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Abstract
Interactions between proteins and their ligands play central roles in many physiological processes.
The structural details for most of these interactions, however, have not yet been characterized
experientially. Therefore, various computational tools have been developed to predict the location
of binding sites and the amino acid residues interacting with ligands. In this manuscript, we assess
the performance of 33 methods participating in the ligand binding site prediction category in
CASP9. The overall accuracy of ligand binding site predictions in CASP9 appears rather high
(average MCC of 0.62 for the ten top performing groups), and compared to previous experiments
more groups performed equally well. However, this should be seen in context of a strong bias in
the test data towards easy template based models. Overall, the top performing methods have
converged to a similar approach using ligand binding site inference from related homologous
structures, which limits their applicability for difficult “de novo” prediction targets. Here, we
present the results of the CASP9 assessment of the ligand binding site category, discuss examples
for successful and challenging prediction targets in CASP9, and finally suggest changes in the
format of the experiment to overcome the current limitations of the assessment.
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Introduction
To perform their functions, proteins interact with a plethora of small molecules within the
cell. Most of these interactions are unspecific and transient in nature (e.g. interactions with
water and ions), some are persistent and may play a structural or functional role (e.g. certain
metal ions), and others might be transient but nevertheless highly specific, often resulting in
essential changes of the protein or the ligand (e.g. enzyme-substrate complexes or receptor-
ligand complexes). Hence, the identification of a protein’s functionally important residues,
such as ligand binding sites or catalytic active residues, is a crucial step towards the goal of
understanding the protein’s molecular function and its biological role in the cell. Although
protein ligand interactions are crucial for the function of a protein, in many cases they are
unknown. While the kind of ligands interacting with a protein is often known from
biochemical analyses, elucidating the structural details of these interactions requires
elaborate and time-consuming studies by X-ray crystallography or NMR. Therefore,
computational tools have been developed aiming at predicting the precise location of
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binding sites, and specifically which amino acid residues in a protein are directly interacting
with ligands. Various approaches for the prediction of ligand binding sites have been
proposed,1 both from structure and from sequence, based on sequence conservation 2–7,
geometric criteria of the protein surface 8–12 or homology transfer from known
structures.13–17

The function prediction category (FN) was introduced in the 6th Critical Assessment of
Protein Structure Prediction (CASP), where predictions for Gene Ontology molecular
function terms, Enzyme Commission numbers, and ligand binding site residues were
evaluated. 18,19 Since very little new functional information becomes available during and
after the experiment, the first two categories were difficult to assess. Therefore, since
CASP8 the prediction task has been to identify functionally important residues such as
ligand binding residues or catalytic residues. 20 Here, we present the assessment of 33
groups participating in the recent CASP9 experiment. In the ligand binding site prediction
category (FN), the sequence of a protein with unknown structure was provided to predictors.
The task was to predict the residues directly involved in ligand binding in the experimental
control structure. This approach differs significantly from typical ligand binding studies
(like docking or virtual screening), where the chemical identity of the ligand is given, and
the correct geometric orientation of the molecule in the receptor protein is to be
determined. 21–25 In CASP however, the chemical identity of the ligand is unknown at the
time of prediction, and only the interacting residues are predicted.

In summary, all top performing groups have applied a similar approach, using ligand
information derived from homologous structures in the PDB.26 In comparison to CASP8,20

we could not observe a significant progress by the top groups, but rather a larger number of
groups performing at the same level. We believe that this observation is caused on one side
by the bias in the data set to “easy” template based predictions with only a very small
number of difficult “de novo” targets in recent rounds of CASP. This gives strong advantage
to methods using PDB information directly, but discourages the development of methods
addressing the more challenging “de novo” cases. Another limiting factor is the binary
format of the prediction task, which does not allow specifying probabilities for specific
residues or differentiating between types of ligands.

Materials and Methods
Prediction Targets

All CASP9 target structures were analyzed for non-solvent non-peptidic ligand groups in the
deposited protein structures. Based on literature information, UniProt 27 annotations,
structures of closely related homologues (Table SI, Supplementary Material), and
conservation of functionally important residues, we aimed at identifying ligands with
biological/functional relevance for the specific protein. All targets, including those
containing ligands classified as “non-biologically relevant”, were further analyzed to
indentify cases where a ligand clearly mimicked the interactions of known biologically
relevant ligands for this target.

Binding Site Definition
For each prediction target, binding site residues were defined as those residues in direct
contact with the ligand in the target structure, i.e. all protein residues with at least one heavy
atom within a certain distance from any heavy atom of the ligand. The distance cutoff was
defined by the CASP organizers as the sum of the van der Waals radii of the involved atoms
plus a tolerance of 0.5 Å. In addition, different tolerance values ranging from 0 to 2.0 Å
were evaluated.
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In cases where multiple chains with bound ligands were present in the target structure (e.g.
homo-oligomeric assemblies), the definition of the binding site residues for individual
chains were combined into a single binding site definition. For targets where ligands were
observed to bind in the interface between multiple chains, the oligomeric structure as
defined by the authors and PISA 28 (5 cases) or only PISA (1 case) was used for the binding
site definition. Analysis of structures and ligand binding sites were performed using
OpenStructure (version 1.1). 29

For targets in which only part of the relevant ligand was present, the binding site definition
was extended to include the entire biologically relevant ligand. In these cases, two separate
evaluations of the prediction performance were conducted. First, denoted as ‘extended
binding site’, all atoms of the partial and the extended ligand were used to define the binding
site in the same way as described above. Second, denoted as ‘partial binding site’, only
atoms of the partial ligand were used to define the binding site, whereas all residues
exclusively in contact with the extended part of the ligand were treated as neutral and
excluded from the evaluation.

Binding Site Prediction Evaluation
As in the previous assessment,20 binding site prediction performance was measured using
the Matthews Correlation Coefficient30 (MCC) which accounts both for over and under
predictions. For each target, residue predictions were classified as true positives (TP:
correctly predicted binding site residues), true negatives (TN: correctly predicted non-
binding site residues), false negatives (FN: incorrectly under predicted binding site
residues), false positives (FP: incorrectly over predicted non-binding site residues) based on
the binding site definition described before. The MCC was computed using Eq. 1:

MCC ranges from +1 (perfect prediction), over 0 (random prediction) to -1 (inverse
prediction). Empty submissions which did not include any binding site predictions and
missing predictions were assigned a MCC score of zero.

To reduce the effects of target difficulty on the ranking, MCC scores were standardized by
computing Z scores among all predictions P for a given target T using Eq. 2:

In this equation, MCCP,T is the raw MCC score for target T given by predictor P,  is
the mean MCC score for target T, σT is the standard deviation of MCC scores for target T.
The overall performance for each predictor was computed as the mean of Z scores over all
targets, which was subsequently used for obtaining a final ranking. In addition to the MCC
score, we computed the recently published binding site distance test (BDT) 31. BDT takes
the actual three dimensional locations of the predicted residues into account and scores
residues differently, according to the distance between the predicted and the observed
binding site. Predictions close to the binding site score higher than more distant predictions.
The BDT score ranges from 0, for a random prediction to 1, for a perfect prediction.
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Robustness and significance
Statistical significance of the ranking and robustness with regard to composition of the target
data set was assessed using two different methods. First, two-tailed Student’s paired t-tests
as well as Wilcoxon signed rank tests32 between all predictor groups were performed based
on MCC scores for each target. Both T-tests and Wilcoxon signed rank tests were performed
using R (version 2.11.1). 33 Second, bootstrapping was performed, where scores were
computed on a randomly selected subset of ¾ of all targets (i.e. 23 of 30 targets). 75 rounds
of bootstrapping were executed for different target subsets, and for each bootstrapping
experiment, mean, minimum and maximum Z scores per group were calculated as
previously described. Additionally, the rank for each prediction group was calculated and
mean, minimum and maximum ranks over all bootstrapping experiments were computed.

To assess the performance of groups on different types of ligands, we have analyzed the
prediction performance separately on targets including only metal ions (10 targets) and on
targets including only non-metal ligands (17 targets). Mixed targets including both metal
and non-metal ligands (3 targets) were not considered in this sub-analysis.

Results and Discussion
Overall performance

In the CASP9 protein binding sites prediction category (FN), the predictors were given a
protein sequence with unknown structure and asked to identify the residues involved in
ligand binding. According to the CASP format, the predictions were binary and thus,
classified each residue as either binding-site or non-binding-site residue. As defined by the
organizers, only protein-small molecule interactions were considered in this category. The
assessment of this category consisted of the following three steps: (1) identification of
biologically relevant ligands in the target structures, (2) definition of binding site residues,
(3) assessment of the prediction performance.

One dominant factor in assessing the correctness of ligand binding site prediction is the
availability of experimental data, and the evaluation of the biological relevance of the
specific ligand binding. Whether a certain ligand is observed in an experimental structure is
first and foremost determined by the specific purification procedure, by the
experimentalist’s choice of using this ligand for a co-crystallization experiment, and the
specific experimental conditions (ligand concentration, pH and buffer conditions, ionic
strength, precipitant etc.). If a ligand is not observed in a specific experimental structure, it
could still bind under different conditions, i.e. it cannot be considered as a “true negative”
data point for the assessment. On the other hand, if a certain ligand is observed in a target
structure, we can classify the residues within this structure into “binding” and “non binding”
with regard to this specific ligand. Note that a target protein might be able to bind different
ligands under different experimental conditions, and only a subset of them might be present
in the target structure at hand. For example, the structure of an enzyme might be crystallized
in complex with the cofactor, but without substrate or product molecules.

Although the identification of ligands in CASP9 was based only on experimentally observed
ligands, it was still not straightforward to categorize their biological relevance. Although in
73% of the target structures in CASP9 various ligands were present, most of them were not
considered biologically relevant but rather as originating e.g. from solvent, crystallization
precipitant, or buffers. For the assessment, however, we included only ligands which we
considered to be biologically relevant. The decision on biological relevance was done by
manual curation, primarily based on the type and location of the ligand, literature
information, and UniProt27 annotations. In addition, information from structurally closely
related homologues and conservation of functionally important residues was used to guide
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the selection process. Using this approach, 16 target structures with biologically relevant
ligands were selected out of the 109 targets available in CASP9 for the assessment.

In addition, we have analyzed all remaining heteroatomic groups, if they occupied binding
sites which mimicked the interactions of a known biologically relevant ligand for this
protein. In these cases, we defined an “extended binding site” consisting of all residues in
contact with the known biologically relevant ligand. We were careful to include only targets
where the assignment was unambiguous, in order to avoid the inclusion of false binding site
definitions. Using this approach, the number of target structures in the FN category was
extended by 14, yielding a total of 30 targets in this category (Table I).

Within the selected targets, ten were found in complex with metal ions (Ca, Fe, Mg, Mn, Na,
Zn), and further 17 targets in complex with non-metal ligands (Table I). The latter included
amino acids and derivatives, nucleotides, sugars, fatty acids and others. Additionally, in
three cases non-metal ligands were coordinated to metal ions (Mg, Mn, Zn). In most of the
targets, the ligand binding site was located within a monomer, while for six targets the
ligand was bound in the interface between multiple chains: T0515, T0547, T0591, T0636
(dimeric structures), T0629 (trimeric structure) and T0632 (tetrameric structure). The
ligands were bound between all chains of the oligomeric structure, except for T0632 where
the ligand is bound to only three of the four chains. Following the identification of
biologically relevant ligands, the binding site residues for those targets were defined as those
residues directly in contact with the ligand. Atoms were considered to be in contact if they
were within a distance of the sum of their van der Waals radii plus a tolerance distance. The
list of binding site residues used in the assessment for each target is provided in Table SI
(Supplementary Material). The tolerance distance was defined as 0.5 Å by the CASP
organizers. We tested the influence of different values for the tolerance distance of the
binding site definition and their influence on the assessment of prediction performance. No
significant differences in the overall prediction performances were observed for different
tolerance distances (Fig. S1, Supplementary Material).

The majority of FN targets in CASP9 were classified as template based modeling targets
(TBM), and only two targets were free modeling (FM) targets: (1) target T0629, where the
ligand binding domain had no template structure (Fig. 8C), (2) target T0604, where the
ligand was bound between two domains where one was a template based modeling
(constituting 90% of the binding site residues) and one a free modeling domain (constituting
10% of the binding site residues). This strong bias in the data set has direct consequences for
the assessment, as it is to be expected that template-based prediction methods will perform
much better than “de novo” methods in this context.

In total, 33 groups made predictions in the CASP9 FN category. A summary of the
predictions is given in Fig. 1. Among the participating groups, 18 were registered as “human
predictors” and 15 as “servers” (Table II). Most groups predicted at least 25 of the assessed
30 targets, i.e. 12 groups (6 humans, 6 servers) predicted between 25 and 29 of the assessed
targets and 15 groups (6 humans, 9 servers) predicted all 30 targets; 6 human groups
returned predictions for only 6 or less targets. Binding site prediction performance was
measured using Z-scores of Matthews correlation coefficients (see Methods).a The
comparison between all groups is shown in Fig. 2 where the error bars indicate minimum
and maximum Z scores obtained by bootstrapping on a randomly selected subset of ¾ of the

aAs described in Materials and Methods, the authors decided that assigning a MCC score of zero to empty submissions which did not
include any binding site predictions and to missing predictions would most appropriately reflect a “real life” prediction situation in the
assessment. Please note that this policy has consequences for the final ranking as it penalizes methods which are not able to make
predictions for some targets, and encourages the risky development of novel methods as there is no implicit penalty for making
predictions for challenging targets.
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targets. The error bars indicate a fluctuation in the average Z score for each group. However,
in case of a correlated movement in the score, this would not influence the groups ranking.
Therefore, the rank for each prediction group was computed in each bootstrapping
experiment and the average, minimum and maximum rank over all bootstrapping
experiments is shown in Fig. 3.

The top 12 predictors clearly distinguished themselves from the following 21 groups and
show a significantly better performance. Two predictors from the Zhang group (FN096,
Zhang and FN339, I-TASSER_FUNCTION) show a better performance in terms of MCC
compared to the following 10 groups, whereas the performance among those is comparable.
Since many predictors seemed to perform similarly, statistical tests were used to assess the
significance of the differences between these groups. Paired t-tests on all targets between all
pairs of predictors were performed. The results are shown in Table III, with cells shaded
according to computed P values. According to the t-test, the differences between the top
ranked group (FN096, Zhang) and groups FN339 (I-TASSER_FUNCTION), FN242 (Seok)
and FN035 (CNIO-Firestar) are not statically significant, while the differences between
FN096 and the remaining predictors are significant. In addition, the non-parametric
Wilcoxon signed rank test was performed, which yielded comparable results to the t-tests
(Table SII, Supplementary Material). Recently, McGuffin and coworkers published an
alternative binding site distance test (BDT) 31. Opposed to MCC, BDT takes the actual three
dimensional positions of the predicted residues into account and scores residues differently,
according to the distance between the predicted and the observed binding site. Hence, BDT
limits the boundary effects originating from ambiguous definition of binding sites. When
applying the BDT score on the predictions (Fig. S2, Supplementary Material), for the top
ranked groups no significant deviations to the MCC based prediction assessment were
observed. b

As described above, for 14 targets the partial binding sites were individually extended
around the observed ligand to reflect a binding site accommodating the most probable
biologically relevant ligand. To investigate the influence of this extension, the assessment
was performed both on all residues of the extended binding site and separately on all the
residues of the partial binding site while treating the residues exclusively in the extended
binding site as “neutral” for the analysis. For the top ranked groups no significant
differences in the overall prediction performances were observed between partial and
extended binding site definitions (Fig. S3, Supplementary Material). c

Assessment by type of binding sites
In addition to the overall performance, subsets of the targets were evaluated individually,
according to the ligand’s chemotype. The distinct chemical properties of metal ions and
organic ligands give raise to diverse binding sites. Thus, it could be expected that various
prediction methods perform differently. To address this question, we have analyzed the
prediction performance separately on all targets including only metal ligands (10 targets)
and on targets including only non-metal ligands (17 targets). The mean Z-score per group
separated into metal and non-metal targets are shown in Fig. 4. Within the top 10 groups
most of them show a better performance for non-metal targets, with the exception of FN242
(Seok) and FN114 (Lee). Especially group FN114 shows a better performance on metal
ligands, compared to an average performance on the full set of targets.

bThe largest change in ranking by 3 positions would be for group FN110.
cThe largest difference was observed for group FN113 which would change rank by 3 positions.
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Among the CASP9 FN targets, in six cases the ligand binds in the interface between
multiple chains of an oligomeric protein complex. Although, the number of interface targets
is very limited, we were interested in the question if the prediction of ligand binding sites of
interface targets is more difficult than non-interface targets. We compared the average
prediction performance, both according to mean MCC values, as well as the number of very
good predictions (MCC > 0.85), for interface vs. non-interface targets. No significant
difference was observed, thus on average, in those target categories it seems equally difficult
to predict the binding site residues. However, it should be considered that four of the six
targets are “trivial” oligomers, where a simple blast query returns a homologues template-
ligand complex with the correct oligomeric state.

Human versus server predictions
Looking at the top 10 groups, 8 of them were registered as “humans”, and only 2 as
“servers”. Overall, there is a striking difference between the average performance of human
groups and server groups with a mean Z score of 0.47 and 0.15, respectively. Although
predictor groups registered as “human” performed considerably better than “servers”, the
role of human beings in the prediction process was difficult to evaluate. Several aspects
seemed to contribute to this observation: Human predictors had access to multiple servers
for structure modeling and various server binding site predictions, while server predictors
have to rely on their own method only. While human predictors can make use of additional
annotation from biological knowledgebases and scientific literature, servers have to rely on
structured machine-readable information. A major bottleneck in this context seems the lack
of consistent annotation of ligands found in PDB entries with respect to their biological
relevance. It appears that human predictors benefit from the longer prediction time mainly
by their ability to distinguish relevant from irrelevant ligand predictions.

Prediction methods have converged to a similar approach
When comparing the methods of the top performing groups, it seems they have converged to
similar approaches, which are based on homology transfer from related structures in the
PDB. By identifying homologous protein structures with bound ligands, putative binding
site residues in the target model are classified by spatial proximity after alignment or
superposition. The methods differ in their specific implementations with regards to the
underlying structure databases (PDB vs. curated binding site libraries), target representation
(alignment to structure vs. full atomic models), superposition to related structures to identify
putative binding sites, and the use of residue conservation information in the prediction
process. The major draw-back of these homology-based inference methods is that they rely
on the availability of related protein structures with bound ligands and are thus unable to
make predictions for novel proteins without prior ligand information.

Although many groups have used similar approaches to make their predictions, we observed
a surprising heterogeneity of performance within targets. As shown in Fig. 5 (and Fig. S4),
the 12 top performing groups show overall a similar spectrum of results, with a few nearly
perfectly predicted targets and some poorly predicted targets. Interestingly, when analyzing
the results for individual targets, at least one good prediction was achieved across all groups
(MCC value of at least 0.56; on average 0.84; see Fig. 6), and even predictors with a poor
overall performance, can yield the best individual prediction for certain targets, as shown in
Fig. 7. Thus, either the performance of the different methods is highly target specific, or
there is a considerable random component in the prediction process in combination with a
strong influence by the small and biased target data set.
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Prediction examples
Obviously, target T0604 was the most difficult target in the FN category in CASP9, with a
maximum MCC score of 0.56 for the best prediction, and an average score of 0.29. The
protein is a putative FAD dependent oxidoreductase with a bound FAD molecule (PDB:
3nlc). The protein is monomeric and forms a large binding pocket for the ligand. The
structure is shown in Fig. 8A together with the binding site predictions of group FN035
(CNIO-FIRESTAR) as one of the best predictions for this target. The top performing
methods were able to accurately predict the lower part of the binding site around the adenine
moiety, whereas all of them failed for the upper part of the binding site around the flavin
moiety. This stems from the fact that this target structure has only remote homologues,
which differ significantly in the flavin binding site region. This example clearly
demonstrates the limitations of prediction methods that are based on homology transfer.

Target T0629 is the only target in the current ligand binding target set which was classified
as free modeling target and thus has no template structure. The protein (PDB: 2xgf) is the
bacteriophage T4 long tail fiber receptor-binding tip. It contains a long fiber like structure
which is formed by three chains and binds seven iron atoms. Each iron atom is complexed
by six histidine residues. Each protein chain contributes two histidines to each binding site,
where the two histidines are in a His-X-His motive, with X being either Ser, Thr or Gly. The
target structure is shown in Fig. 8C together with the binding site predictions of group
FN114 (LEE), the best predictor for this target among the top 10. Common to all predictions
for this target is that they correctly predicted a subset of the seven binding sites – most likely
due to local similarity to another metal binding protein with a His-X-His motif, but no
predictor identified all sites correctly.

The structure of target T0632 (PDB:3nwz) is a homo-tetramer which binds coenzyme-A.
This ligand is interacting with three of the four chains of the protein, which seems to present
a challenge for binding site residue prediction observed by a low average MCC of 0.22. An
excellent prediction was obtained by group FN096 (Zhang) with an MCC of 0.72, which is
depicted in Fig. 8B along with the target structure. Many residues were well predicted
despite originating from different chains. In this prediction, the largest errors originate from
missing some binding site residues due to an elongated terminus compared to structurally
closely related templates.

Conclusion
The task of predicting binding sites from a protein’s sequence is of high relevance for life
science research, ranging from functional characterization of novel proteins to applications
in drug design, and consequently the ligand binding site prediction category in CASP has
received increasing attention over the past years. In CASP9 it attracted a total of 33
predictors - ten more groups than in CASP8. In contrast to the previous CASPs, where only
three predictors yielded reliable predictions,20 in this assessment nearly half of the
prediction groups yielded reliable predictions for the majority of targets. Two groups
(FN096, Zhang; FN339, I-TASSER_FUNCTION) performed better than the rest (when
accounting for missing target predictions in the assessment), while the following ten
prediction groups performed comparably well. This is not very surprising with respect to the
observation that in this round all top performing groups based their methods on approaches,
which are similar to the best performing strategy in previous CASP experiments (i.e.
Sternberg34 and LEE15).
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Limitations of the current format and recommendations for future
experiments

The very low number of target structures with relevant ligands is a major limitation to the
assessment as it does not allow to draw significant conclusions on the specific strengths and
weakness of different prediction methods, e.g. with regard to target difficulty or type of the
ligands. Only 30 of the total 109 CASP9 targets (28%) were considered to have a
biologically relevant ligand bound in the target structures and were thus assessed in the FN
category. It is likely that some of the remaining target proteins would bind interesting
ligands under different experimental conditions, but such conclusions can not be made with
the available data. In the previous CASP8 experiment, the total number of targets in this
category was 27, illustrating that this is a recurring problem - and not specific to this round
of CASP. Another rather drastic limitation of the FN category is the binary prediction format
which classifies residues as either ligand binding/non-binding based on a hard distance
cutoff. Consequently, all ligands are currently treated uniformly, independent of their
chemical type, and all potential binding sites are treated uniformly, independent of their
affinity (or binding probability) for different ligands. Moreover, most targets in the FN
category were straightforward TBM targets with numerous, closely related template
structures, and only one of the 30 targets was categorized as free modeling (FM). However,
exactly this class of target structures is of highest interest for computational ligand binding
site prediction, where no obvious information about the location of their binding sites is
available. We would like to suggest the following modifications to the assessment of ligand
binding site predictions to enable the community to benefit even further from future rounds
of this experiment:

• In order to accumulate a sufficiently large number of prediction targets, the
assessment of this category should be done continuously based on a weekly PDB
pre-release. This would allow assessing the performance in different ranges of
target difficulty, similar to other CASP categories, and faciliate analyzing the
strengths and weakness of different approaches. During the CASP meeting in
Asilomar, we have suggested that the CAMEO project (Continuous Automated
Model EvaluatiOn) of the Protein Model Portal 35 could contribute to this effort.

• Binding sites differ chemically and structurally from each other e.g. a metal ion
binding site has different characteristics compared to e.g. a sugar binding site. We
therefore suggest that the assessment of binding site residue predictions should be
made according to chemotype categories of the ligand expected to be bound. We
would like to propose the following categories: “metal ions” (e.g. Na, Ca, Zn, Fe,
Mn, Mg, etc.), “inorganic anions” (e.g. SO4, PO4), “DNA/RNA” for poly-
ribonucleic acid binding sites, and “organic ligands” for cofactors, substrates and
receptor agonists/antagonists (e.g. NAD, FAD, ATP, SAM, CoA, PLP, etc.). More
fine grained assessment categories might be necessary if more specific prediction
methods emerge in the future.

• The binary prediction of binding site residues should be replaced by a continuous
probability measure, thus reflecting the likelihood for a residue to be involved in
binding a ligand of a certain type. For example a certain residue might be predicted
as having a high probability to bind a metal ion, but a low probability to bind an
organic ligand. The assessment of continuous prediction variable (e.g. using ROC
type analysis) would better reflect the spectrum of “high affinity” and “low
affinity” sites of different types.

• The experimentalist solving a protein structure typically will have more insights
and experimental evidence for the biological role and relevance of ligands observed
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in a protein structure than the information which is publicly available to assessors
during the CASP experiment. It would therefore be beneficial to capture the
information about the biological role of “HETATM” records during PDB
deposition.

Predicting binding sites from a protein’s sequence has the potential for yielding high impact
on life science research – if the predictions are specific and accurate enough to help
addressing relevant biological questions. We hope that with the suggested modifications, the
assessment of ligand binding site predictions will be more suited to evaluate the current state
of the art of prediction methods, identify possible bottlenecks, and further stimulate the
development of new methods.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Overview of predictions per group
Predictions for targets which were assessed in the FN category (i.e. targets with a relevant
binding site) are displayed in dark colors, additional predictions which were not assessed
(i.e. targets without an experimentally confirmed binding site) are displayed in light colors.
Human groups are shown in purple, servers in orange.
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Fig. 2. Mean Z scores over all targets for the top 20 predictor groups
Error bars show minimum and maximum average Z scores obtained from bootstrapping
experiment. Human predictor groups are shown in purple, servers in orange.
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Fig. 3. Mean rank based on bootstrapping experiment for the top 20 predictor groups
Error bars show minimum and maximum rank obtained from bootstrapping experiment.
Human predictors are shown in purple, servers in orange.
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Fig. 4. Mean Z scores of the top 20 groups, separated by the ligand’s chemotype
Metals are shown in blue, non-metals are shown in green.
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Fig. 5. MCC scores for the 12 top performing groups for all targets
Targets were sorted by their respective MCC score, individually for each group.
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Fig. 6. Overall target difficulty
MCC value of the best overall prediction for each target.
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Fig. 7. Number of targets where a particular group returned the best prediction
Groups are sorted by their overall performance. For one target, multiple groups can perform
equally.
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Fig. 8. Examples of binding site predictions
All ligands are shown in spheres render mode. The protein backbone is shown in cartoon
mode with each chain colored separately. All side chains of observed and predicted binding
site residues are shown in licorice sticks. Correctly predicted residues (true positives) are
colored in green, incorrectly under predicted binding site residues (false negatives) in yellow
and incorrectly over predicted non-binding site residues (false positives) in red. (A) Target
T0604 with predictions of group FN035. (B) Predictions of group FN096 for target T0632.
(C) Group FN114’s predictions for target T0629.
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Table II

Groups participating in the FN category in CASP9.

ID Rank Name Type Group

FN017 22 3DLIGANDSITE1 S Michael Sternberg

FN035 5 CNIO-FIRESTAR H Gonzalo Lopez

FN057 21 3DLIGANDSITE3 S Michael Sternberg

FN072 23 3DLIGANDSITE4 S Michael Sternberg

FN094 8 MCGUFFIN H Liam McGuffin

FN096 1 ZHANG H Yang Zhang

FN097 30 KOCHANCZYK H Marek Kochanczyk

FN102 15 BILAB-ENABLE S Shugo Nakamura

FN104 7 JONES-UCL H David Jones

FN110 6 STERNBERG H Michael Sternberg

FN113 9 FAMSSEC H Katsuichiro Komatsu

FN114 10 LEE H Jooyoung Lee

FN132 27 MN-FOLD S Chris Kauffman

FN147 28 GENESILICO H Janusz Bujnicki

FN154 33 JAMMING H Gabriel del Rio

FN193 24 MASON S Huzefa Rangwala

FN207 26 ATOME2_CBS S Jean-Luc Pons

FN236 12 GWS S Jooyoung Lee

FN240 32 TMD3D H Hiroshi Tanaka

FN242 4 SEOK H Chaok Seok

FN303 20 FINDSITE-DBDT S Jeffrey Skolnick

FN311 31 ALADEGAP H Kei Yura

FN315 3 FIRESTAR S Gonzalo Lopez

FN316 18 LOVELL_GROUP H Simon Lovell

FN339 2 I-TASSER_FUNCTION S Yang Zhang

FN353 17 SAMUDRALA H Ram Samudrala

FN402 13 TASSER H Jeffrey Skolnick

FN415 25 3DLIGANDSITE2 S Michael Sternberg

FN425 19 INTFOLD-FN S Liam McGuffin

FN446 16 KIHARALAB H Daisuke Kihara

FN452 11 SEOK-SERVER S Chaok Seok

FN453 14 HHPREDA S JohannesSoeding

FN458 29 BILAB-SOLO H Mizuki Morita
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