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Abstract: Peptidyl-prolyl cis/trans isomerases (PPIases) are enzymes assisting protein folding and protein quality control in organisms 
of all kingdoms of life. In contrast to the other sub-classes of PPIases, the cyclophilins and the FK-506 binding proteins, little was for-
merly known about the parvulin type of PPIase in Archaea. Recently, the first solution structure of an archaeal parvulin, the PinA protein 
from Cenarchaeum symbiosum, was reported. Investigation of occurrence and frequency of PPIase sequences in numerous archaeal 
genomes now revealed a strong tendency for thermophilic microorganisms to reduce the number of PPIases. Single-domain parvulins 
were mostly found in the genomes of recently proposed deep-branching archaeal subgroups, the Thaumarchaeota and the ARMANs 
(archaeal Richmond Mine acidophilic nanoorganisms). Hence, we used the parvulin sequence to reclassify available archaeal metag-
enomic contigs, thereby, adding new members to these subgroups. A combination of genomic background analysis and phylogenetic 
approaches of parvulin sequences suggested that the assigned sequences belong to at least two distinct groups of Thaumarchaeota. 
Finally, machine learning approaches were applied to identify amino acid residues that separate archaeal and bacterial parvulin proteins 
from each other. When mapped onto the recent PinA solution structure, most of these positions form a cluster at one site of the protein 
possibly indicating a different functionality of the two groups of parvulin proteins.
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Introduction
Cis/trans isomerisation of peptidyl-prolyl moieties 
within proteins can be regarded to be a molecular 
switch and is widely accredited as a means by which 
cell cycle events, protein (de)activation, folding and 
quality control are triggered. As cis/trans isomerisa-
tion is a relatively slow process under moderate tem-
perature, organisms of all three kingdoms of life have 
developed or maintained enzymes, the peptidyl-prolyl 
cis/trans isomerases (PPIases), that accelerate this 
protein folding step.1,2 To date, three non-homologous 
families of PPIases are known: cyclophilins, FK506-
binding proteins (FKBPs) and parvulins. Although 
cyclophilins and FKBPs have been analysed in 
several archaeal genomes and assigned chaperone 
activity in vitro, the actual cellular functions of these 
PPIases are not fully understood.1

In contrast to cyclophilins and FKBPs, archaeal 
parvulin sequences only became available in the 
last few years by completion of the two genomes 
from Nitrosopumilus maritimus3 and Cenarchaeum 
symbiosum,4 and by the deposition of three near-
complete genomes of ultra-small acidophilic micro-
archaea from biofilms from the Berkeley pit.5,6 In 
addition to these genomes, parvulin sequences are 
available from metagenomic studies using shotgun 
sequencing approaches on different samples: these 
were samples from fresh- and surface water7,8 and 
samples collected from iron mines.9 This last study 
described the archaeal Richmond Mine acidophilic 
nanoorganisms (ARMANs), acidophilic ultra small 
nano-archaea, which are frequent hosts of replicat-
ing viruses.10 These microorganisms seem to build a 
clade at the bottom of the euryarchaeal branch6 and 
are therefore annotated as “undefined Euryarchaeota” 
in NCBI databases.

The group of mesophilic Crenarchaeota was 
recently recognised as a new deep-branching phy-
lum, the Thaumarchaeota.11 Recently, Nitrosphaera 
gargensis has been described as the first moderately 
thermophilic thaumarchaeal species based on its 16S 
ribosomal DNA sequence.12 There have been several 
studies that added few fosmids or metagenomic con-
tigs to the phylum,13–15 however, the resolution within 
the thaumarchaeal cluster remained poor.

The cellular function of archaeal parvulins has not 
yet been studied in detail. Recently, the first struc-
ture of an archaeal parvulin, PinA of Cenarcheaeum 

symbiosum, a psychrophilic organism living in 
symbiosis with the marine sponge Axiella mexicana 
has been solved.16 In the course of characterising struc-
ture and cellular function of archaeal single-domain 
parvulins (sdPars), we studied the occurrence and 
frequency of PinA proteins in different clades of the 
archaeal kingdom by a comparative genomics-based 
approach and defined by machine learning algorithms 
decisive structural features that separate bacterial and 
archaeal single-domain parvulins.

Results and Discussion
Distribution of prolyl isomerases  
in Archaea
We searched all available completely or nearly fully 
sequenced archaeal genomes for their content in pro-
lyl isomerases (PPIases) to establish a basis for fur-
ther phylogenetic analyses. A total of 98 genomes was 
investigated that can be grouped into 17 different groups 
including 13 established orders and the four recently 
proposed groups ARMANs,9 Thaumarchaeota,11 
Korarchaeota17 and Nanoarchaeota.18 Their content 
in FK506 binding proteins (FKBPs), small and large 
cyclophilins, and parvulins is listed in Table  1; a 
detailed listing is given in Supplementary Table 1.

This comparison reveals that some PPIase subfam-
ilies do not exist in Archaea: In contrast to bacterial 
and eukaryotic organisms, large multidomain FKBPs, 
multidomain cyclophilins (except Thaumarchaeota) 
and multidomain parvulins are absent in any archaeal 
genome sequenced so far. The only ubiquitous class 
of PPIases in Archaea are single-domain FKBPs 
except in Nanoarchaeum equitans which is special 
because of its dependency on Ignicoccus. While in 
all examined non-thaumarchaeal genomes, cyclophi-
lins consist of a single PPIase domain of about 160 
amino acids, the two known thaumarchaeal genomes 
of Nitrosopumilus maritimus and Cenarchaeum sym-
biosum additionally contain a protein with more than 
500 amino acids carrying an N-terminal cyclophilin 
domain. No other conserved domains are found for 
the 545 aa C. symbiosum protein in a CDD search.19 In 
the 509 aa N. maritimus protein, there is a fragment of 
a putative Zn-dependent protease [CDD:COG4784] 
located in the middle of the protein. Although the 
function of this protein remains unclear, it separates 
the two thaumarchaeal species from the rest of the 
Archaea by its mere existence.
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From Table 1, a certain tendency for the content 
of PPIases can be inferred: The higher the preferred 
growth temperature, the lower the content of PPIases 
in the genome. All species of the (hyper-)thermo-
philic Crenarchaeota contain only one FKBP-type 
PPIase per genome. The same applies to the ther-
mophilic Korarchaeum cryptophilum and the hyper-
thermophilic euryarchaeal orders Archaeoglobales 
and Methanopyrales. Strikingly, even different spe-
cies from the same orders differ in their PPIase con-
tent depending on their favoured temperature range. 
The Methanococcales include the hyperthermophilic 
Methanocaldococcus and the mesophilic Methano-
coccus species. Whereas the hyperthermophilic spe-
cies contain only two FKBPs, mesophilic species 
additionally contain one or two cyclophilins or a third 
FKBP (eg, Methanococcus aeolicus Nankai-3). Cold-
adapted microorganisms contain more than three 
prolyl isomerases eg, four PPIases are found in the 
psychrophilic archaeon Cenarchaeum symbiosum.16

Although there are exceptions from the ‘rule’ 
when going to lower temperatures, the correlation 
itself is not surprising and was previously suggested.1 
At higher growth temperatures spontaneous Xaa-
Pro bond isomerisation becomes faster and, hence, 
less enzymatic assistance in this process is needed. 
Although hyperthermophilic Archaea have reduced 
their PPIase repertoire to only one FKBP per genome, 
at least one isomerase seems to be absolutely crucial 
for them. Assuming nearly no difference between 
spontaneous and catalysed cis/trans isomerisation at 
elevated temperatures,1 this protein may serve a func-
tion other than being a PPIase.

In contrast to the total arsenal of PPIases, parvulin-
type enzymes can only be found in three phyla includ-
ing mesophilic microorganisms: the euryarchaeal 
Methanomicrobiales, the archaeal Richmond Mine 
acidophilic nanoorganisms (ARMAN) and the Thau-
marchaeota. All Crenarchaeota, Korarchaeota and 
Nanoarchaeota species sequenced to date lack parvu-
lin genes completely (Supplementary Table 1). Also 
very recent additions to the list of available archaeal 
genomes do not change this situation: The genomic 
sequence of another archaeon (Candidatus Caldiar-
chaeum subterraneum) that was classified somewhere 
between Euryarchaeota and Crenarchaeota, does not 
contain any parvulins.20 On the other hand, a third 
thaumarchaeal genome (Candidatus Nitrosoarchaeum 

limnia SFB1) that was recently released,21 contains a 
single-domain parvulin highly similar to the parvu-
lin from Nitrosopumilus maritimus (85% identity on 
the level of amino acids). Thirdly, the genome of a 
Methanosarcina species (Candidatus Methanosaeta 
concilii GP-6) containing a single-domain parvulin 
[NCBI RefSeq NC_015416.1] may indicate that the 
occurrence of parvulin coding sequences within the 
group of Euryarchaeota is not strictly confined to 
Methanomicrobiales.

Whereas only 9 percent of the 65 genomes of 
Euryarchaeota available at the time of analysis—
including the above mentioned ARMAN and 
Methanomicrobiales—possess a parvulin gene, the two 
known thaumarchaeal genomes both contain exactly 
one parvulin gene. This parvulin comprises a single 
domain with a molecular weight of about 10 kDa. We 
refer to this class of parvulins as single-domain par-
vulins (sdPar). Single-domain parvulins are absent 
from eukaryotic genomes. It could be that the com-
partmentalised Eukarya need parvulin proteins with 
additional domains for cellular targeting, protein bind-
ing or anchoring like it is the case for the two human 
representatives Pin122,23 and Par14/17.24–27 In contrast 
to Eukarya, many bacterial genomes contain single-
domain parvulins. With the exception of Lentispha-
era araneosa and two Planctomycetes, all known 
parvulin-containing Bacteria belong to the subgroup 
of Proteobacteria. Most of these genomes possess a 
single sdPar; some species contain two, and only the 
extreme psychrophilic species Colwellia psychreryth-
raea (Alteromonadales) contains three sdPar-type 
parvulin genes, which again suggests a relationship 
between temperature and PPIase content.

Of note, we found bacterial multi-domain proteins 
of the PrsA type containing parvulin domains very sim-
ilar to sdPars. However, these paralogous sequences 
were excluded from further analysis because no cor-
responding multi-domain parvulin protein sequences 
could be found in any archaeal genome.

Genomic context of archaeal parvulins
In order to characterise the relationship among archaeal 
parvulins, we examined the genomic context of the dif-
ferent parvulin loci in Archaea for conserved structures. 
In a first step, the genomic context of the parvulin locus 
was examined in the fully sequenced archaeal genomes. 
No conserved gene organisation was found within the 
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six available genomes from the Methanomicrobiales 
and the ARMAN group (Fig.  1, upper half). In con-
trast, the two deposited thaumarchaeal genomes of 
Nitrosopumilus maritimus and Cenarchaeum symbio-
sum have an antisense DEAD/DEAH-box helicase 

containing protein (DHCP) downstream of the parvulin 
reading frame. The Nitrosopumilus genome carries 
an inserted hypothetical protein between parvulin and 
DHCP, which is missing in the Cenarchaeum genome. 
In 5′ direction from parvulin, both genomes contain two 
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Figure 1. Genomic context analysis of the archaeal parvulin locus. The genetic background was analysed as described in the main text. White-backed 
arrows indicate genes occurring only once. Other colour codes are indicated within the figure. All abbreviations in this schematic are given below.

(Continued)
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12 parvulin containing contigs starting with “AACY” from the Sorcerer II voyage,49 ACXJ01008586 from samples collected from thick floating biofilms in 
the Richmond Mine.6 ABEF01053500 from a subtropical gyre in 4000 m depth was deposited by Ed DeLong and colleagues from the Hawaiian research 
station ALOHA. The parvulin containing fosmid AD1000-56-E4 derives from plankton collected in 1000 m depth in the Adriatic Sea.8 The metagenomic 
contigs AACY023784421 and ACXJ01008586 were added to their groups on basis of their parvulin primary sequence, for ACXJ01008586 this stands in 
agreement with its origin. The marine metagenomic contig AACY023450473 contains 341 amino acids of the N-terminus of an aminotransferase class I/II. 
This sequence shows highest similarity to the protein YP_001737635 from Candidatus Korarchaeum cryptofilum OPF8 (39 percent amino acids identity 
over 331 amino acids). Hence, this contig may belong to the Korarchaeota. AACY023772022, AACY020521263, AACY020172942 and AACY020179599 
were clustered with Nitrosopumilus maritimus, because they share the same PPOX gene preceding parvulin. Comparably, ABEF01053500 was grouped 
with Cenarchaeum symbiosum due to an antisense hypothetical protein DUF2203 preceding the parvulin gene. With 80% sequence identity of their par-
vulin proteins, Nitrosopumilus maritimus and Cenarchaeum symbiosum were grouped together in Thaumarchaeota I. AACY022114635, AACY020912937, 
AACY023104196 and AACY020565072 were also clustered due to the gene directly upstream of parvulin, the hypothetical protein homologous to 
nmar_0940. AACY021994642 was also grouped with these contigs because of its high parvulin primary sequence similarity. AACY023721900 and umc-
AD1000-56-E4 have a totally different upstream region, but they can clearly been classified as Thaumarchaeota II due to the typical downstream DHCP 
reading frame and their parvulin primary sequence.
Abbreviations: 1, hypothetical protein censya_1187 (Cenarchaeum specific), [GeneID: 6371367], Cenarchaeum symbiosum A, [Ref.Seq.: NC_014820.1]; 
2, hypothetical protein censya_1186 (Cenarchaeum specific), [GeneID: 6371366], Cenarchaeum symbiosum A, [Ref.Seq.: NC_014820.1]; ADC, acetolac-
tate decarboxylase, [GeneID: 5411158], Methanoregula boonei 6A8, [Ref.Seq.: NC_009712.1]; AEF, auxin efflux carrier, [GeneID: 7271583], Meth-
anosphaerula palustris E1-9c, [Ref.Seq.: NC_011832.1]; AKR, adenylate kinase related protein, [GenBank: EET90508.1], Candidatus Micrarchaeum 
acidiphilum ARMAN-2, [GenBank: GG697236.1]; AM, antibiotic biosynthesis monooxygenase, [GenBank: EEZ92921.1], Candidatus Parvarchaeum aci-
diphilum ARMAN-4, [GenBank: GG730045.1]; AT1/2, aminotransferase class I and II, n.a., n.a., [GenBank: AACY023450473.1]; ATS, asparagyl-tRNA-
synthetase, n.a., n.a., [GenBank: ACXJ01008586.1]; Aumc, hypothetical protein (uncultured marine crenarchaeota-umc specific), n.a., n.a., [GenBank: 
ABEF01053500.1]; C2, cupin 2 conserved barrel, [GeneID: 9742629], Methanoplanus petrolearius DSM 11571, [Ref.Seq.: NC_014507.1]; CK, carbamate 
kinase, [GeneID: 9742627], Methanoplanus petrolearius DSM 11571, [Ref.Seq.: NC_014507.1]; DAM, DNA adenine methylase, [GeneID: 9742631], 
Methanoplanus petrolearius DSM 11571, [Ref.Seq.: NC_014507.1]; DOS, dihydropterate synt, [GeneID: 5411815], Methanoregula boonei 6A8, [Ref.
Seq.: NC_009712.1]; GCN5, GCN5-related N-acetyltransferase, [GeneID: 7271586], Methanosphaerula palustris E1-9c, [Ref.Seq.: NC_011832.1]; h1, 
hypothetical protein nmar_0943 (Nitrosopumilus specific), [GeneID: 5773171], Nitrosopumilus maritimus SCM1, [Ref.Seq.: NC_010085.1]; h2, hypo-
thetical protein nmar_0945 (Nitrosopumilus specific), [GeneID: 5774572], Nitrosopumilus maritimus SCM1, [Ref.Seq.: NC_010085.1]; hA1, hypotheti-
cal protein UNLARM2_0040 (ARMAN specific), [GenBank: EET90506.1], Candidatus Micrarchaeum acidiphilum ARMAN-2, [GenBank: GG697236.1]; 
HAD, HAD-superfamily hydrolase, [GenBank: EET90509.1], Candidatus Micrarchaeum acidiphilum ARMAN-2, [GenBank: GG697236.1]; HEAT, HEAT-
repeat containing protein, [GeneID: 4795375], Methanocorpusculum labreanum Z, [Ref.Seq.: NC_008942.1]; HIT, histidin triade protein, [GenBank: 
ACF09643.1], uncultured marine crenarchaeote AD1000-56-E4, [GenBank: EU686623.2]; HMCS, 3-hydroxy-3-methylglutaryl CoA synthase, [GenBank: 
EET90505.1], Candidatus Micrarchaeum acidiphilum ARMAN-2, [GenBank: GG697236.1]; hP1, hypothetical protein BJBARM4_0439 (parvarchaeum spe-
cific), [GenBank: EEZ92926.1], Candidatus Parvarchaeum acidiphilum ARMAN-4, [GenBank: GG730045.1]; hP2, hypothetical protein BJBARM4_0438 
(parvarchaeum specific), [GenBank: EEZ92925.1], Candidatus Parvarchaeum acidiphilum ARMAN-4, [GenBank: GG730045.1]; hP3, hypothetical pro-
tein BJBARM4_0436 (parvarchaeum specific), [GenBank: EEZ92923.1], Candidatus Parvarchaeum acidiphilum ARMAN-4, [GenBank: GG730045.1]; 
hy1, hypothetical protein (specific for Thaumarchaeota and umcs), [GenBank: ACF09649.1], uncultured marine crenarchaeote AD1000-56-E4, [Gen-
Bank: EU686623.2]; hy2, hypothetical protein (specific for Thaumarchaeota and umcs), [GenBank: ACF09648.1], uncultured marine crenarchaeote 
AD1000-56-E4, [GenBank: EU686623.2]; hy3, hypothetical protein (umc specific), [GenBank: ACF09644.1], uncultured marine crenarchaeote AD1000-
56-E4, [GenBank: EU686623.2]; hyp, hypothetical protein with putative conserved domain DUF726, n.a., n.a., [GenBank: AACY020565072.1]; hyp1, 
hypothetical protein MBOO_0211 (no blastp-hit), [GeneID: 5411157], Methanoregula boonei 6A8, [Ref.Seq.: NC_009712.1]; hyp2, hypothetical protein 
MBOO_0214 (no blastp-hit), [GeneID: 5411814], Methanoregula boonei 6A8, [Ref.Seq.: NC_009712.1]; M10, methan mark 10, [GeneID: 4795594], Meth-
anocorpusculum labreanum Z, [Ref.Seq.: NC_008942.1]; MCM, MCM family protein, [GeneID: 7271582], Methanosphaerula palustris E1-9c, [Ref.Seq.: 
NC_011832.1]; MCST, methyl-accepting chemotaxis sensory transducer with Pas/Pac sensor, [GeneID: 7271585], Methanosphaerula palustris E1-9c, 
[Ref.Seq.: NC_011832.1]; MDP, metal-dependent protease (COG 1310), [GenBank: ACF09647.1], uncultured marine crenarchaeote AD1000-56-E4, 
[GenBank: EU686623.2]; NED, NAD-dependent epimerase/dehydratase, [GenBank: EET90510.1], Candidatus Micrarchaeum acidiphilum ARMAN-2, 
[GenBank: GG697236.1]; OCT, ornithine carbamoyltransferase, [GeneID: 9742628], Methanoplanus petrolearius DSM 11571, [Ref.Seq.: NC_014507.1]; 
PDP, pirin-domain protein, [GenBank: EEZ92922.1], Candidatus Parvarchaeum acidiphilum ARMAN-4, [GenBank: GG730045.1]; RIII, ribonuclease III, 
[GeneID: 4795607], Methanocorpusculum labreanum Z, [Ref.Seq.: NC_008942.1]; S1, S1-tex like protein, n.a., n.a., [GenBank: AACY023784421.1]; 
SdM, SAM dependent methyltransferase, [GeneID: 4795613], Methanocorpusculum labreanum Z, [Ref.Seq.: NC_008942.1]; SMC, SMC-domain con-
taining protein, [GeneID: 4795178], Methanocorpusculum labreanum Z, [Ref.Seq.: NC_008942.1]; TolB, TolB-like protein, [GeneID: 9742632], Methano-
planus petrolearius DSM 11571, [Ref.Seq.: NC_014507.1].

genes in opposite orientation, an UbiA prenyltransferase 
and a hypothetical protein with a conserved domain of 
unknown function DUF2203. In contrast to Cenar-
chaeum, the Nitrosopumilus genome has two more 
proteins inserted in between: the hypothetical protein 
nmar_0940 and a pyridoxamine 5′-phosphate oxidase-
related FMN-binding protein (PPOX). Taken together, 
no conserved putative operons could be detected in the 
investigated genomes (Fig. 1, lower half).

To extend this analysis to more archaeal sequences 
than the eight fully sequenced genomes mentioned 
above, the NCBI databases whole genome shotgun 
reads (wgs) and environmental samples (env_nt) 
were searched for contiguous sequences (contigs) 

containing single-domain parvulins using tBLASTn 
with the known archaeal parvulins as queries. This 
search yielded 14 additional sequences with sizes 
between 797 and 7533 bases (Fig.  1, lower half). 
Additionally, an annotated fosmid AD1000-56-E4 
(35.5 kb) was found carrying an sdPar gene when 
searching the non-redundant protein sequences (nr) 
database by BLASTp using the N. maritimus sdPar 
as query.

In all fully sequenced archaeal organisms, only one 
parvulin gene was found per genome. Consequently, all 
newly found parvulin-containing contigs were treated 
as belonging to different (uncultivated) organisms and 
their genomic context was analysed as described. In 
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eight of the metagenomic contigs the parvulin gene is 
found in close proximity to upstream genes (Fig. 1). 
In four contigs, a pyridoxamine 5′-phosphate oxidase-
related FMN-binding protein (PPOX) is in direct 
neighbourhood to parvulin. Two of these four contigs 
also contain the same partial hypothetical protein 5′ to 
parvulin. This open reading frame is in direct vicin-
ity to the parvulin locus in four other contigs, which 
lack the PPOX gene. Although the genome of Nitros-
opumilus maritimus contains the reading frames for 
hypothetical protein nmar_0940, PPOX and sdPar (in 
this order), co-transcription is not likely there, because 
of an intergenic gap of more than 300 bases between 
parvulin and the PPOX gene. Hence, although the 
PPOX-gene could be co-transcribed with the parvulin 
in four contigs, this putative operon is most likely not 
conserved in all PPOX-containing organisms. Even 
though these findings give some hints for a polycis-
tronic transcription including the parvulin message, it 
is not possible to make functional statements as one 
of the two found proteins is a hypothetical protein of 
unknown function.

Clustering of the highly conserved 
archaeal single-domain parvulins
Besides the search for putative operons, a combination 
of genomic context analysis and comparison of the 
parvulin primary sequence suggested a grouping of 
the metagenomic contigs into different clusters indi-
cated in Figure 1 that we refer to as Thaumarchaeota I 
and II. Genomes and contigs were added to the group 
of putative Thaumarchaeota I when either sharing a 
PPOX gene immediately upstream of the parvulin 
sequence (similar to the N. maritimus sequence) or the 
hypothetical protein DUF2203 (related to the C. sym-
biosum sequence). All other contigs comprising par-
vulin primary sequences homologous to N. maritimus 
or C. symbiosum were added to the second group of 
presumed Thaumarchaeota II. Nevertheless, all these 
sequences may belong to the formerly proposed group 
I.1a of Thaumarchaeota11 due to their overall similar-
ity and their common oceanic origin.

Analysis of genomic context from fully sequenced 
archaeal genomes and metagenomic data has now 
yielded archaeal parvulin sequences in 23 different 
genomic environments. This allowed us to compare the 
diversity of sdPar amino acid sequences with that of 
other proteins. Therefore, we computed the sequence 

entropy, averaged over all sequence positions, for 
multiple sequence alignments of sdPars and multiple 
sequence alignments of proteins UbiA, DUF, hyp, 
PPOX, and DHCP from the corresponding organisms. 
Figure  2  shows that the mean sequence entropy of 
sdPars is significantly lower than that of other proteins 
from corresponding organisms (P  =  0.01 in Mann-
Whitney test). Thus, single-domain parvulins were 
found to be significantly more conserved than their 
genomic neighbours.

Relationship among archaeal parvulins
The high sequence conservation of sdPar proteins in 
Archaea tempted us to find out whether this short pro-
tein sequence (around 100 amino acids) allows the cal-
culation of reasonable maximum likelihood phylogeny 
(MLP). Although parvulin cannot substitute for estab-
lished phylogenetic markers like small subunit RNA, it 
can probably deliver valuable insights into the relation-
ship within recently proposed archaeal subgroups.

All available single-domain parvulins of Bacte-
ria and Archaea were collected to generate an initial 
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Figure 2. Mean Shannon entropy of the archaeal parvulin and its genomic 
neighbours. At the parvulin locus of N. maritimus, we found the following 
neighbouring proteins to be present in at least 5 different contigs: UbiA, 
DUF, hyp, PPOX, and DHCP. The mean Shannon entropy (unit: bit) of 
these sequences was calculated as a measure of sequence diversity 
and compared with the same measure for sdPar from the corresponding 
organisms. 
Abbreviations: UbiA, UbiA prenyltransferase; DUF, hypothetical protein 
of unknown function (COG4911/DUF2203); hyp,  hypothetical protein 
nmar_0940; PPOX,  pyridoxamine 5′-phosphate oxidase-related FMN-
binding protein; Par,  parvulin; DHCP,  DEAD/DEAH box containing 
protein.
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dataset of 326 sdPar sequences. Next, 59 bacterial 
paralogous sequences were removed, identified as 
such by calculating trees with the unfiltered dataset 
and comparing the results with a tree based on small 
subunit ribosomal RNA.28 Additionally, 26 parvulin 
sequences were filtered out from bacterial orders 
where less than 50 percent of fully or near fully 
sequenced genomes contained a single-domain par-
vulin that may have emerged from horizontal gene 
transfer (HGT). Trimming resulted in a final data-
set of 241 sequences (218 bacterial genomes, eight 
archaeal genomes, one fosmid and 14 metagenomic 
contigs), which were aligned with T-Coffee29 and 
used to calculate maximum likelihood phylogeny 
with PhyML.30 Supplementary Figure  1  shows the 
resulting tree that was evaluated by 1000 bootstraps 
and rooted by Escherichia coli SlyD, an FKBP with 
structural analogy to the parvulin fold but without 
any sequential similarities.2,31,32

Please note that the procedure described so far 
has assumed all single-domain parvulins to be mono-
phyletic and under-estimates horizontal gene transfer 
(HGT) events. However, a recent paper33 has revealed 
that HGTs have been frequent events within marine 

uncultured planktonic archaea that Thaumarchaeota 
are part of. This paper also assigns a bacterial origin 
to the sdPar sequence of the archaeal fosmid AD1000-
56-E4. Hence, we further concentrated on the relation-
ships within the smaller archaeal sub-tree excluding 
all euryarchaeal sequences (Fig. 3). For this sub-tree 
to be monophyletic we have three main indications: 
(1) the respective sequences form a cluster set apart 
from other sdPar sequences by high bootstrap val-
ues (931/1000); (2) when using NmPinA or CsPinA 
sequences as seed for BLASTp searches within the nr 
database, the thaumarchaeal sdPars always constitute 
the very first hits with very small e values and (3) 
their genomic context is highly conserved.

Hence, it seems feasible to use single-domain 
parvulins as marker to detect and reclassify novel 
members of the recently proposed archaeal phyla of 
ARMANs and Thaumarchaeota. As one of the above 
mentioned metagenomic contigs (AACY023784421) 
does not show similarity to any of the ARMAN or 
thaumarchaeal sequences in its genomic context and 
its sdPar sequence clusters more with the four anno-
tated Methanomicrobiales, this sequence may be of 
euryarchaeal origin.
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Marine metagenome AACY023772022

Marine metagenome AACY020521263

Cenarchaeum symbiosum A

Marine metagenome HOTS ABEF01053500

Marine metagenome AACY020172942

Marine metagenome AACY020179599

Marine metagenome AACY023721900

Uncultured marine crenarchaeote AD1000-56-E4

Marine metagenome AACY022114635

Marine metagenome AACY020912937

Marine metagenome AACY023104196

Marine metagenome AACY020565072

Marine metagenome AACY021994642

Bacteria and euryarchaeota
Korarchaeota ?

ARMANs

Thaumarchaeota I

Thaumarchaeota II

Hypothetical protein COG4911/DUF2203 Hypothetical protein only blastp-hit: nmar_0940 Pyridoxamine 5'-phosphate oxidase-related FMN-binding

Major deletion event

Figure 3. Archaeal branch of an MLP tree combined with genomic context. The figure displays an expanded section of the maximum likelihood phylogeny 
tree from Figure 3. The outgroup has been omitted and the whole bacterial clade has been collapsed for clarity. Red signs indicate three deletion events 
suggested by the genomic context: The deletion of the hyp0940 and PPOX genes is described in the main text. The putative PPOX deletion seems to be 
a basal event for the Thaumarchaeota II subgroup. The large genetic rearrangement concerning the uncultured marine Crenarchaeota fosmid AD1000-
56-E4 makes this sequence unique in the group of Thaumarchaeota. Next to the Thaumarchaeota, the corresponding parvulin loci with the available 
genomic contexts are displayed. The groups predicted from the genomic context are also well defined in the MLP tree.

http://www.la-press.com


Single-domain parvulins as markers for archaeal subgroups

Evolutionary Bioinformatics 2011:7	 143

The parvulin sequence from the marine 
metagenomic contig AACY023450473 is differ-
ent from all other sdPar sequences in the MLP tree. 
This contig contains a putative korarchaeal amin-
otransferase downstream of the sdPar reading frame 
(Fig. 1) and hence may be classified as a korarchaeal 
sequence. The respective microorganism may be the 
first mesophilic to moderately thermophilic korar-
chaeon as all archaeal parvulins found until now are 
from mesophilic species. Alternatively, it could be the 
first parvulin of a thermophilic species, as all Korar-
chaeota known are (hyper-)thermophilic. As this 
contig was from marine surface water samples, the 
first interpretation seems to be more likely. In either 
case, the existence of a parvulin within a korarchaeal 
genome supports that Korarchaeota may be genetic 
hybrids between Euryarchaeota and Crenarchaeota.17

The sdPar sequences from all available ARMAN 
species are as a group highly similar to the respective 
proteins from Thaumarchaeota. This may indicate a 
closer relationship of ARMANs to Thaumarchaeota 
than to other Archaea. This would be in agreement with 
a recently reported 16s ribosomal RNA tree includ-
ing the ARMANs where they branch very early from 
the euryarchaeal clade;6 but thaumarchaeal sequences 
were not enclosed in that tree. The ARMAN parvu-
lins are similarly conserved as the thaumarchaeal 
within their group (score 69.7 and score 70.2, respec-
tively), but unlike the Thaumarchaeota, they have no 
similarities to each other in their genomic context at 
all. Whether the ARMANs form another clade like 
Thaumarchaeota, Nanoarchaeota and Korarchaeota, 
or whether they belong to one of these clades remains 
to be elucidated. However, the comparison of the 
contained parvulin sequences makes a euryarchaeal 
annotation (“undefined Euryarchaeota”) of the group 
of extremely acidophilic organisms (ARMANs) 
rather unlikely.

The thaumarchaeal parvulin sequences are highly 
interrelated. This is in agreement with the recent 
acceptance of this group as a secluded deep branching 
phylum.11 Analysis of the genomic context suggests 
some major genetic rearrangements within this group. 
A comparison of the fully sequenced genomes of this 
group reveals a deletion of the hyp0940 and PPOX 
genes, present in N. maritimus, from the genome of 
the psychrophilic C. symbiosum.

Based solely on parvulin’s primary protein sequence, 
we were able to properly group the metagenomic con-
tig AACY021994642 with only 804 bases, which is 
little more than half as long as the small ribosomal 
subunit RNA of N. maritimus (1409 bases). The other 
contigs of similar size, AACY023104196 (942 bases), 
AACY020912937 (797 bases) and AACY022114635 
(989 bases), also contained information about the 
genomic context and could therefore be determined 
more reliably.

Our parvulin-based assignment of metagenomic 
contigs to distinct archaeal subgroups is of particu-
lar interest as it adds putative new members to the 
recently proposed phylum of Thaumarchaeota. Little 
is known today about the dimension, the diversity and 
the evolutionary relationships within this phylum, in 
spite of its important role in geochemical cycles in all 
marine surface waters on this planet. Using not only 
a single protein as a phylogenetic marker, but also its 
whole genomic locus including a variety of different 
and alternating genes gives additional opportunities of 
deepening the understanding of the phylum of Thau-
marchaeota. One example how the toolset we deliver 
could be used in further studies is shown in Figure 4. 
Based on our analysis of the genomic context of par-
vulins, we propose sensible primers, which could be 
helpful for further studies. All proposed primers in 
neighbouring coding regions are within a 3 kb dis-
tance to the parvulin gene.

Comparing bacterial and archaeal 
parvulin proteins
Orthogonal to analyses of the PPIase repertoire 
within archaeal genomes, the genomic context and 
the degree of sequence conservation of archaeal par-
vulin proteins, we wanted to rationalise differences 
between these two groups of proteins on the level of 
amino acids. Qualitatively, protein parameters were 
compared for the parvulin proteins from Escheri-
chia coli [PDB:1JNS] and Cenarchaeum symbiosum 
[PDB:2QRS]. The two proteins have similar isoelec-
tric points: 9.23 and 9.59, respectively. However, the 
archaeal protein has more charged residues than the 
bacterial one (Asp+Glu/Arg+Lys: 12/18 relative to 
9/13).

A more efficient and unbiased way to analyse dif-
ferences between whole groups of protein sequences 
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5'-CCW SAD ATW MGR GAR MGG-3'

5'-TCD ATD CCV CGY TTR WAR TCC C-3'

5'-CCW CAY GTM AAR CCD GTD TC-3'

5'-GCA CAR TGC ATT ATY GCR TTK GC-3'AACY020912737
AACY020565072
AACY023104196
AACY022114635
N. mari�mus

ABEF01053500
AACY020565072
AACY020179599
C. symbiosum

N. mari�mus

AACY020179599

AACY020172942
AACY020179599

AACY023772022
N. mari�mus

AACY020172942
AACY020179599

C. symbiosum
N. mari�mus

AACY020521263

CCACAAATAAGAGAAAGG
CCACAAATTAGAGAGAGG
CCACAAATAAGAGAGAGG
CCACAGATTAGAGAAAGG
CCAGAGATTAGAGAACGG
CCTCATATTCGGGAGAGG

CCTCATGTAAAGCCGGTTTC
CCACATGTCAAGCCGGTATC
CCACATGTAAAGCCAGTATC
CCACAGGTAAAACCTGTATC
CCTCATGTAAAACCTGTGTC

** ** ** **

** **: ** ** ** ** **

GGGATTTTAAACGTGGTATAGA
GGGATTTCAAACGGGGAATAGA
GGGATTTCAAGCGTGGCATCGA
GGGATTTCAAGCGCGGAATTGA
GGGACTACAAGCGCGGCATAGA
** ** * : ** ** **** **

5'-CCA RCA MAR CCA RAY DTC NTC-3'

AACY020565072
ABEF01053500
AACY020179599
Csym

N. mari�mus GATGAAGTTTGGTTGTGCTGG
GAAGAGGTCTGGCTTTGTTGG
GAAGAAATTTGGCTTTGTTGG
GAGGATCTTTGGCTTTGTTGG
GACGACATCTGGCTGTGCTGG
** ** *** **** ***

5'-GAA TNY THG GMA TGA CWG CDA C-3'

5'

umc AD1000
AACY020172942
AACY020179599
C. symbiosum

N. mari�mus GAATTGTTGGAATGACTGCAAC
GAATGCTTGGAATGACAGCTAC
GAATCATAGGAATGACTGCAAC
GAATAATTGGAATGACTGCTAC
GAATGATCGGCATGACTGCGAC
** ** ** **** ** **: **

GCAAATGCAATAATGCATTGTGC
GCCAACGCAATAATGCACTGTGC
GCCAATGCAATAATGCATTGTGC
GCCAACGCGATAATGCACTGTGC
** ** ** **** ** ** ****** *: :

3'5'

3'

ParvulinN. maritimus

Figure 4. Proposed primers for further metagenomic analyses. To get these primers the nucleotide sequences of the parvulin surrounding genes have 
been aligned with ClustalW. Several requirements (length between 18 and 24 bases, average GC content over 40%, average salt adjusted melting tem-
perature between 50 °C and 65 °C) has been applied. The resulting primers for genes surrounding the thaumarchaeal parvulin are shown in this figure. 
For positions that were ambiguous, the respective IUPAC code for degenerate bases have been used: A or C, M; A or G, R; A or T, W; G or C, S; C or T, 
Y; G or T, K; A, G or C, V; A, C or T, H, A, G or T, D; G, C or T, B; A, G, C or T, N.

is to apply machine learning techniques.34 We used 
a random forest (RF)35 to differentiate our dataset of 
241 archaeal and bacterial parvulin sequences. First, 
the sequences were encoded using the hydrophobicity 
descriptor and the net charge descriptor, respectively 
(Fig. 5).36 The encoded sequences were used as input 
for the RF classifiers. The classifiers trained with the 
hydrophobicity and the net charge descriptors were 

perfectly able to distinguish the two classes. Remark-
ably, very good classification accuracy can already 
be achieved with a linear separator, such as a linear 
support vector machine (data not shown). For further 
analysis, we used the so-called importance values 
generated in the RF that project the complex classifier 
onto more easily intelligible contributions by single 
sequence positions.
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Figure 5. A random forest (RF) can be trained to discriminate between bacterial and archaeal single-domain parvulins. Two descriptors were used 
(hydrophobicity and net charge) to describe the protein sequences. The very same dataset used for the MLP tree was used here. Prediction scale 
represents “0.0”, bacterial, and “1.0”, archaeal. The separation according to the MLP tree is represented in green (archaeal) and red (bacterial). For 
the hydrophobicity descriptor, the RF perfectly separate the two classes (F1 score = 1.0). For the net charge descriptor, the RF reaches an F1 score of 
0.979 (cut off = 0.2).
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Figure 6. Random forest approach to identify special features of archaeal parvulins. A random forest was used to distinguish archaeal and bacterial parvu-
lins. (A) importance values were derived from the random forest analysis and plotted on the primary sequence of the parvulin protein from Cenarchaeum 
symbiosum. (B) the identified positions of all 23 archaeal proteins were used to create a protein logo. (C) mapping of important residues on the structure 
[PDB:2QRS] of the C. symbiosum parvulin.

The positions were grouped into highly, medium or 
weakly important positions (Fig. 6A). A sequence logo 
was created from the 23 archaeal proteins for all these 
positions (Fig. 6B). It shows that the positions identi-
fied in the RF are largely conserved within the archaeal 
subgroup. A notable exception is Cys/Asp41 in the cata-
lytic centre.2 Nine of the 15 identified positions include 
charged amino acids in the archaeal proteins. This is in 
agreement with the notion above that an archaeal par-
vulin contains many more charged residues than its bac-
terial counterpart. Notably, the identified positions are 
unevenly distributed. After mapping of the correspond-
ing residues onto the recently published structure of the 
PinA protein from C. symbiosum, these residues form a 
charged patch on one side of the protein (Fig. 6C). This 
may represent a special feature of archaeal parvulins 
pointing towards a negatively charged binding partner. 
As C. symbiosum is a psychrophilic archaeon, this fea-
ture could also be a further hallmark of cold adaption of 
psychrophilic parvulins.16

Conclusion
Thaumarchaeota are known to play a crucial role in 
geochemical cycles in surface regions of non-coastal 
marine freshwater; their total number was estimated 

to be 1028 cells worldwide.37 These organisms do 
not belong to the phylum of Crenarchaeota, but 
form another deep-branching clade.11 Similar to 
Korarchaeota17 they possess genes related to Crenar-
chaeota as well as euryarchaeal genes. At the time of 
analysis, only two fully sequenced genomes of Thau-
marchaeota are available3,4 and the dimension of this 
phylum is unknown. Recent studies have assigned 
some metagenomic contigs or fosmids to the thau-
marchaeal phylum,13–15 but it remained impossible to 
group virtual organisms within the phylum.

Searching all available archaeal genomes for 
their PPIase content led to a correlation between the 
growth temperature of an organism and its PPIase 
content. There is a strong tendency for thermo-
philic microorganisms to reduce the total number of 
PPIases.

By examining the genomic context of sdPars, we 
could classify groups within the underrepresented and 
largely uncultivated archaeal subgroup of Thaumar-
chaeota and reveal that parvulin is significantly higher 
conserved than its genomic neighbours. Our work 
related the novel group of acidophilic Richmond Mine 
archaeal nanoorganism (ARMAN) much closer to the 
Thaumarchaeota than previously anticipated. Taken 
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together, our study significantly expands the phylum of 
Thaumarchaeota by metagenomic sequences, allows a 
first grouping of these organisms and reveals important 
amino acid residues, or a molecular phenotype, that sep-
arate archaeal and bacterial parvulins from each other.

Methods
Searching genomes for their PPIase 
repertoire
First all fully and near fully genomes of Archaea were 
listed using the NCBI genomes database.38 Next, the 
following E. coli proteins were used as queries: SlyD-
type-FKBP: [GeneID: 947859]; FkpA-type-FKBP: 
[GeneID: 947870]; trigger factor: [GeneID: 
945081]; Cyclophilins: [GeneID: 949038]; sdPar: 
[GeneID:948285]; SurA: [GeneID: 94481]. Queries 
for PrsA and NifM were taken from the organisms 
Staphylococcus aureus (PrsA:[GeneID: 5560626]) 
and Azotobacter vinelandii (NifM: [GeneID: 
7759132]). The genomes were searched by examin-
ing their annotated proteins or by searching the whole 
genomes with the different queries using BLASTp.39 
Positive, but not annotated hits were verified using 
the Conserved Domain Database (CDD).19

Retrieving sdPar-containing 
metagenomic data and measurement  
of diversity
Metagenomic contigs were found by using the 
known and annotated archaeal parvulins as que-
ries for tBLASTn searches39 in the whole genome 
shotgun (wgs) and the environmental samples (env) 
databases.38 The length of the sdPar reading frame 
was determined using ORF finder.40 Contigs were 
examined for the parvulin-surrounding genomic con-
text using the same toolset.

For the evaluation of mean sequence entropies we 
computed with T-Coffee29 pairs of multiple sequence 
alignments for a certain protein sequence (UbiA, DUF, 
hyp, PPOX, DHCP) taken from a set of organisms 
and of sdPar taken from the same set. For each mul-
tiple sequence alignment we computed the Shannon 
entropy using the R-package bio3d41 and averaged this 
entropy over all alignment positions. The R-script for 
the computation of entropy and all multiple sequence 
alignments used as input for the script are provided as 
supplementary material (file Supp_entropy.zip).

Phylogenetic calculations
An initial dataset of 326 parvulin sequences was 
used for phylogenetic calculations. This dataset con-
tained 16  sequences that were N-terminally trun-
cated and one metagenomic sequence that has been 
C-terminally truncated to the sequence matching 
the sdPar sequences of Nitrosopumilus maritimus 
and Cenarchaeum symbiosum. The FKBP SlyD 
from E. coli was used as an outgroup representing 
an unrelated prolyl isomerase with conserved fold. 
These sequences were aligned using T-Coffee.29 
Phylogeny was estimated by maximum-likelihood 
using PhyML 3.030 with 1000 bootstraps. A consensus 
tree was derived from this dataset using the program 
consense of the Phylip suite42 defining SlyD manu-
ally as outgroup. This tree was plotted using FigTree 
1.3.1 (http://tree.bio.ed.ac.uk/software/figtree). After 
removal of paralogues and sequences from clades 
where parvulins are not well represented, the 241 
remaining sequences were used for another MLP cal-
culation as described above.

Machine learning approach
Parvulins were first compared with respect to pro-
tein parameters43 and surface exposure44 as has been 
described.45 The filtered dataset of 241 single-domain 
parvulins was then used to train a linear support vec-
tor machine and a random forest. Therefore, N- and 
C-termini were trimmed on the basis of a multiple-
sequence alignment and a loop of 15 amino acids was 
removed from sequences of Photobacterium spe-
cies as it occurred only there. This S(E/Q)ALK(K/L) 
KNNNLRGLI loop might functionally correspond 
to the phosphate-binding loop KHSQSRRPSS-
WRQEKITRTK of the Pin1 structure [PDB:1NMV];23 
however, it is more similar to the KVKSKKSD-
KEGLD extension seen in the Staphylococcus aureus 
PrsA parvulin that does not bind phosphorylated sub-
strates [PDB:2JZV].46 The remaining sequences were 
projected to a length of 92 amino acids.

The 241 protein sequences were encoded using the 
hydrophobicity descriptor and the net charge descrip-
tor, respectively.36 The encoded sequences were used 
as input for the linear support vector machine and the 
random forest35 as implemented in the R packages kern-
lab and randomForest.47 The classifier models were 
evaluated by ten-fold leave-one-out cross-validation. 
As performance measurement we used the area under 
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the receiver operating curve (AUC)48 and the F1 score, 
the harmonic mean of precision and recall:

	

F
precision recall

precision recall

precision
TP

TP FP
rec

1
2=

+

=
+

* *

, aall =
+

TP

TP FN

with TP: true positives, FP: false positives, FN: false 
negatives.

Random forests estimate the importance of each 
sequence position for the classification process.35 
Importance values from random forests using hydro-
phobicity and net charge descriptors were averaged 
and classified into highly (.2%), medium (1%–2%) 
and weakly (0.6%–1%) important residues. These 
were mapped on the NMR structure [PDB:2QRS] of 
the sdPar of C. Symbiosum.16
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