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Abstract
Diffuse optical imaging (DOI) is a model-based technique used for noninvasive characterization of
subsurface tissue function and structure. Compared to more common transmission geometries,
reflectance DOI has the advantage of being portable and easily implemented in a clinical setting.
However, reflectance measurements are generally not compatible with conventional DOI image
reconstruction methods because they typically provide a limited number of unique tissue views. In
this paper, we describe a fast and reliable DOI image reconstruction method based on
parameterization of tissue and tumor optical contrast, using physiological a priori knowledge. The
reconstruction method is formulated within the general Bayesian inversion framework and is
capable of handling both model and measurement errors. Simulations are carried out to illustrate
the application of this approach, using a limited number of source–detector combinations. It is also
shown that parametric reflectance DOI is robust to model misspecifications and measurement
noise.

Index Terms
Bayesian; breast cancer; diffuse optical spectroscopy (DOS); diffuse optical tomography (DOT);
inverse problem; photon migration

I. Introduction
Diffuse optical imaging (DOI) and diffuse optical spectroscopy (DOS) use near infrared
(NIR) light to noninvasively extract spatial and spectral information from subsurface
structures in thick tissues. DOI/DOS technologies are currently being tested in an increasing
number and variety of clinical applications, primarily, in brain, muscle, and breast tissues.
This work focuses on the application of DOI and DOS to breast cancer [1]–[9].
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We have developed a DOS instrument with a handheld reflectance probe that features a
large spectral bandwidth (650–1000 nm), but with limited spatial capabilities [10]. The
broadband information content of DOS recovers the concentration and disposition of
important NIR-absorbing molecules, such as hemoglobin, water, and lipid. High spectral
resolution and bandwidth allow DOS to identify signatures of tumors that cannot be
observed by conventional discrete-wavelength DOI or diffuse optical tomography (DOT)
[11], [12]. The relationship between DOS and DOI/DOT is similar to that between magnetic
resonance spectroscopy (MRS) and imaging (MRI); high spectral bandwidth is achieved at
the cost of lower spatial resolution.

DOS employs thousands of wavelengths and typically utilizes a limited number of source–
detector “views” of the tissue. This further constrains the technique to relatively simple
homogeneous diffusion models to recover tissue optical properties (i.e., absorption and
reduced scattering parameters). The measured optical properties of heterogeneities are
therefore a weighted average of target (i.e., tumor) and background (i.e., “normal”) optical
properties. Thus, it is not easy to extract the exact tumor spatial location with fixed-view
DOS measurements. In addition, while the reflectance measurement geometry lends itself to
portable instrumentation suitable for translational clinical use; full pixelwise image
reconstruction as used in transmission tomography is unrealistic.

In conventional DOI and DOT, pixelwise images are reconstructed from boundary
measurements similar to computed tomography (CT) and MRI (see [13] for a review).
Pixelwise DOI and DOT image reconstruction methods rely on the parameterization of
tissue optical properties by locally confined basis expansions. A large number of boundary
measurements are necessary to recover the large set of unknowns (i.e., optical properties at
each pixel); typically a limited number of wavelengths are used to reduce the size of the
dataset and technical complexity. Regularization techniques along with extra constraints,
known as a priori information, are needed to improve and stabilize the reconstruction
process [14]–[18]. However, it should be noted that a priori information based upon images
from other modalities may not necessarily have the same contrast elements as optical signals
[19].

Alternative parameterizations in DOI and DOT have been suggested by several groups to
reduce the total number of unknowns. Gu et al. [20] parameterized the 3-D imaging domain
by a discrete cosine transform and reconstructed the coefficients of the corresponding cosine
component. Further reduction can be achieved, using shape-based methods. Kolehmainen et
al. [21] proposed a shape-based method in 2-D by first dividing the imaging domain into
piecewise constant regions with boundaries, and then, parameterized boundaries by the
coefficients of their Fourier components. Zacharopoulos et al. [22] generalized this method
into 3-D cases by expanding 3-D boundaries onto spherical harmonics. Kilmer et al. [23]
also proposed shape-based imaging of absorption perturbations. In their approach, low-order
parameterization of the background and interior optical properties of the anomaly was used
and the boundary of the anomaly was described by an ellipsoid, which was parameterized by
its centroid location, semiaxes lengths, and orientation of the principle axes. Fantini et al. [4]
and Holboke et al. [19] used similar methods to analyze breast tumors by parameterization
in terms of location, size, and optical properties. Note that shape-based methods in DOT/
DOI implicitly assume that a boundary exists between abnormal and normal tissues.

In previous study, we showed that the spatial extent of optical contrast in breast tumors may
be significantly greater than the dimensions reported by standard anatomic imaging [24].
The distribution of tumor optical properties was modeled as a spatially distributed target
(e.g., a Gaussian distribution) with a few parameters describing key characteristics.
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In this study, we develop a parametric image reconstruction algorithm that is suitable for 3-
D diffuse optical spectroscopic imaging (DOSI) in reflectance geometry with broad spectral
bandwidth. A great reduction in the number of reconstruction parameters is made by
introducing carefully chosen distribution functions to describe the lesion optical contrast.

II. Mathematical Formulation
A. Parameter Space

With the tumor optical contrast described by a distributed mathematical function, the
reconstruction problem focuses on the parameters of a mathematical function that specify
the optical contrast. In this preliminary study, it is assumed that only the optical absorption
contrast is spatially extended and can be mathematically described by a Gaussian function,
i.e.,

Background absorption is known from DOS measurements of normal breast regions. The
scattering coefficient of the tumor and the background are assumed to be the same. Such an
optical contrast is therefore completely specified by the seven parameters of a Gaussian
function, namely, the spatial position (x, y, z), the spatial extension (FWHMx, FWHMy,
FWHMz), and the peak absorption value Apeak. Tumors specified by such a Gaussian
function are referred to as a Gaussian extended absorbing target or simply “Gaussian target.”
Let p denote the parameter vector, that is

The space composed of all such vectors is denoted by ℙ, i.e., the parameter space.

B. Forward Problem
1) Diffusion Approximation—Light propagation within biological tissues or more
generally, in turbid media, is suitably described by the radiative transport equation (RTE)
derived from Boltzmann transport theory [25]. The RTE is a statement of energy
conservation for a photon beam interacting with the turbid medium. The RTE is
appropriately simplified to the photon diffusion equation (i.e., diffusion theory) when light
propagation is dominated by scattering rather than absorption, so that each photon undergoes
many scattering events before being terminated by an absorption event. In such cases,
photons have a relatively long lifetime, which allows for a random walk within the medium.
The diffusion approximation (DA) to the RTE in the frequency-domain approach is given by
[26], [27]

where Φ(r, ω) is the photon fluence rate at position r, when the source is intensity
modulated at frequency ω. μa (r) is the absorption coefficient (per millimeter) and it is the
reciprocal of the mean free path length of a photon before it is absorbed.

 is the diffusion coefficient, in which  is the reduced scattering
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coefficient (per millimeter), being the reciprocal of the random walk step size of a photon. c
is the speed of light within the medium and q(r, ω) is the source located at r position. There
are a variety of boundary conditions that have been applied in DAs. The most commonly
used boundary condition is the Robin type boundary condition, which arises naturally from
the derivation of the DA from RTE boundary conditions. It is written as follows:

where Λ is a coefficient due to the mismatch of the refractive indexes at the boundary and n
is the normal direction at boundary position. A detailed review can be found in [13] and
[26].

The coefficients of absorption and reduced scattering predicted by diffusion theory are
considered as the characteristic optical properties of the biological tissues under
investigation and are believed to be fundamentally associated with the biological and
physiological features of these tissues. The extraction of absorption and scattering
coefficients is therefore essential to medical diagnosis and imaging.

In this study, the DA is always assumed to be an accurate model describing photon
propagation through human tissues.

2) Finite-Element Method—The finite-element method (FEM) was introduced to DOI
for a solution of the light diffusion equation in the imaging in early 1990s [28], [29] and has
been widely used as a computational tool since that time. A brief review is given below.

The solution to the diffusion equation, is also a solution of (if it exists)

where Ψ(r) is the test function, which is an arbitrary function satisfying the same boundary
condition as Φ(r).

By using integration by parts and applying Green’s theorem, we have

Inserting the boundary conditions for diffusion equation, we have

In the FEM approach, the solution Φ(r) is projected onto a finite dimensional basis set {ψi
(r)}, composed of piecewise polynomials with compact support. The most straightforward
choice of such supports is to divide the solution domain into N disjoint elements, i.e.,

.
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Following Galerkin’s approach [30], the test functions are chosen to be the basis functions
of the FEM mesh, i.e., Ψ(r) = ψi(r) (i = 1, …, N). This choice of test function converts the
integral equation into a sparse linear system due to the fact that only the adjacent basis
functions, which overlap with each other contribute to the final matrix equation. The matrix
form equation may be expressed as follows:

where

Note that the right-hand side of the equation is due to the point source, which is assumed to
be at a depth  beneath the surface and the only nonzero elements correspond to the nodes
of the element that encloses the source point.

The FEM equation can be efficiently solved as a sparse linear system by using standard
techniques, such as the conjugate gradient method. With the optical properties described by
the parameter vector p, the FEM solution with the source at kth position, Φk, can be solved
formally as follows:

The measurement data on the boundary of the solution domain are related to the solution by
a measurement operator M, and the measurement data with the kth source is therefore

The form of the measurement operator Mj depends on the data type zj that is used. In a
frequency-domain measurement, it is typically chosen to be the amplitude attenuation and
the phase shift between the source and the detector. Mathematically, it is equivalent to the
real and imaginary part of the logarithm of the FEM solution, i.e.,

Finally, the forward problem for all sources can be formulated as follows:

with p ∈ ℙ.
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C. Bayesian Formulation of Inverse Problem
The inverse problem consists of finding the optical properties within the imaging domain,
given the boundary measurement with a specific illumination and detection geometry. With
the optical properties described by the parameters defined in the previous section, it is
equivalent to the problem of searching within the parameter space for the parameter vector
that gives the boundary data the best fit to the measurement data.

Measurement data are generally contaminated by measurement noise e, while the forward
solution is contaminated by the approximation errors ε, due to the inexact solution of
diffusion equations (which is assumed to be an exact description of the light diffusion within
biological tissues, and therefore, no model errors are introduced), i.e.,

It is more straightforward to think of the inverse reconstruction as a Bayesian inference
problem of finding an estimator p ̂ that minimizes a predefined loss function [31], [32].

1) Maximum a Posteriori Estimator—Under the uniform loss function, we have the
well-known maximum a posteriori (MAP) estimator. The inverse problem using MAP is
therefore formulated as follows. Given the boundary measurement, find the parameter that
maximizes the posterior probability density of parameters, π(p|y), which from Bayesian
formula as follows:

where L(p|y) is the likelihood given measurement and πprior(p) is the prior density of the
parameter distribution.

Our prior knowledge on the parameters of interests can be naturally incorporated through the
choice of prior densities. For biological problems, it can be based on the statistical analysis
of the available images, tumor physiology, or any other relevant known information. The
estimator given by a Bayesian inference is generally a weighted combination of information
from data and prior knowledge.

If the measurement noise and the approximation errors are assumed to be additive and
mutually independent of each other as well as the parameter p, (the approximation error in
principle should be dependent on different prior distribution for parameters, but this mutual
dependence is ignored for simplification), i.e.,

The likelihood function is therefore proportional to the conditional probability given
parameters and model, which is

It is clear that our knowledge of noise models for both measurement as well as
approximation errors is necessary for MAP estimation. The former can be estimated through
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repeated measurements while the latter can be estimated by statistical sampling of repeated
forward simulations. In practice, a normal model for the noise distribution is assumed in
most cases due to its ease of implementation. We let the expectation value for the noise
vector be

and covariance matrix

It is assumed that the measurement errors are independent and the covariance matrix is
diagonal. The statistics of the approximation error, however, are dependent on the numerical
model used and the choice of parameters, which can be estimated by simulations. Moreover,
covariance matrices are assumed to be positive definite in this study.

The likelihood function given by a normal noise model is therefore

A simple assumption of the prior density of parameters is normal, i.e.,

However, more sophisticated models can be used, such as hierarchical models [18].

With suitable choices of prior density and the error model, the posterior density function is
expressed as follows:

By a simple logarithm transform, finding the MAP estimator of p by maximizing the
posterior density leads to an unconstrained optimization problem

It should be noted that such an optimization problem is equivalent to a least square
minimization problem with regularization. However, the choice of regularization parameters
are based on our preference of noise error models as well as prior knowledge rather than
based on a cross-validation procedure.
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The unconstrained optimization problem is solved with Levenberg–Marquardt method [33]
in which the parameters are iteratively updated with an automatically controlled stabilization
parameter λ, i.e.,

where J is the Jacobian matrix. The Woodbury formula can be used to find the matrix
inverse to reduce calculation time because in an underdetermined problem, as is often the
case in DOI, the Jacobian matrix has more columns than rows [34].

2) Construction of Jacobian Matrix—In conventional pixelwise image reconstruction
methods, the Jacobian matrix is often considered to be the sensitivity of each source–
detector channel to a small perturbation in the absorption coefficient at each pixel. Consider
only the absorption coefficients in a pixelwise basis (for simplicity, we will use the same

basis as the FEM mesh), i.e., , where uk (r) is the FEM shape function
at kth node and Nk is the total number of pixels; the Jacobian in the conventional image
reconstruction method is

where Iij is the signal due to the jth source detected at ith detector position. Ns is the number
of sources while Nd is the number of detectors. Adjoint method is commonly used to
construct the Jacobian matrix due to its simplicity and efficiency. Instead of perturbing each
pixel and finding the change of signals, which requires Ns × (Nk + 1) forward solutions, the
adjoint method constructs the Jacobian matrix in such a way that every entry is computed as
follows:

where Φj is the solution vector to the diffusion equation due to the jth source and Ψi is the
solution vector to the adjoint diffusion equation with an adjoint source at the ith detector
position, and Vk (l, m) = ∫ uk (r)ul (r)um (r)dr. If uk (r) are the basis functions of a FEM
discretization, then Vk is a sparse matrix. The advantage is that each row in the Jacobian
matrix can be simultaneously constructed, which requires only Ns + Nd forward FEM
solutions.
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This method is generalized when the parameters of interest are tumor characteristics instead
of pixel values. In the case where parameters of interest are p ∈ ℙ, the Jacobian matrix is
defined as follows:

which requires a total number of forward solutions Ns × (Np + 1) (Np number of parameters)
at each iteration step if computed directly. The adjoint method can be applied, however,
after slight manipulation of the Jacobian, for each entry of J

Here, δIij/δμa(k) is calculated by using the adjoint method as illustrated earlier. Importantly,
only Ns + Nd evaluations are necessary to compute the Jacobian, plus a series of inner
products of vectors with size Nk, which can be carried out very efficiently.

III. Methods
A. Simulated Data and Numerical Errors

Synthetic data were generated from a 3-D FEM model with cubic basis functions. Various
noise levels were also added to the simulated data to determine their influence on the final
reconstruction.

At each reconstruction iteration step, FEM with linear basis functions was used to solve the
forward problem. Such an approach is applied for the purpose of fast image reconstruction
as well as to avoid the “inverse crime” of using the same model to simulate and reconstruct
data [35]. However, it is important to account for numerical errors arising from the linear
approximation in the forward calculation, which are comparable to the added noise levels.

In the Bayesian inversion framework, numerical error is treated as random noise as well.
Some assumptions of its density distribution are necessary as previously mentioned. In this
study, we assume that numerical errors are also normally distributed such that second-order
properties are enough to describe its distribution. To be specific, we first obtain a random
sample from the parameter space. Then, for each sample point, the numerical error is found
by comparing forward solutions between FEM solutions with linear basis and cubic basis
functions. Finally, the sample mean and covariance of numerical errors are computed from
this ensemble of numerical errors.

B. Prior Information
In this study, two sources of prior information are included. Inherent to the proposed
parametric reconstruction is the physiological a priori knowledge that resulted in our
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Gaussian distributed target assumption. This allows us to greatly reduce the number of
reconstruction parameters and improve the performance of the reconstruction algorithm.
This advantage is especially favorable in a reflectance geometry with a sparse spatial
dataset.

Additional prior information can also be added through the Bayesian inversion framework,
if some knowledge of prior probability densities for parameters of interest is available. For
example, the prior expectations of spatial location and size of a particular target can be
chosen to be the spatial location and size of the target from an ultrasound scan. Relatively
large variances can be specified for these parameters to reflect our uncertainty of the
correlation between optical and ultrasound contrast. It should be noted that such
specifications of probability densities do not have to be highly accurate and they can be
based upon any reasonable assumption. The final Bayesian estimate is averaged over the
information from measurements and prior knowledge.

In this study, the expected center location of the Gaussian extended tumor is (0, 10) mm in
the x–y plane, and −12.5 mm in depth, with the uncertainty (standard deviation) being 10
mm. The expected peak optical absorption is 0.0175 mm−1, with the standard deviation 0.01
mm−1. The expected FWHM of the extended tumor is (15, 15, 15) mm in x–y–z directions,
with the uncertainty 10 mm in all directions.

C. Virtual Probe
A virtual reflectance probe was used in this study. Two sources and nine detectors were
organized asymmetrically in a reflectance geometry, providing a total of 18 views of
imaging volume, some of which overlap (see Fig. 1). The source–detector separations
ranged from 1.3 to 4 cm, based upon the expected optical properties of breast tissue, the
average penetration depth is around 0.5 ~ 2 cm below the surface. This probe is designed to
operate in the frequency domain with a 100 MHz modulation frequency.

IV. Results
A. Gaussian Extended Absorbing Target With Fixed Noise Levels

In our first simulation experiment, a Gaussian extended target was inserted at (10, 5) mm in
the x–y plane, at −10 mm in depth (i.e., the center position of Gaussian target), with 0.025
mm−1 peak absorption coefficient, and (15, 12, 10) mm FWHMs in x–y–z directions,
respectively. The measurement noise level was assumed to be 1%, which is comparable with
the measured optical property drift measured over 1 h with our DOSI instrument. One such
measurement results in a reconstructed Gaussian object at (9.85, 6.91) mm in the x–y plane,
−9.97 mm in depth, 0.0193 mm−1 peak absorption coefficient, and the spatial extensions in
x, y, and z are (13.17, 16.99, 11.66) mm. An illustration of the reconstructed image with
Gaussian target is shown in Fig. 2, compared with the location and size of true Gaussian
target (dashed lines).

The parametric reconstruction method was also tested on other Gaussian targets with
different sizes and depths with the same measurement noise level (1%). The results are
summarized in the Table I. To further compare reconstruction performance, we defined
volume contrast as follows:

where the integral is taken within the imaging domain.
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The peak optical absorption coefficient is fixed at 0.025 mm−1, which is 5× background
absorption. In the x–y plane, the target is put at (0, 5) mm.

In the x–y plane, the biggest discrepancy between the reconstructed position and true
position is around 1.5 mm, while for depth parameters, there is a 1.3 mm difference at most.
The peak absorption coefficients for larger targets are better recovered in general. It should
be noted that for targets with smaller sizes, although the recovered peak absorption
coefficients are lower than true values, the reconstructed sizes are slightly larger than the
true value. This results in a relatively consistent volume contrast.

B. Non-Gaussian Extended Absorbing Target With Fixed Noise Levels
It is interesting to see how the non-Gaussian targets look like if they were reconstructed as
Gaussian targets. Reconstructing non-Gaussian subsurface objects is beneficial, firstly, to
test the robustness of the parametric image reconstruction method in case of noise due to
model error of non-Gaussian extended target; secondly, to test the feasibility of the
simplification of phantom making as well as future phantom measurement. The noise level
for the measurement is still kept 1% in this simulation.

Three types of non-Gaussian targets were reconstructed as if they were Gaussian extended.
They mimic the situations, where possible model misspecifications may be present in both
experimental and clinical applications.

Case 1 (Cylindrical Heterogeneity)—The center of a cylindrical target is located at (0,
5) mm in x–y plane, with the top surface of the cylinder −12 mm below the top surface of
the domain. The radius is 7.5 mm and the height is 8 mm. The constant optical absorption
coefficient is chosen to be 0.020 mm−1.

With 1% measurement noise level, the reconstructed parameters are (units are omitted) as
follows:

A Gaussian extended object was reconstructed, with its center at position of (1.1, 8.9) mm in
the x–y plane and 14.4 mm beneath surface. The spatial extensions in the x-, y-, and z-
direction, characterized by its FWHM’s, are (13.5, 17.9, 9.6) mm, respectively. The peak
optical absorption contrast is 0.0131 mm−1, which is considerably lower than 0.020 mm−1,
but also note that the volume contrast is 22.71 mm2 for the cylinder and 17.92 mm2 for the
reconstructed Gaussian object. The relative error is 21%. The reconstructed results are
shown in Fig. 3.

Case 2 (Ellipsoid Heterogeneity)—An ellipsoid target with its center located at (0, 5)
mm in x–y plane, and 15 mm below the top surface was also tested. The semiaxes along x-,
y-, and z-axes are 8.5, 7.5, and 6.5 mm, respectively. The constant optical absorption
coefficient was set to be 0.020 mm−1. With 1% measurement noise level, the reconstructed
parameters for a Gaussian function are (units are omitted) as follows

The center of the reconstructed Gaussian extended target overlaps well with true center of
the ellipsoid (see Fig. 4). The peak contrast is again lower than the true optical contrast
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within ellipsoid target, but volume contrast is 25.94 mm2 for the ellipsoid and 21.33 mm2

for the reconstructed Gaussian object. The relative error is 18%.

Case 3 (Irregular Shaped Heterogeneity)—As a general case, a target with irregular
shape, which is described by the mathematical function

was also tested, where I(·) is an indicator function. With 1% measurement noise level, the
reconstructed parameters for the Gaussian function are (units are omitted)

The spatial parameters (location and size) do not have straightforward meanings for such an
irregular-shaped object, but the spatial overlap between real target and reconstructed
Gaussian extended target agree well, as shown in (see Fig. 5). The volume contrast is 26.74
mm2 for the irregular shaped object and 32.71 mm2 for the reconstructed Gaussian object.
The relative error is 22%.

C. Gaussian Target With Different Noise Levels
The parametric image reconstruction method was also tested on different measurement noise
levels for a fixed Gaussian absorbing target, with its center located at (0, 5) mm in x–y
plane, −12 mm in depth, and (12, 12, 12) mm for the FWHM in x-, y-, and z-directions,
respectively. The peak optical absorption coefficient is 0.025 mm−1, 5× the background.
The results are summarized in Table II.

It is clear that the relative error of the reconstructed parameters increases with increasing
noise levels. In addition, the recovered peak contrast drops as the noise level goes up, while
the reconstructed size of the object (FWHM in x-, y-, z-directions) increases. The
reconstructed FWHM in the y-direction is always bigger than FWHMs in x- and z-direction,
possibly, a result of the design of the current probe (see Fig. 6). Finally, the recovered peak
absorption drops along with the increasing noise level, but tends to approach a limit around
0.02 mm−1.

V. Discussion
In contrast to conventional pixel-by-pixel image reconstruction methods, only several
parameters characterizing the spatial distribution of optical contrast are reconstructed in
parametric methods. Here, we have made the assumption that such a distribution is well
described by a Gaussian function, which is not spatially confined. This assumption is based
on clinical studies, using DOSI measurements, and therefore, relevant to reconstructing
optical images. Moreover, it is well-known that diffuse optical images are inherently
functional rather than structural and have limited resolution due to the randomness of the
imaging medium. By such an assumption, we are able to enhance the performance of the
image reconstruction process in terms of stability and speed, reducing the dimensionality of
parameter space while minimizing the loss of spatial resolution. This is attractive because it
may potentially ease the design of a reflectance tumor visualization probe by greatly
reducing the total number of source–detector pairs.

Liu et al. Page 12

IEEE J Quantum Electron. Author manuscript; available in PMC 2011 October 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In our simulation study, in case of a synthetic Gaussian absorbing target and with 1%
measurement noise, the position can be recovered within an error of 1.5 mm, while the
volume contrast has an error less than 14%. The method also performs well in the presence
of model noise, e.g., the target is non-Gaussian, and in the presence of higher measurement
noise. Moreover, our preliminary simulation has shown that the method is robust in the
presence of background physiological noise, e.g., inhomogeneous optical absorption
properties. In particular, with a 10% randomly distributed background noise in optical
absorption coefficient, the tumor position can be recovered with an error around 1 mm and
volume contrast has an error of 20% (based on one realization of the random background
simulation and 1% measurement noise). A systematic analysis on the effect of background
physiological noise, including both random and structural background heterogeneities, to the
current method is necessary and will be studied.

Parametric optical image reconstruction can be easily extended in the following areas. First,
tumor scattering properties can also be incorporated as a subsurface distribution
characterized by fewer parameters. However, there is no clear clinical evidence that the
reduced scattering coefficient follows the same spatial distribution as absorption properties.
It is believed that variations in the scattering spectral features may encode morphologic and
pathophysiologic changes in tissue at the microscopic level. A direct reconstruction of the
distribution of scatterer densities and sizes may be more suitable for tumor optical scattering
properties. Secondly, it is widely accepted that a stable tumor structure is composed of a
hypoxic core with dead cells and a viable proliferating rim, which may induce
heterogeneous optical contrast within the tumor region [36]. Such tumor internal optical
contrast (i.e., internal heterogeneity) can be accounted for by introducing more sophisticated
mathematical models with more parameters to increase the versatility of the description for
tumors. One possible approach is to simply combine multiple concentric Gaussian
distributions. Lastly, the proposed method is mathematically equivalent to expanding the
tumor optical contrast on a single Gaussian basis. Multiple basis functions can be easily
incorporated. However, it should be noted that by introducing more base functions,
additional reconstruction parameters are introduced and the inverse problem is more ill-
posed.
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Fig. 1.
Virtual reflectance probe. Circles indicate the positions of detectors and solid dots indicate
the positions of the sources. The source–detector separations ranged from 1.3 to 4 cm.
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Fig. 2.
Cross sections of 3-D reconstruction result of a Gaussian extended absorbing object in x =
10 mm plane, y = 5 mm plane, and z = −10 mm plane. Dashed lines indicate the position and
FWHM of the real object.
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Fig. 3.
(a) Illustration of the 3-D reconstruction result of a cylindrical absorbing target. (b) Cross
sections of the 3-D plot in x = 0 plane, y = 0 plane, and z = −16 plane. Dashed lines indicate
the position of the real object.
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Fig. 4.
(a) Illustration of the 3-D reconstruction result of an ellipsoid absorbing target. (b) Cross
sections of the 3-D plot in x = 0 plane, y = 0 plane, and z = −15 plane. Dashed lines indicate
the position of the real object.
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Fig. 5.
(a) Illustration of the 3-D reconstruction result of an irregularly shaped absorbing target. (b)
Cross sections of the 3-D plot in x = 0 plane, y = 0 plane, and z = −10 plane. Dashed lines
indicate the position of the real object.
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Fig. 6.
(a) Variation of reconstructed FWHM in x-, y-, and z-directions as a function of noise. (b)
The variation of percentage errors of peak contrast and volume contrast as a function of
noise.
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