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Abstract
A large proportion of humans will experience a traumatic event at least once in their lifetime, with
up to 10% then going on to developing post-traumatic stress disorder (PTSD). In this review we
will discuss established pharmacological interventions for PTSD as well as highlight novel
therapeutic strategies undergoing extensive preclinical research as well as ongoing clinical
research. Such strategies include prophylactic treatments and use of pharmacotherapy as
adjunctive treatment with established trauma-focused psychological therapies. These potential
treatment approaches include modulation of stress effects on memory consolidation after trauma
(e.g. glucocorticoid, corticotropin releasing factor and norepinephrine signalling modulators), as
well as putative cognitive enhancers that target mechanisms of conditioned fear extinction and
reconsolidation (e.g. glucocorticoid receptor modulators and modulators of glutamate signalling
such as positive allosteric modulators of glutamate receptors, glycine transporter inhibitors,
glycine agonists, autoreceptor antagonists). We will discuss evidence for and against these
potential novel treatment strategies and their limitations.

Introduction
Posttraumatic stress disorder (PTSD) results from exposure to a traumatic event which
evoked fear, helplessness and horror. It is characterized by three symptom clusters, i.e., (1)
hypermnesia for the core traumatic event, with frequent re-experiencing of the traumatic
event in form of flashbacks and nightmares – aversive memories that can be triggered by
sensorimotor cues, for example, a noise that reminds the patient of the traumatic event – and
disturbed memory for peritraumatic events, (2) hyperarousal, characterized by exaggerated
startle, hypervigilance and irritability, and (3) avoidance behaviour, such as avoidance of
reminders associated with the trauma. Symptoms should persist for a minimum of four
weeks before a diagnosis is made. PTSD affects a subpopulation (10–15%) of people
exposed to traumatic events, with a lifetime prevalence of 6.8% in the US (Kessler et al.,
2005).
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Neural circuits and substrates implicated in PTSD
Conceptually, PTSD can be considered as a maladaptation to a traumatic stressor, with
altered fear-related learning (fear conditioning) and extinction, behavioural sensitisation/
kindling, and alterations in brain areas and neurotransmitter systems closely linked to these
processes. Here we will review these processes, their interactions and potential treatment
strategies to ameliorate them. A large amount of literature now focuses on the corticolimbic
circuit in PTSD, with neuroimaging studies reporting abnormalities in the prefrontal cortex
(PFC), hippocampus and amygdala in PTSD patients (Milad and Rauch, 2007; Quirk and
Mueller, 2008). These neural circuits are implicated in the putative fear learning
abnormalities and sensitization reported in PTSD. For example, insufficient top-down
control from the PFC to the amygdala has been suggested to play a role in impaired
extinction of fear-related memories (Koenigs and Grafman, 2009; Milad et al., 2009) and
executive control over fear responses (Aupperle et al 2011, this issue). Poor hippocampal-
PFC signalling may also underlie contextual memory deficits in PTSD, resulting in poor
contextual control of conditioned fear responses (Acheson et al 2011, this issue). Many of
these pathways are involved in different putative phases of PTSD development, either initial
fear learning, maintenance of fear memory/responses or extinction. We will discuss the
treatment strategies, either prophylactic or therapeutic, targeted at these pathways.

Consideration of these pathways suggests involvement of certain neurotransmitter and -
modulator systems: The main projections from the PFC to the amygdala or to dopamine or
acetylcholine inputs into the amygdala are glutamatergic in nature (Del Arco and Mora,
2009). Thus, insufficient top-down control from the PFC to the amygdala implies
involvement of glutamatergic pathways in PTSD, either directly or indirectly. For example,
it is thought that fear extinction requires PFC-activation of intercalated cells in the
amygdala, GABAergic interneurons that inhibit local activation and express a unique
receptor profile (Likhtik et al. 2008). Hence, at the level of the amygdala, different sub-
nuclei can affect each other via glutamatergic or GABAergic interactions (Pitkanen et al.,
1997; Amano et al., 2010), bringing the GABAergic system into play as a potential target
for PTSD therapeutics. More recently, another functional pathway involved in acute stress
responses has been delineated, consisting of an indirect pathway for inhibition of the
hypothalamic-pituitary-adrenal (HPA) axis. The PFC inhibits HPA activity via a
glutamatergic projection to the bed nucleus of the stria terminalis (BNST), part of the
extended amygdala, which activates a GABAergic inhibitory projection from the BNST to
the corticotropin-releasing factor (CRF) neurons in the hypothalamic paraventricular nucleus
(PVN) (Radley et al., 2009). This pathway may be particularly relevant as PTSD patients
exhibit increased cerebrospinal fluid (CSF) levels of CRF (Baker et al., 1999; Bremner et
al., 1997) and abnormalities in other HPA axis systems (e.g. pituitary adenylate cyclase-
activating polypeptide, PACAP, Ressler et al. 2011) suggests utility of compounds that
dampen the CRF system or other HPA axis hormones in the treatment of PTSD (Baker et
al., 2009).

Neural circuits and substrates underlying acute stress responding and trauma memory
encoding – targets for prevention

A number of interrelated neurochemical systems have been suggested to be involved in the
mediation of stress responsivity, formation of traumatic memories and the pathophysiology
of PTSD, including glutamate, GABA, CRF and noradrenaline, amongst others. Evidently,
there are strong interactions between these systems, giving rise to different therapeutic
approaches that could be useful to prevent the development of PTSD. Acute stress exposure,
for example, which may mimic the acute traumatic event leading to PTSD, induces increases
in glutamate transmission across multiple systems: PFC, amygdala, BNST, hippocampus
and noradrenergic locus coeruleus (LC) in rats (Gilad et al., 1990; Moghaddam, 1993;
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Reznikov et al., 2007; Walker and Davis, 2008). It has been suggested that insufficient top-
down control of these circuits from the PFC could lead to stress hyperreactivity. Poor PFC
control of the LC could lead to hyperreactivity of the noradrenergic projection from the LC
to the basolateral amygdala (BLA), while poor PFC control of the PVN could lead to
increased CRF and downstream glucocorticoid signalling (Hurlemann, 2008; Hurlemann et
al., 2007). These systems often act in a reciprocal fashion, with altered glucocorticoid
signalling in turn affecting acute glutamatergic neurotransmission in cortico-limbic circuits
(Moghaddam et al., 1994). There is also evidence for reciprocal modulation across CRF and
NE systems, with increased NE driving increased CRF release and vice versa (Gresack and
Risbrough, 2010; Dunn et al. 2004). Thus, there are strong interactions between the different
neuroanatomical and chemical systems that have been implicated in PTSD and
pharmacological manipulations of the glutamatergic or GABAergic systems, the CRF
system, the noradrenergic system, or normalization of HPA axis activity by other means
could be of utility in the treatment of PTSD, directly or indirectly affecting the different
neurochemical systems involved.

Likewise, the neurochemical systems that mediate acute behavioural and neuroendocrine
responses to stress also modulate the neuroplastic events that occur during trauma
processing, e.g., increased glutamatergic neurotransmission at the time of exposure to the
traumatic event may facilitate encoding of the traumatic memory in PTSD patients. This
process may be enhanced by altered glucocorticoid release from the HPA axis as glutamate-
induced NMDA receptor activation and stimulation of the glucocorticoid receptor (GR) by
glucocorticoids facilitates the activity of common intracellular signalling pathways critical
for memory consolidation. Thus, it has been suggested that GR and glutamate signalling
may synergistically facilitate activation of the extracellular-signal-regulated kinase (ERK)/
mitogen- and stress-activated kinase (MSK), leading to histone phospho-acetylation and
chromatin remodelling, a putative molecular substrate of these memories (Reul and Nutt,
2008). NMDA receptor activation has also been suggested to play a role in some of the
kindling-like processes that have been associated with the formation of spontaneous
intrusive memories (Grillon et al., 1996; Adamec, 1997) and states of high NMDA receptor
activity and high glucocorticoid function may serve as risk factors for developing PTSD as it
may increase the likelihood for aversive memory encoding (Reul and Nutt, 2008; Mehta and
Binder, in press).

Hyperreactivity of the noradrenergic projection from the LC to the BLA, in conjunction with
disinhibited glucocorticoid signalling, and the resultant enhanced signalling from the BLA
to the anterior hippocampus via the subiculum, has also been suggested to facilitate
encoding of the traumatic event at the time of the trauma, thereby contributing to the
development of PTSD (Hurlemann, 2008; Hurlemann et al., 2007). Thus, enhanced
glucocorticoid signalling and noradrenergic activation may act synergistically at the level of
the BLA, leading to potentiation of noradrenaline-induced activation of the cAMP-
dependent protein kinase A (PKA) by GR stimulation (Roozendahl et al., 2002b), which in
turn will enhance cAMP response element-binding (CREB) protein phosphorylation and
consequently chromatin remodelling as well. At the same time, glucocorticoids interact with
noradrenergic mechanisms in interfering temporarily with memory retrieval (De Quervain et
al., 2007), which could lead to disturbed recollection of peritraumatic events. Finally, high
CRF levels at the time of trauma may also facilitate encoding of trauma memory and
enduring anxiety effects via direct action at CRF1 receptors (Hubbard et al. 2007,
Roozendaal et al. 2008, Adamec et al. 2010).

Thus, there is strong evidence that many of the systems that mediate stress responses also
facilitate encoding of aversive memories, which could form the basis for the development of
PTSD and open up avenues for the development of novel prevention strategies.
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Neural circuits and substrates underlying chronic stress responding and trauma memory
retrieval – targets for symptom reduction

Once PTSD is established, the situation may be different: in established PTSD, lower basal
24h circulating cortisol levels have been reported, which may be due to enhanced negative
feedback inhibition of the HPA axis by glucocorticoids at the level of the pituitary gland
and/or hyporeactivity of the adrenals or the hypothalamus (Yehuda, 2005). These low
cortisol levels have been suggested to play a role in re-experiencing of the traumatic event as
they may facilitate retrieval of the aversive memories (De Quervain et al., 2009; but see
Baker et al., 2005, reporting elevated CSF cortisol levels in PTSD patients despite normal
plasma and urinary cortisol levels, suggesting that plasma cortisol is not representative of
central cortisol level). At the same time, it seems that there is a greater reactivity of the HPA
axis to stressors, which renders the HPA axis maximally responsive to stress-related cues in
PTSD (Yehuda, 2005), potentially facilitating re-consolidation of the aversive memories
(Taubenfeld et al. 2009).

Recent data generated in an animal model of PTSD, i.e., serial application of three different
stressors (called the single prolonged stress model), that recapitulates aspects of established
PTSD, i.e., enhanced negative feedback of the HPA axis and enhanced startle reactivity
(Khan and Liberzon, 2004; Kohda et al., 2007), also suggests that the glutamatergic system
may undergo changes over time: contrary to the increase in glutamate release seen following
acute stress exposure, it has been reported that single prolonged stress led to attenuated PFC
glutamate levels in rats (Knox et al., 2010). This reduction in glutamate levels could model
the putative reduced PFC activity in PTSD patients.

The hyperreactivity of the noradrenergic system seems to persist in PTSD patients and has
been suggested to mediate the hyperarousal symptoms seen, as well as the sleep
disturbances reported in this disorder (Southwick et al., 1999a; Liberzon et al., 2005;
Raskind et al. 2003). Increased NE signalling at the amygdala and hippocampus may also
facilitate retrieval of aversive memories (Southwick et al., 1999b).

Another monoaminergic system linked to PTSD is the serotonergic (5-HT) system (e.g.,
Krystal and Neumeister, 2009). Polymorphism of the 5-HT transporter (the 5-HTTLPR
genotype), in interaction with adult traumatic events and childhood adversity, has been
reported to be a susceptibility factor for PTSD (Lee et al., 2005; Grabe et al., 2009; Xie et
al., 2009). Furthermore, stress has been reported to increase 5-HT neurotransmission in
several forebrain regions, including frontal cortex, hippocampus and amygdala (Linthorst,
2005). Selective serotonin re-uptake inhibitors (SSRIs) are also efficacious in treating the
disorder at least in some individuals, suggestive that 5-HT could play a role in the
pathogenesis of the disorder (Bandelow et al., 2008).

Thus, neurotransmitter/neuromodulatory systems that have been or could be targeted by a
pharmacological approach to treat PTSD could include serotonergic, noradrenergic,
GABAergic and glutamatergic mechanisms, manipulations that affect HPA axis reactivity
via, for example, glucocorticoid or CRF receptor manipulations, as well as intracellular
signalling cascades associated with these systems and that may represent final common
pathways.

It is evident that pharmacological approaches may differ, depending on whether treatment
focuses on the development aspects of PTSD (preventive intervention around the time of
trauma when processes that could lead to PTSD may be initiated) or whether it aims at
treating chronic PTSD (symptom reduction). For instance, one may want to prevent the
consolidation of trauma-related memories early on by blockade of glutamatergic activity,
while one may wish to facilitate extinction of those memories once they have been
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established by enhancing glutamatergic function, i.e., opposite mechanisms of action may be
of utility, depending on the stage of the illness one wants to target.

Prevention
The treatment of chronic PTSD encompasses monotherapies or adjunctive therapies to
current pharmacological treatments or psychotherapy once symptoms have developed.
Preventive treatment starts prior to symptom development. Symptomatic or preventive
approaches raise different ethical and socioeconomic concerns: only a subpopulation of
those experiencing a traumatic event will also develop PTSD and indiscriminate treatment
should be avoided. Therefore, it would be useful for preventive treatment to be effective to
distinguish subjects that are at risk to develop PTSD from those that are not. However,
although a number of such markers have been proposed, e.g., lower cortisol levels, increased
heart rate dynamics shortly after the traumatic event or increased circulating PACAP
(Yehuda, 2004; O’Donnell et al. 2007; Ressler et al. 2011) or other vulnerability factors,
such as polymorphism of the 5-HT transporter (see above) or of FkBP5, a co-chaperone that
modulates the glucocorticoid receptor (GR) (Binder et al. 2008), none qualify so far as a
prognostic tool with sufficiently high accuracy. Another complicating factor of preventive
pharmacological approaches is the need of such treatment to effectively counteract the
development of PTSD symptoms, while leaving normal function undisturbed, i.e., the
normal psychological responses to traumatic events, including cognitive and psychomotor
function, should remain unimpaired.

There are some at risk populations, e.g. soldiers facing combat, in which preventive
pharmacological treatment before the traumatic event may be feasible. This strategy is called
prospective or primary prevention. Alternatively, preventive treatment could be given
shortly after the traumatic event, but well before symptoms develop. This is called
retrospective or secondary prevention and aims at preventing or blocking the induction or
consolidation of processes leading to PTSD. In the latter case, only those that really
experienced trauma would need intervention, which opens it up to a wider group of people,
including those that faced traumatic experiences under circumstances where trauma is less
likely to occur, e.g., following a car accident.

Pharmacological approaches for primary prevention
GR ANTAGONISTS, CRF1 ANTAGONISTS and CCK2 ANTAGONISTS—One
strategy for preventative treatment would be to enhance stress coping, i.e., to facilitate stress
resilience. A number of preclinical studies have investigated molecular mechanisms
involved in the stress response: blockade of the glucocorticoid receptor (GR) prior to
exposure to a single prolonged stressor prevented the development of enhanced fear
responses in rats (Kohda et al., 2007), CRF1 receptor antagonism prevented the initiation of
stress effects in a mouse predator stress model of PTSD (Adamec et al., 2010), and similar
findings have been reported with CCK2 antagonism (Adamec et al., 1997). These effects
may be mediated via inhibition of the HPA axis or via central effects at limbic circuitry.
Indeed, CRF1 receptor antagonism directly at the amygdala alone attenuates fear
conditioning (Hubbard et al. 2007; Roozendaal et al. 2002a), which may contribute to the
effects of these drugs. For drugs affecting HPA axis activity however, these findings would
suggest that interventions that prevent an exaggerated stress response may be beneficial
prior to the occurrence of the traumatic event. Following this line of reasoning, it would also
be conceivable that other classes of compounds that block HPA activity, such as vasopressin
antagonists, e.g., V1b antagonists, could be of utility. Interestingly, vasopressin has been
shown to affect consolidation processes, either directly or indirectly (e.g., Ettenberg et al.,
1982), further strengthening the case.
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GR AGONISTS—However, it should also be noted that individuals with lower peri-
traumatic cortisol levels have an increased likelihood for developing PTSD (Yehuda, 2004).
This finding in turn suggests that the above mentioned approaches to facilitate stress
resilience paradoxically may increase the risk of individuals to develop PTSD. This
paradoxical effect may be due to loss of feedback inhibition of the HPA axis, in that lower
cortisol levels at the time of the traumatic event may prevent termination of the sympathetic
stress response and consequently prolonged noradrenergic activity (Pacak et al., 1995; see
also below). Based on this hypothesis it was suggested that increased cortisol during the
traumatic event may block development of PTSD. Indeed, beneficial effects of posttrauma
hydrocortison have been reported in a few small, randomized clinical trials (Schelling et al.,
2001, 2004; Weis et al., 2006). Interestingly, high-, but not low-dose corticosterone
administered shortly after a predator stress attenuated stress-related behavioural responses in
rats, and it has been suggested that high-dose corticosterone disrupts memory consolidation
for the traumatic event, while low-dose corticosterone facilitates memory consolidation
(Cohen et al., 2008).

Thus, the net effect of direct or indirect GR manipulations seems to be dose-dependent and
outcome of such manipulations in PTSD patients may depend on exposure achieved at the
GR. It will be difficult to predict this response at the individual level as cortisol efficacy may
depend on individual differences in cortisol responses to stress and in expression of genes
modulating GR signalling (e.g. FKBP5, see Mehta and Binder, in press, this issue). In sum,
there seems to be an inherent risk that interventions that inhibit GR signalling, either directly
or indirectly, could actually facilitate the development of PTSD. Clearly more studies are
required to delineate the complex role of GR signalling effects during and after trauma to
develop appropriate prophylactic treatments targeted at this system.

Pharmacological approaches for secondary prevention
GR ANTAGONISTS, CRF1 ANTAGONISTS and CCK2 ANTAGONISTS—
However, the design of the preclinical studies mentioned above do not allow unambiguous
conclusions that treatment given prior to stress exposure really mirrors primary prevention.
Drug effects may be carried over to post-stress conditions and hence could still have effects
on consolidation processes, reflecting secondary prevention. In support of this argument, it
has been shown that the protein synthesis inhibitor anisomycin, administered either shortly
before or after predator stress, also attenuated anxiety-related behaviour in rats (Cohen et al.,
2006). Of note, de novo protein synthesis is critical for successful consolidation processes to
take place, but not necessarily for stress responsivity. Likewise, it has been shown that
CRF1 receptor antagonism or CCK2 receptor blockade also prevented the consolidation of
stress effects in rodent stress models of PTSD (Adamec et al., 1997b, 2010; Wang et al.,
2010). GR blockade also interferes with aversive memory consolidation at the level of the
basolateral amygdala (Roozendaal, 2000). These effects on consolidation support the utility
of these compounds in secondary prevention and suggest that their efficacy in models of
primary prevention might be confounded with effects on consolidation.

ADRENOCEPTOR AGONISTS and ANTAGONISTS—Other secondary preventive
approaches focused on manipulations of the noradrenergic system, for example by
prevention of presynaptic noradrenaline release with α2 adrenoceptor agonists or opioids.
The α2 adrenoceptor agonist dexmedetomidine indeed blocks fear consolidation (Davies et
al., 2004), although this was tested in normal mice not in a PTSD mouse model. However,
no preventive clinical PTSD studies using α2 adrenoceptor agonists have been reported.
Blocking postsynaptic noradrenaline receptors seems less efficacious as a preventative
treatment: the α1 adrenoceptor antagonist prazosin failed to block increases in stress-related
types of behaviour in rats exposed to predator stress (Adamec et al., 1999). Some considered
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the β adrenoceptor blocker propranolol as being the most promising candidate drug for
intervention after a traumatic event (Pitman and Delahanty, 2005) as it has shown efficacy in
preventing some trauma-related physiological reactivity (Pitman et al. 2002). However, a
subsequent clinical trial found propranolol to be ineffective when given immediately after
trauma (e.g. in the hospital) to prevent the development of PTSD as measured by clinical
rating scales (Stein et al., 2007). On a side note, it is worth mentioning that although
propranolol may not itself show efficacy, these studies do support the feasibility to examine
potential prophylactic treatment approaches with future novel targets.

NMDAR AND GABAERGIC COMPOUNDS—NMDA receptor antagonists also
interfered with anxiety-related behaviour in rats if given shortly after exposure to predator
stress (Adamec et al., 1999), which may not come as a surprise given the involvement of
NMDA receptors in memory consolidation processes. In this respect, it is worth noting that
in a preliminary, retrospective study, McGhee et al. (2008) found that in a group of burned
service men those treated with the NMDA receptor antagonist ketamine during
hospitalization had lower incidence of developing PTSD. These preclinical and clinical
findings support the utility of novel pharmacological tools targeting NMDA receptor
subunits or function could be of benefit while avoiding some of the side effects inherent to
NMDA receptor blockade. Some examples of possible targets are metabotropic glutamate
receptor (mGluR) 2 positive allosteric modulators (PAMs), which reduce glutamate release
via presynaptic negative feedback, antagonists or negative allosteric modulators (NAMs) of
postsynaptic mGluR5 receptors (but see Fendt and Schmid, 2002), or NR2B antagonists.

Moreover, the benzodiazepine alprazolam exaggerated stress effects when given shortly
after predator stress exposure to rats (Matar et al., 2009). In humans, benzodiazepines have
also previously been shown to facilitate memory for events that occurred just prior to
treatment (Hinrichs et al., 1984), presumably due to blockade of active interference during
consolidation. These findings are in line with clinical reports that secondary prevention with
benzodiazepines has no effect (Gelpin et al., 1996; Mellman et al., 2002) or could even
increase the likelihood of trauma victims to subsequently develop PTSD. This lack of
efficacy may be due to the difference in efficacy of benzodiazepines to induce retrograde vs.
anterograde amnesia, in other words benzodiazepines predominantly disrupt active associate
processes and only affect consolidation when very high doses are used (Cahill et al. 1986;
Jensen et al. 1979). Thus drugs that are efficacious in inducing mild retrograde amnesia may
be more fruitful than drugs that facilitate anterograde amnesia only (L. Cahill personal
communication).

OPIODS—There is some evidence that morphine administration shortly after the traumatic
event reduces the likelihood for trauma victims to develop PTSD (Saxe et al., 2001; Bryant
et al., 2009; Holbrook et al., 2010). Thus far studies have been purely naturalistic and further
random controlled studies are needed to confirm these intriguing findings. The potential
mechanism of these effects is unknown, however it is possible that it could be via an indirect
reduction in noradrenergic activity after morphine treatment, or a direct action at intercalated
cells in the amygdala that are critical for fear extinction processes (Likhtik et al. 2008).

Treatment of Established PTSD – Non-cognitive symptoms

Once the disorder is established, one could consider targeting the emotional response, i.e.,
the expression of fear or other non-cognitive symptoms associated with PTSD, such as
hyperarousal, or the cognitive processes associated with PTSD, such as retrieval of aversive
memories or extinction of fear-related memories. Of note, treatments that suppress non-
cognitive PTSD symptoms are the only currently approved pharmacotherapeutic strategy.
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SSRIs—Selective serotonin re-uptake inhibitors (SSRIs) have shown efficacy in reducing
symptom severity and in relapse prevention in PTSD patients (e.g., Van der Kolk et al.,
1994; Connor et al., 1999; Brady et al., 2000; Martenyi et al., 2002; McRae et al., 2004;
Davidson et al., 2006; Onder et al., 2006), although only approximately 60% of patients
respond to the treatment and only about 20 – 30% of patients will achieve full remission
(Stein et al., 2002; Zohar et al., 2002). However, a recent report from the Institute of
Medicine concluded that current evidence to determine efficacy of SSRIs is at best
suggestive (Committee on Treatment of Posttraumatic Stress Disorder, 2008) and more
recent guidelines on the treatment of PTSD question the use of SSRIs for veterans with
combat-related PTSD relative to their therapeutic benefit in patients with non-combat-
related PTSD (Benedek et al., 2009). Thus, while SSRIs can be considered relatively well
tolerated and safe, further studies with higher power are needed before conclusions can be
drawn. Moreover, SSRIs still suffer a number of shortcomings, including delayed onset of
action, partial response with residual symptoms, or non-response, and undesirable side
effects (e.g., loss of sexual drive, gastrointestinal effects, changes in body weight) which
limits their utility and indicates a major unmet medical need for novel treatment approaches
in PTSD.

OTHER ANTIDEPRESSANTS—Besides SSRIs, a number of other pharmacological
approaches have been investigated in the clinic for treating PTSD patients, including other
antidepressants, adrenoceptor antagonists, anticonvulsants, atypical antipsychotics and
benzodiazepines (see Ravindran and Stein, 2010, for a review). Antidepressant drugs
include dual serotonin and noradrenaline re-uptake inhibitors, such as venlafaxine (Davidson
et al., 2006), tricyclic antidepressants such as amitriptyline (Davidson et al., 1990) and
imipramine (Frank et al., 1988), monoamine oxidase inhibitors (MAOIs) like phenelzine
(Frank et al., 1988), reversible monoamine oxidase A inhibitors (RIMAs) such as
moclobemide (Onder et al., 2006), as well as drugs with other mechanism of action, like the
5-HT2A/2C antagonist/5-HT re-uptake inhibitor nefazodone (McRae et al., 2004), the mixed
α2A/2C adrenoceptor antagonist/5-HT2A/2C/3 antagonist mirtazapine (Davidson et al., 2003)
and 5-HT re-uptake enhancer/glutamate modulator tianeptine (Onder et al., 2006). While
these drugs showed therapeutic utility in clinical trials and some of them seem to be equally
effective as SSRIs, they have not become first line treatment for PTSD, partly also because
they are less well tolerated (Bandelow et al., 2008). Although the primary mechanism of
action differs amongst these antidepressant drugs, it is noteworthy that all of them interact
with monoaminergic (serotonergic and noradrenergic) systems. In addition, antidepressants
of various classes have been shown to normalize HPA axis activity in response to stress and
to enhance hippocampal neurogenesis (Reul et al., 1994; Gold et al., 1995; Matheson et al.,
1997; Stout et al., 2002; Xu et al., 2006; Kasper and McEwen, 2008; Szymanska et al.,
2009; McEwen et al., 2010), which may represent a final common pathway.

ADRENOCEPTOR AGONISTS AND ANTAGONISTS—There have also been attempts
to normalize the noradrenergic hyperreactivity suggested to underlay PTSD hyperarousal
symptoms. Blockade of the α1 adrenoceptor with the α1 adrenoceptor antagonist prazosin
has been reported to improve various PTSD symptoms, but in particular sleep and
ameliorate nightmares (Peskind et al., 2003; Raskind et al., 2003; 2007; Taylor et al., 2008).
A recent comparison study of prazosin and quetiapine for ameliorating night-time sleep
disturbance indicates better overall tolerability of prazosin (Byers et al 2010). Ligands acting
at the α2 receptor have been less promising. Mirtazapine has shown positive results in one
study of PTSD (Davidson et al., 2003), which suggests that α2A/C adrenoceptor blockade
also has beneficial effects, although mirtazapine’s effects could of course also be mediated
via serotonergic mechanisms (Yamamura et al. 2011). In this respect it is of note that
mirtazapine increases NE release in various brain areas via α2A autoreceptor blockade
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(Haddjeri et al., 1996), thereby facilitating α1 activity. Stimulation of presynaptic α2A
autoreceptors with the α2A adrenoceptor agonist guanfacine, which should lead to reduced
noradrenaline release, on the other hand, failed to reveal therapeutic benefit (Neylan et al.,
2006; Davis et al., 2008). However agonist activity at post-synaptic α2A receptors may mask
effects of presynaptic blockade of NE release, as guanfacine has potent agonist activity at
post-synaptic receptors (Arnsten et al., 1988). Non-selective β adrenoceptor blockade with
propranolol was ineffective when given to prevent the development of PTSD in a recent
study by Stein et al. (2007), although there is some resurgence of interest in using
propranolol in conjunction with therapy (see below). Thus, while there is some evidence that
manipulations of noradrenergic activity may have utility specifically for sleep disturbances,
efficacy for overall symptom reduction is not supported thus far.

ANTICONVULSANTS—Anticonvulsant drugs have been proposed to be of benefit in
treating PTSD due to their anti-kindling effects (Hageman et al., 2001; Berlin, 2007). This is
a very heterogeneous group of drugs and often their mechanism of action is poorly
understood. However, some anticonvulsants, such as lamotrigine and topiramate, have
downstream effects that include inhibition of glutamate neurotransmission (Ahmad et al.,
2004; Sitges et al., 2007), which could also be a mechanism through which tianeptine affects
PTSD (Reznikov et al., 2007). As will be discussed below, glutamatergic approaches offer
potential for the development of novel pharmacological treatments for PTSD. However,
while some authors consider treatment with anticonvulsant drugs to be a promising approach
for PTSD (e.g., Hageman et al., 2001; Adamou et al., 2007; Berlin, 2007), others conclude
that the use of anticonvulsants in PTSD has only very limited support based on recent
clinical trials (Berger et al., 2009; Ravindran and Stein, 2010). Likewise, only a limited
number of randomized clinical trials have evaluated the effects of benzodiazepines in PTSD,
with no or modest beneficial effects in PTSD patients (Braun et al., 1990; Gelpin et al.,
1996; Mellman et al., 2002; Cates et al., 2004).

ANTIPSYCHOTICS—Atypical antipsychotic drugs are largely used as adjunctive therapy
to e.g. antidepressant drugs in the treatment of PTSD. Only a limited number of randomized,
double-blind, placebo-controlled clinical trials have been reported with risperidone and
olanzapine, leading to mixed results (e.g., Butterfield et al., 2001; Stein et al., 2002; Hamner
et al., 2003; Monnelly et al., 2003; Reich et al., 2004; Padala et al., 2006).

Thus, although there is evidence that pharmacological approaches using psychoactive drugs
that are currently in the clinic have some beneficial effects in PTSD, with the most
convincing data generated for antidepressant drugs, this evidence must be considered mixed.
Almost all of the drug classes examined for efficacy in PTSD suffer from a dearth of
adequately powered studies to support definitive conclusions either for or against efficacy.
Along these lines, the Committee on Treatment of Posttraumatic Stress Disorder (2008)
concluded that for all the drug classes mentioned above, the evidence is inadequate to
determine efficacy in the treatment of PTSD. Overall the field clearly requires more
efficacious pharmacological approaches to treat this disorder, as well as a more concentrated
effort to adequately test potential therapeutics in large randomized clinical trials (Leon and
Davis, 2009).

Treatment of Established PTSD – Cognitive symptoms
Once a memory about the traumatic event is formed, a number of processes take place that
could still be amenable to pharmacological intervention. Retrieval refers to the activation of
an aversive memory trace of the traumatic event that led to PTSD, for example, in
flashbacks, nightmares or intrusive recollections of the traumatic event, with an external or
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internal stimulus that triggered the recollection. Preventing retrieval of such memories
would be one possible strategy to improve PTSD symptoms.

Memory retrieval, consolidation and re-consolidation
GR AGONISTS—Memory retrieval in animals (De Quervain et al., 1998) and humans
(Newcomer et al., 1999) has been shown to be impaired by the administration of
glucocorticoids (but see Tollenaar et al., 2009, for negative results measuring physiological
responses to aversive emotional memories in healthy volunteers following cortisol
administration). Preliminary data from a case-control study with three PTSD patients seem
to support the idea that low-dose cortisol treatment reduced the ratings of the severity of
traumatic memories (Aerni et al., 2004). These preliminary findings need to be substantiated
in an appropriately powered vehicle controlled, randomized, double-blind clinical trial
before any conclusions can be drawn. However, the data would suggest that cortisol
treatment may be beneficial both as secondary prevention and to interfere with the retrieval
of aversive memories once PTSD is established.

Another therapeutic option that has been more widely investigated would be to modify
reconsolidation processes. Reconsolidation refers to the fact that a memory is “re-
consolidated” after reactivation/retrieval. In PTSD, flashbacks or intrusive memories about
the traumatic event represent a retrieval of that aversive memory trace, that will
subsequently be reconsolidated (Charney 2004). Prevention of reconsolidation, which over
time should lead to a weakening of the aversive memory trace, may represent another
window of opportunity for pharmacological intervention. Not surprisingly, some of the same
pharmacological mechanisms that have been suggested to play a role in the consolidation of
traumatic memories have also been suggested to be of relevance for reconsolidation
processes, including GR receptors (Tronel and Alberini, 2007; Taubenfeld et al., 2009). For
example, a recent double-blind placebo controlled study found that glucocorticoid
administration after imagery-driven reactivation of trauma memories had a temporary (<1
mo) effect on PTSD symptom severity (Suris et al. 2010).

NMDAR AND GABAERGIC COMPOUNDS—NMDA receptors also play an important
role in reconsolidation processes (Suzuki et al., 2004; Lee et al., 2006) and it can be
suggested that manipulations that (indirectly) attenuate NMDA receptor function (such as
treatment with mGluR2 PAMs or mGluR5 NAMs) may also be of benefit. Conversely,
facilitation of GABAergic function by the benzodiazepine midazolam disrupted
reconsolidation processes of fear memory (Bustos et al., 2006; Zhang and Canney, 2008),
suggesting that this class of drugs may have utility in the treatment of PTSD, although
possibly not for preventive treatment. The question is how these effect on reconsolidation
can be readily translated to clinical research, at what times does reconsolidation normally
occur post-trauma, either naturalistically or how can it be induced during clinical
intervention.

It has also been reported that inhibition of the mammalian target of rapamycin (mTOR)
inhibits reconsolidation of fear memory (Blundell et al., 2008). This finding is interesting for
two reasons: First, it could open another new avenue of treatment for PTSD using mTOR
kinase inhibitors, although it is of note that those compounds also modulate the immune
response, which may prevent their use for the indication of PTSD. Second, it has recently
been reported that mTOR-dependent synapse formation underlies the rapid antidepressant
effects of NMDA antagonists (Li et al., 2010), and it is tempting to speculate that the same
signalling cascades may also play a role in the potential therapeutic effects of NMDAR
blockade in PTSD.
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CANNABINOIDS—Another interesting pharmacological approach could be the
manipulation of the cannabinoid system, as it was shown that bilateral infusion of CB1
receptor agonists into the amygdala after memory reactivation blocked reconsolidation of
fear memory (Lin et al., 2006), while bilateral hippocampal CB1 blockade facilitated
reconsolidation of fear memory (De Oliveira Alvares et al., 2008). Clearly, treating PTSD
patients with CB1 agonists would be problematic, not at least because of the abuse risk of
such compounds. However, one could consider indirect manipulation of the
endocannabinoid system, for example, by fatty acid amide hydrolase (FAAH) inhibition,
which prevents degradation of endogenous endocannabinoids such anandamide.
Interestingly, anandamide administration into the hippocampus blocked reconsolidation of
fear conditioning (De Oliveira Alvares et al., 2008), suggesting increasing endogenous
levels may be a useful strategy to attenuate reconsolidation processes in PTSD.

ADRENOCEPTOR ANTAGONISTS—The effects of the β-adrenoceptor antagonist
propranolol were studied by Debiec and LeDoux (2004), reporting that propranolol injected
into the amygdala blocked reconsolidation, but not consolidation. These findings suggest
that propranolol may be of utility in PTSD patients during reconsolidation, while being less
efficacious for secondary prevention. However, other studies suggest that the efficacy of
systemically administered propranolol to affect reconsolidation is limited and depends on
the specific preclinical test used - inhibitory avoidance versus fear conditioning in that
particular study (Muravieva and Alberini, 2010). In humans, there is preliminary evidence
from a recent small, placebo-controlled, randomized double-blind clinical trial by Brunet et
al. (2008) suggesting that propranolol may be beneficial when given to patients with chronic
PTSD after they had to retrieve the traumatic memory, i.e., during reconsolidation. While
encouraging, this finding must be confirmed in a larger trial.

Limitations to the strategy of disrupting consolidation or re-consolidation are that the
treatment must not disrupt other critical processes such as fear extinction learning, and must
not disrupt normal, non-trauma related cognitive processes. One practical way to get around
this issue is to treat the patient only in the clinic during specific re-consolidation based
therapy (e.g. Brunet et al. 2008). For chronic use pre-clinical studies of such target
compounds will need to be conducted to evaluate the potential side effects of these drugs on
other cognitive domains. Legal/ethical concerns have also been voiced for drugs that alter
memory of traumatic events that result in legal actions (e.g. rape). For a consideration of the
legal aspects of therapeutic strategies that interfere with memory consolidation see a recent
review by Fletcher et al. (2010).

Fear extinction
Patients suffering from PTSD are also impaired in extinction of learned fear (Guthrie and
Bryanth, 2006; Blechert et al., 2007), with impairment predicting symptom severity
(Norrholm et al 2011). Extinction is a process whereby a learned fear response is reduced
via repeated presentation of the conditioned stimulus (CS, i.e., a trauma-related cue, for
example, a noise of a horn previously associated with a car crash or a tone previously
associated with foot shock in a rodent fear conditioning experiment) in the absence of the
unconditioned stimulus (US; in our examples, the traumatic event of a car crash or the foot
shock). It is considered to be a process whereby new memories are formed, i.e., the patient
learns that the CS is not necessarily associated with the US. As such, extinction memory is
encoded, consolidated and expressed as are other types of memory.

NMDAR COMPOUNDS—Extinction of learned fear has been shown to be susceptible to
NMDA receptor blockade in the amygdala (Falls et al., 1992), while enhancement of
NMDA receptor function (e.g., indirectly by the glycine receptor partial agonist d-
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cycloserine either systemically administered or infused into the amygdala) facilitates
extinction learning (e.g., Walker et al., 2002; Ledgerwood et al., 2003; see also Myers et al.,
2011, for a recent review on glutamatergic mechanisms involved in extinction processes).
Likewise, d-cycloserine attenuates impaired fear extinction induced by single prolonged
stress (Yamamoto et al., 2008), providing evidence from a preclinical PTSD model that d-
cycloserine in support of potential beneficial effects on extinction in PTSD patients.
Clinically, beneficial effects of d-cycloserine in combination with exposure therapy have
been reported in agoraphobia (Ressler et al., 2004), social anxiety disorder (Guastella et al.,
2008) and panic disorder (Otto et al., 2010), although controlled clinical trials looking
specifically at the potentially beneficial effects of d-cycloserine on extinction processes in
PTSD are outstanding. Interestingly extinction of learned “fear” produced in the laboratory
using shock stimuli in healthy controls does not seem to be affected by d-cycloserine
treatment (Guastella et al 2007). This somewhat surprising finding may be due to differing
neural substrates underlying trauma-related clinical symptoms versus fear conditioning in
the laboratory (Grillon 2009). Along similar lines to dcycloserine as a putative adjunctive
treatment to exposure-based therapy, it can be argued that other drugs that facilitate NMDA
receptor function, such as glycine transporter inhibitors, mGluR2 NAMs or mGluR5 PAMs,
or that enhance other aspects of glutamatergic neurotransmission, such as AMPA PAMs,
should also enhance extinction of fear responses to trauma memories. In rats, the AMPA
receptor potentiator PEPA and glycine transporter inhibitor NFPS facilitated extinction
learning for contextual and cued fear respectively (Zushida et al., 2007, Mao et al. 2009).
PAMs of mGluR5 have been shown to facilitate extinction of cocaine contextual memory
(Gass and Olive, 2009), although no data showing similar effects of mGluR5 modulation on
fear conditioning or investigation of these mechanisms in PTSD models have been
published yet.

Histone deacetylase (HDAC) inhibition, which prevent the deacetylation of histones,
thereby affecting the same intracellular signalling cascade that is also susceptible to NMDA
receptor modulation (Reul and Nutt, 2008), has also shown promise in facilitating extinction
in preclinical models (Lattal et al., 2007). A limitation to this target however is that HDAC
inhibitors, especially non-subtype selective ones, may be associated with a safety profile that
again would prevent their use in this indication (Menegola et al., 2005).

CANNABINOIDS—Facilitation of extinction of fear conditioning was also seen following
administration of a CB1 receptor agonist (Pamplona et al., 2006; but see Lin et al., 2008,
showing that chronic CB1 agonism impaired fear conditioning extinction) or inhibitor of
endocannabinoid breakdown and reuptake (Chhatwal et al. 2005). However, the abuse
potential associated with CB1 agonism is likely to make this approach for treating PTSD
patients undesirable due to an increased risk/benefit ratio.

ADRENOCEPTOR ANTAGONISTS—Activation of norepinephrine has also shown
promise in preclinical models of fear extinction as well as treatment with the non-specific
alpha2 adrenoceptor antagonist yohimbine (Cain et al., 2004; Morris and Bouton, 2007;
Holmes and Quirk, 2010, but see Mueller et al., 2009). However, yohimbine itself can cause
panic attacks in PTSD patients (Southwick et al. 1997; 1999b).

A complicating factor is that many of the potential therapeutic approaches that facilitate
extinction also enhance other forms of learning and memory, at least preclinically. For
example, NMDA receptor blockade not only interferes with extinction of aversive
memories, but also with reinstatement of conditioned fear, i.e., also prevents the
reinstatement of aversive memories, which occurs when the US is presented alone following
extinction of the CS (Johnson et al., 2000). Thus facilitation of NMDA receptor function
might not only enhance extinction or habituation, but also reinstatement of conditioned fear,
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depending on which process predominated at the time of adjunctive treatment to exposure
therapy, thereby worsening rather than improving the clinical condition. However, this
potential issue has not yet been sufficiently investigated clinically to allow firm conclusions.

Summary
Because PTSD involves a precipitating traumatic event that often leads to medical
evaluation there is a significant potential window for prophylactic treatment that should not
be ignored. Preclinical models of PTSD and some early clinical trials suggest that
prophylactic treatment approaches are feasible. Clearly such treatments, as with most
preventive treatments (e.g. aspirin for heart attack prevention or statin drugs for cholesterol
reduction), must be extremely safe for use across patients with varied degrees of physical
injury. This risk/benefit ratio will be a high bar for drug development to clear. The impact of
an effective prophylactic treatment would be vast however, especially in socially critical and
high risk personnel such as police, fire fighters and the military. We have also reviewed a
number of potential targets from preclinical models that could modulate conditioned fear
processes after PTSD has developed. In the clinic, the efficacy of such putative adjunctive
treatments with trauma-focused therapies will greatly depend not only on the efficacy of the
compound itself, but also the protocol of the psychological therapy (e.g. being focused on
extinction learning or being targeted towards reconsolidation). Nonetheless,
pharmacological treatments that aid specific therapies in mental health, such as learning new
skills (e.g. oxytocin to facilitate social interaction training in autism, Hollander et al. 2007)
and remodulating memories or behaviours (e.g. exposure therapy in PTSD) is an exciting
avenue of research that could represent a paradigm shift in pharmacological treatment of
PTSD. Such therapeutic approaches may also circumvent some safety issues as they will be
taken only under therapy supervision, given over limited periods of time, thus reducing
issues of tolerance, abuse potential, and side effects linked to chronic administration.
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PTSD currently has few proven pharmacotherapeutics

In this review we will discuss novel treatment targets and approaches

Novel approaches can be prophylactic or adjunctive

Pharmacological modulation of extinction or reconsolidation may hold promise

Steckler and Risbrough Page 23

Neuropharmacology. Author manuscript; available in PMC 2013 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


