains evidenced in
semen? could reflect HIV replication in recently infiltrating
activated immune cells in male genital tract organs, com-
partmentalization of HIV strains between blood and se-
men? is likely due to prolonged viral replication under
specific selective pressures in the immune resident cells
of the male genital organs. We have previously demon-
strated that the human testes'® and the inflammatory
prostate with benign hyperplasia®® are infected in vitro
with HIV and produce infectious particles. The level of
reverse transcriptase activity and frequency of detection
of infected cells seemed to be lower in the testes com-
pared with the seminal vesicles and inflammed prostate
gland. Similarly, in SlIV-infected macaques in vivo, the
testes consistently demonstrated lower levels of infection
when compared with the accessory glands.’ This is
likely due to the lower number of HIV target cells (ie,
macrophages and T lymphocytes) in both human and
macaque testes when compared with the accessory
glands. Vasectomy, which eliminates secretions from the
testes, rete testes, epididymides, and proximal vasa def-
erentia, does not significantly alter the seminal viral
load,' which indicates that the testes and epididymides
are not a major source of free virus in semen. Although
vasectomy does not eliminate cell-associated HIV, 459
its effect on the number of infected cells is difficult to
assess because it artificially increases the detection of
HIV in seminal cells by eliminating the dilution factor
provided by the high number of noninfected spermato-
zoa in men who have not undergone vasectomy. There-
fore, while the testes and epididymides do not seem to
constitute an important source of free viral particles, their
role as a source of infected cells in semen cannot be
ruled out, in particular because the epididymides are an
important source of leukocytes in semen.%%:€° The con-
cept that infected cells and viral particles in semen may
arise from distinct genital organs is supported by several
elements; thus, the detection of cell-free HIV RNA is not
associated with that of cell-associated pro-viral DNA in
semen,’ and subcompartmentalization of HIV quasi-
species between seminal cells and seminal plasma has
been evidenced.*®' Whereas macrophage-tropic R5
strains are readily detected in cell-free seminal plasma,®?
T lymphocytes are the most commonly HIV-infected leu-
kocytes in semen,®® and pro-viral DNA envelope se-
quences in seminal cells are primarily not macrophage-
tropic.®* This argues against a major contribution of the
seminal vesicles to HIV-infected cells in semen because
in vitro and in treated men, the bulk of infected cells in this
organ is of macrophage nature. However, the situation
may be different in HIV-positive men who have not re-
ceived treatment, as suggested by the experience in
macaques in which T cells infiltrating the seminal vesicles
were observed.® The levels of reverse transcriptase ac-
tivity detected in the human seminal vesicle supernatants
were higher than those in the testes and were in the same
range as those we previously reported for an inflammed
prostate exposed to the same virus strain and dosage.



This suggests that the seminal vesicles could be a major
contributor to HIV particles in semen, as has been hy-
pothesized.?’

The present study offers several perspectives includ-
ing the following. First, the demonstration of infection of
several human and macaque semen-producing organs in
vitro and in vivo, together with evidence of organ-specific
signatures in macaques, paves the way for studies with
the objective of determining the respective contribution of
these organs to semen contamination. Second, whether
the seminal vesicles and/or other male genital tract or-
gans produce some of the transmitted strains observed
in acutely infected individuals remains to be determined.
Third, the finding of HIV-infected cells in the seminal
vesicles of HIV-infected men receiving HAART demands
further studies to explore the reasons for this persistence.
This is currently under investigation in our laboratory in
SIV-infected macaques receiving HAART. That seminal
vesicles host HIV and constitute potential reservoirs
should be taken into account when new therapy ap-
proaches are considered.
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