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Abstract

In Saccharomyces cerevisiae, mRNA transcripts with premature termination codons are targeted for deadenylation
independent decapping and 59 to 39 decay in a quality control pathway termed nonsense-mediated decay (NMD). Critical
factors in NMD include Upf1, Upf2, and Upf3, as well as the decapping enzyme, Dcp2/Dcp1. Loss of Upf2 or Upf3 leads to
the accumulation of not only Upf1 and Dcp2 in P-bodies, but also of the decapping-activators Pat1, Dhh1, and Lsm1. An
interaction between Upf1 and Dcp2 has been identified, which might recruit Dcp2 to the NMD decapping complex. To
determine the nature and significance of the Dcp2-Upf1 interaction, we utilized the yeast two-hybrid assay to assess Upf1
interactions with various mRNA decapping factors. We find that although Dcp2 can interact with Upf1, this interaction is
indirect and is largely dependent on the Edc3 protein, which interacts with the N-terminal domain of Upf1 at an
overlapping, but not identical, site as Upf2. We also found that Pat1 has an independent two-hybrid interaction with the N-
terminus of Upf1. Assessment of both reporter and endogenous NMD transcripts suggest that the decapping stimulators,
including Edc3 and Pat1, as well as Edc1 and Edc2, are not essential for NMD under normal conditions. This work defines a
larger decapping complex involved in NMD, but indicates that components of that complex are not required for general
NMD and might either regulate a subset of NMD transcripts or be essential for proper NMD under different environmental
conditions.
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Introduction

An important mRNA quality control pathway in eukaryotic

cells is the nonsense-mediated decay (NMD) pathway, whereby

transcripts with aberrant termination codons are targeted for

degradation. This process prevents the potentially toxic build-up of

aberrant peptides that can arise from mRNA transcripts with

premature termination codons (PTCs) [1]. NMD targets mRNAs

with PTCs that can arise by many mechanisms, including poor

transcription fidelity, frameshift mutations, and inefficiently spliced

intron-containing mRNAs that are transported to the cytoplasm

[reviewed in 2]. In the yeast, Saccharomyces cerevisiae, transcripts that

contain these PTCs are predominantly targeted by deadenylation

independent decapping and 59 to 39 degradation [3,4].

In eukaryotes, including mammalian cells, Drosophila, Caenorhab-

ditis elegans and yeast, the core NMD machinery is comprised of the

factors Upf1, Upf2, and Upf3, which are all essential for NMD to

occur in the cytoplasm [5,6, reviewed in 7]. Interaction between

Upf1 and Upf2 and between Upf2 and Upf3 has been

demonstrated previously by yeast two-hybrid analysis [6,8,9] and

by co-immunoprecipitation experiments [10,11,12]. Recently,

crystal structures of mammalian Upf2 bound to Upf1 have

demonstrated that hUpf2 directly interacts with the N-terminal

cysteine-histidine-rich domain of hUpf1 in a unique bipartite

manner [13]. In vivo analyses of hUpf2 mutations that disrupt this

Upf1-Upf2 interaction surface subsequently inhibit NMD of a

reporter transcript Globin 6MS2 [13]. Similarly, crystal structures

of mammalian Upf3 bound to Upf2 demonstrate that hUpf3 binds

hUpf2 just N-terminal of the hUpf1 binding site [14]. These

results provide evidence for the importance of the interactions

between the three Upf proteins in promoting and regulating

NMD.

Along with the core Upf machinery, the decapping enzyme,

Dcp2/Dcp1, is also important for NMD in yeast [3,15]. Loss of

Dcp1 or Dcp2 leads to defects in NMD of both endogenous and

reporter transcripts [3,16]. Additionally, loss of Upf2 or Upf3 leads

to the accumulation of both Upf1 and Dcp2 in P-bodies [17].

Here, NMD is impaired by the loss of Upf2 or Upf3, but Dcp2 still

appears to be recruited to the site of Upf1 localization. Since a

Dcp2-Upf1 interaction has been identified by a high-throughput

protein-fragment complementation assay (PCA) in yeast [18], one

possibility is that this Dcp2-Upf1 interaction recruits Dcp2 to the

mRNA for decapping stimulated by Upf1.

Interestingly, loss of Upf2 and Upf3 also leads to accumulation

of other factors, including Xrn1, Dhh1, Pat1, and Lsm1 in P-

bodies [17]. Dhh1, Pat1, and Lsm1 are all activators of the

decapping enzyme in vivo [19,20,21]. This suggests that a larger

decapping complex consisting of the decapping enzyme and its

associated factors may form during NMD. Providing further

support for this model, interaction between Upf1 and Dhh1 has
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been seen by the high-throughput PCA in yeast and between Upf1

and Lsm1 by a high-throughput affinity capture and mass

spectroscopy assay [18,22]. However, the available evidence

suggests that both Dhh1 and Pat1 are expendable for proper

NMD in yeast, as NMD was not impaired in a dhh1D pat1D double

deletion strain [23]. This does not rule out that Dhh1 or Pat1 may

have a redundant role in NMD with other decapping-associated

factors.

In yeast, several additional factors exist that associate with the

decapping enzyme and also stimulate or enhance its activity.

Among these are the enhancers of decapping factors, Edc1, Edc2,

and Edc3. These factors are capable of binding RNA and

stimulating the activity of Dcp2/Dcp1 [24–27]. Previous evidence

suggests that Edc3 alone is not essential for proper NMD in yeast

[28]. However, it has not been determined if Edc1, Edc2, or Edc3

individually or in some combination can affect NMD. Therefore,

it is possible that these stimulators of decapping also comprise the

larger decapping complex that co-localizes with Upf1 in P-bodies

and may regulate NMD in a redundant manner with other

decapping-associated factors in yeast.

Since both Upf1 and Dcp2/Dcp1 are essential for NMD in

yeast, we set out to understand the Upf1 interaction with the

decapping enzyme and the broader decapping complex. To do

this, we utilized the yeast two-hybrid assay to assess interactions of

Upf1 with Dcp2, Pat1, Dhh1 and Edc3. We find that the N-

terminal cysteine-histidine-rich domain of Upf1 interacts with

Edc3, Pat1, and Dcp2 by two-hybrid, although the Dcp2

interaction with Upf1 is largely mediated by Edc3. Interestingly,

Edc3 and Upf2 bind to Upf1 at overlapping, but not identical sites.

To understand the function of these interactions, we assessed

NMD of endogenous and reporter transcripts upon loss of these

decapping stimulators. We also used Upf1 mutants disrupted for

Upf1-Edc3 and/or Upf1-Upf2 interaction to assess the role of the

Upf1-Edc3 interaction in NMD. The results obtained suggest that

the decapping stimulators are not essential for NMD during

normal growth conditions. However, given that both Pat1 and

Edc3 associate with Upf1, and that decapping-associated factors

are localized to Upf1- and Dcp2-containing foci upon loss of Upf2

or Upf3, it is possible that these decapping stimulators affect a

subset of NMD transcripts or have essential roles for NMD under

different conditions.

Results

Dcp2 interacts with the Upf1 N-terminal domain through
Edc3

The first step in understanding how the decapping complex is

recruited to Upf1-bound, aberrant PTC-containing mRNAs is to

assess if an interaction, whether direct or indirect, exists between

Upf1 and the decapping enzyme, Dcp2. While this interaction was

found by the high-throughput PCA method [18], we took

advantage of the yeast two-hybrid system to assess their association

by an alternative method. Yeast Dcp2 is 970 amino acids long but

only the first 300 amino acids are required for decapping [16,29].

Given this, we tested whether we could observe a two-hybrid

interaction between Upf1 and either Dcp2 1–300 or Dcp2 102–

300. We observed a clear interaction between the Upf1 N-terminal

region (binding domain) and the catalytic domain of Dcp2

(residues 102–300) (Figure 1A). We did not see an interaction

with Dcp2 1–300, but western analysis showed that this construct

was not expressed well (data not shown). No interaction was seen

when Upf1 full-length was used, a likely result of either improper

folding of the Upf1 protein or blockage of the interaction site when

Upf1 full-length was tethered to the b-galactosidase binding

domain. For this reason, we utilized the N-terminal cysteine-

histidine domain of Upf1, as it is highly conserved and contains the

Upf2 binding site [30]. These results identified a two-hybrid

interaction between the N-terminal domain of Upf1 and the 102–

300 region of Dcp2.

Additional constructs revealed that the 245–300 region of Dcp2,

which is an unstructured extension [31], was required for the

interaction with Upf1 (Figure 1A). The critical observation was

that the 102–300 region of Dcp2 interacted strongly with Upf1,

whereas the 102–245 region of Dcp2 did not interact, despite

being well expressed based on western analysis (data not shown).

Interestingly, this region has previously been identified to contain

the amino acids required for interaction with the decapping

stimulator, Edc3 [27,29], raising the possibility that the observed

two-hybrid interaction between Dcp2 and Upf1 is through Edc3.

Three additional observations confirm that Upf1 interacts with

Dcp2 through Edc3. First, Dcp2 mutants L255A K256A (Dcp2

Mutant 19) and E252A, L255A, K256A (Dcp2 mutant 21) are

known to disrupt Dcp2-Edc3 interactions [29] and they reduce the

two-hybrid interaction of Dcp2 and Upf1 (Figure 1B). Second, the

Upf1-Dcp2 two-hybrid interaction is strongly reduced in an edc3D
strain (Figure 1C). This result suggests that Edc3 may function

with additional factors to mediate the Upf1-Dcp2 interaction.

Finally, we also observed a two-hybrid interaction of Edc3 with

Upf1 N-terminal domain (Figure 2A). Taken together, we

interpret these results to indicate that Edc3 interacts, directly or

indirectly, with Upf1 and thereby can promote a Dcp2-Upf1

interaction.

The Edc3 binding site of Upf1 overlaps with a predicted
Upf2 binding site

To determine how Edc3 interacted with Upf1, we sought to

map the interaction site of Edc3 on Upf1 at the amino acid level.

To do this, we constructed Upf1 mutants containing one to four

alanine substitutions. The crystal structure of mammalian Upf1

(PDB code 2IYK) [13] was used to predict the structure of S.

cerevisiae Upf1 (Figure 2B), following which the SASA values were

calculated using the areaimol program (SASA analysis was kindly

provided by John Gross at UCSF). The two Upf2-binding sites

were predicted based upon the mammalian Upf1-Upf2 binding

data and are highlighted in yellow on the S. cerevisiae Upf1

predicted structure (Figure 2B) [13]. The predicted structure of

Upf1, along with the SASA values allowed us to construct a series

of mutations along the surface of the yeast Upf1 protein between

residues 60–208.

Upon testing these Upf1 mutants (binding domain) for

interaction with full-length Edc3 (activation domain) by yeast

two-hybrid, we identified five mutants that disrupted the Upf1-

Figure 1. Upf1 and Dcp2 interact in a manner dependent upon Edc3. (A) Upf1 was assessed for its ability to interact by yeast two-hybrid
analysis with different domains of Dcp2. (B) The Dcp2-Upf1 interaction was further characterized by yeast two-hybrid analysis at the amino acid level.
The structure of S. cerevisiae Dcp2 was predicted using the S. pombe Dcp2 crystal structure (PDB:2QKM) [31], and point mutations were made along
the surface of Dcp2 (102–300) in order to test yeast two-hybrid interaction with Upf1 N-terminus (Nt) and Edc3 full-length (FL). (C) An edc3D strain
was constructed and interaction between the Upf1 Nt and Dcp2 (102–300), Upf2 C-terminus (Ct), and Pat1 C-terminus (Ct) was assessed by yeast two-
hybrid analysis.
doi:10.1371/journal.pone.0026547.g001
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Figure 2. Edc3, Upf2 and Pat1 all interact with the N-terminal domain of Upf1; Edc3 and Upf2 do so in an overlapping, but not
identical manner. (A and B) Dcp2 (102–300), Edc3 FL, Upf2 Ct, and Pat1 Ct were all assessed for their ability to interact with Upf1 Nt (WT) by yeast
two-hybrid analysis. Interactions between Upf1 Nt and Dcp2 (102–300), Edc3 FL, and Upf2 Ct were further characterized at the amino acid level. The
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Edc3 interaction. Mutants 3 (Q166A, E170A, L175A W177A), 18

(P111A, D112A, D114A, D117A), 23 (L115A, Y123A), 24

(W177A), and 27 (L115A, Y123A, W177A, VVVL143AAA) all

showed inhibition of the Upf1-Edc3 interaction (Figure 2A).

Expression of all five of these mutant proteins was similar or

greater than wild-type Upf1, indicating that the defect in

interaction was not due to poor expression of the constructs (data

not shown). Additional mutants covering the remainder of the

Upf1 N-terminal domain surface did not affect the Upf1-Edc3

interaction (data not shown). The defect in Edc3-Upf1 interaction

in these mutants defines the regions of Upf1 required for the Edc3-

Upf1 interaction.

Interestingly, this putative binding site of Edc3 on Upf1 partially

overlaps with the Upf2 binding surfaces. Specifically, mutants 23,

24, and 27 contain alanine substitutions of residues that are

predicted to be within one of the two Upf2 binding surfaces

(Figure 2; dark blue, orange, and light blue, respectively). Upf1

mutants 3 and 18 reside near this predicted Upf2 binding surface

(Figure 2B; pink and green, respectively). These results suggest that

Edc3 interacts with Upf1 at or near one of the predicted Upf2

binding sites. We also made amino acid substitutions in the second

predicted Upf2 binding surface on Upf1, but were unable to assess

their function as they were all poorly expressed (data not shown).

Additionally, we assayed the binding pattern of Dcp2 on Upf1

by the yeast two-hybrid assay. If Edc3 is mediating this interaction,

the Dcp2-Upf1 interaction should show a similar binding pattern

as Edc3 does on Upf1. Upf1 Mutants 3, 23, 24, and 27 all showed

strong inhibition of the Upf1-Dcp2 interaction (Figure 2A).

Mutant 18 also inhibited the Upf1-Dcp2 interaction, although to

a lesser extent (Figure 2A). Therefore, the mutations that disrupt

the Edc3-Upf1 interaction also disrupt the Dcp2-Upf1 interaction,

providing further evidence that Edc3 mediates the Upf1-Dcp2

interaction.

Edc3 and Upf2 share overlapping, but not identical,
binding sites on Upf1

Our results suggest that Edc3 interacts with the N-terminus of

Upf1 at or near the predicted binding sites of Upf2. To test this,

we assayed the binding ability of Upf2 C-terminus with the Upf1

mutants by yeast two-hybrid. As seen in Figure 2A, only Upf1

mutant 27, which contains alanine substitutions for many of the

residues in the predicted Upf2 binding surface, showed strong

inhibition of the Upf1-Upf2 interaction. Mutants 3 and 23 also

showed some weak disruption of the Upf1-Upf2 interaction, while

mutants 18 and 24 showed wild-type levels of interaction. These

results suggest that the Edc3 and Upf2 binding sites on Upf1 likely

overlap, although not perfectly.

To determine if the Upf1-Edc3 interaction was through Upf2,

we deleted Upf2 in the yeast two-hybrid strain background and

assayed for the ability of Edc3 to interact with Upf1. Loss of Upf2

did not affect the positive interaction between Edc3 and Upf1

(Figure 2C). We also wanted to verify that the Upf1-Upf2

interaction was not affected by Edc3. To test this, we tested the

Upf1-Upf2 two-hybrid interaction in an edc3D strain. Loss of Edc3

did not disrupt the positive interaction of Upf2 and Upf1

(Figure 1C). Interestingly, our yeast two-hybrid results consistently

suggested a heightened interaction between Upf1 and Upf2 upon

loss of Edc3. These results therefore support the conclusion that

Edc3 and Upf2 independently interact at partially overlapping

sites on Upf1.

Upf1 interacts with decay factor Pat1
We have identified an interaction between Upf1 and the

decapping-associated factor, Edc3. We therefore wanted to test if

Upf1 might interact with other decay factors, such as Pat1 and

Dhh1. Pat1 is a translational repressor that can bind to RNA and

also stimulate mRNA decapping by Dcp2 [27,32]. Dhh1 is also a

translational repressor that can bind to RNA and activate

decapping in vivo [21,27,33]. We used the yeast two-hybrid system

to assay interaction between Upf1 and these two translational

repressors.

Our results suggest that Upf1 can interact with Pat1 but not

Dhh1 (Figure 2A, data not shown). Specifically, Upf1 interacts

with the C-terminal (Ct) domain of Pat1 (Figure 2A). We must

note that we were unable to confirm interaction between Upf1 and

full-length Pat1, as it showed positive interaction with the empty

vector alone. However, the C-terminal domain of Pat1 only

showed positive interaction with the N-terminal domain of Upf1,

and not the empty vector.

Since both Dcp2 and Upf1 interact with Pat1 at its Ct domain,

it is possible that Pat1 also mediates the Upf1-Dcp2 interaction.

To test this, we constructed a Pat1 deletion in the yeast two-hybrid

strain background and assayed for ability of Dcp2 and Upf1 to

interact. Loss of Pat1 did not disrupt interaction of Dcp2 with

Upf1 (Figure 2D). Likewise, interaction of Upf1 with both Edc3

and Upf2 was not disrupted by loss of Pat1 (Figure 2D). This

suggests that Pat1 does not recruit the decapping enzyme to Upf1,

nor does it mediate the Upf1-Edc3 and Upf1-Upf2 interactions.

We also wanted to verify that the Pat1-Upf1 interaction was not

through another known Upf1-interacting protein. To determine

this, we tested the Pat1-Upf1 interaction in upf2D and edc3D
strains. Pat1 was still able to associate with Upf1 in the absence of

either Upf2 (Figure 2C) or Edc3 (Figure 1C). Therefore, Pat1 is yet

another factor that may directly associate with the N-terminal

domain of Upf1.

Taken together, we have identified independent two-hybrid

interactions of the Upf1 N-terminal domain with Edc3 and Pat1,

which are also independent of the Upf2-Upf1 interaction. The

Edc3-Upf1 interaction partially overlaps with the Upf2 binding

site on Upf1. Finally, the interaction of Edc3 with Upf1 can

promote a Dcp2-Upf1 interaction, at least in the two-hybrid assay.

Upf1-Edc3 and Upf1-Pat1 interactions are not required to
promote NMD

The interactions between Edc3, Pat1, and Upf1 are not simply

required for NMD since both edc3D and pat1D strains show normal

NMD [28,34]. However, it remained possible that Edc3 and Pat1

have redundant roles in recruiting Dcp2 to Upf1 in NMD, which

would suggest that an edc3D pat1D double mutant might have a

defect in NMD.

To determine if Edc3 and Pat1 could have a redundant role in

NMD, we utilized a galactose-inducible PGK1c103 NMD

S. cerevisiae Upf1 Nt structure was predicted using the human Upf1 crystal structure (PDB:2IYK) [13] and point mutations were made along the
surface of Upf1. The predicted Upf2-binding sites are highlighted in yellow. Mutants were tested for interaction with Dcp2 (102–300), Edc3 FL, and
Upf2 Ct by yeast two-hybrid analysis. Mutants which showed impaired interaction with Dcp2 (102–300), Edc3 FL, and/or Upf2 Ct are shown in pink,
green, dark blue, orange, and light blue colors. (C) A upf2D strain was constructed and interaction between Upf1 Nt and Dcp2 (102–300), Edc3 FL and
Pat1 Ct was assessed by yeast two-hybrid analysis. (D) A pat1D strain was constructed and interaction between Upf1 Nt and Dcp2 (102–300), Upf2 Ct,
and Edc3 FL was assessed by yeast two-hybrid analysis.
doi:10.1371/journal.pone.0026547.g002
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construct. This construct contains an added sequence that allows

for detection of the PTC-containing PGK1c103 independent from

the normal PGK1 transcript that is present in the edc3D pat1D
strain [3]. Our results suggest that Edc3 and Pat1 together do not

have a significant role in promoting normal NMD, as degradation

of PGK1c103 in the edc3D pat1D is only very slightly slower than

degradation in the wild-type strain (Figure 3A). Additional analysis

of CYH2 steady-state pre-mRNA/mRNA ratios in edc3D pat1D
and wild-type strains showed normal levels of NMD upon loss of

both Edc3 and Pat1 (Figure 3B).

We also tested if Edc3 might be redundant with Edc1 or Edc2,

which can also directly stimulate activity of Dcp2 [24,25,27], and

observed that even the triple mutant edc1D edc2D edc3D showed

normal NMD (Figure 3C). These results, combined with the fact

that single deletions of Edc3 and Pat1 have no affect on NMD

suggest that the Edc3-Upf1 and Pat1-Upf1 interactions are not

required for NMD.

Consistent with Edc3-Upf1 interactions not being required for

NMD, we also observed that mutations in Upf1 that disrupted

interactions with Edc3 did not affect the decay of a PGK1

nonsense-containing reporter, gal-PGK1c142. Specifically, Upf1

mutants 3, 23, and 24, which disrupt the Edc3-Upf1 interaction to

a significant extent but have little to no effect on the Upf1-Upf2

interaction, showed no change in decay rate of PGK1c142

compared to wild-type Upf1 (Figure 4A). Mutant 27, which

disrupts the Upf1 interaction with both Edc3 and Upf2 by yeast

two-hybrid analysis, showed a small defect in the decay rate of

PGK1c142 compared to wild-type Upf1 (t1/2 = 3.5 minutes for

wild-type and 4.9 minutes for Upf1 mutant 27, Figure 4A). Similar

results were also obtained when the levels of the pre-CYH2

mRNA were compared, as Upf1 mutant 27 was the only mutant to

show an increase in pre-mRNA levels (Figure 4B). These results

suggest that the Upf1-Edc3 interaction is not required for

recruitment of Dcp2 to the NMD substrate and confirm earlier

studies that suggest a requirement of Upf2 interaction with Upf1

for proper NMD [8,13].

Edc3-Upf1 interaction does not negatively regulate NMD
The partial overlap of the Edc3 and Upf2 binding sites on Upf1

suggested the hypothesis that Edc3-Upf1 interaction might be a

negative regulatory interaction that inhibits decapping in NMD

and this negative regulation would be relieved by Upf2-Upf1

interaction competing with the Edc3-Upf1 interaction. In this

model, the purpose of the Edc3-Upf1 interaction is not to simply

recruit Dcp2 to an mRNA target, but instead, to inhibit decapping

until a specific time designated by the release of Edc3 from its

association with Upf1 due to the Upf1-Upf2 interaction.

Therefore, we reasoned that loss of the Edc3-Upf1 interaction

should suppress any defect in NMD triggered by impaired Upf1-

Upf2 interaction. In an attempt to determine if the Edc3-Upf1

interaction is inhibitory and if Upf2 is the ‘switch’ that releases

Edc3 from Upf1, we utilized two different assays.

First, we tested the decay rate of the nonsense codon transcript,

PGK1c142, in the presence of Upf1 mutants defective in the

Figure 3. Decapping stimulators, Edc3, Pat1, Edc1, and Edc2 do not promote NMD. (A) NMD of the galactose-inducible reporter transcript
containing a PTC, gal-PGK1c103, was assessed in a wild-type and an edc3D pat1D double deletion strain over the course of one hour. (B and C)
Steady-state pre-mRNA/mRNA ratios of the endogenous NMD transcript, CYH2, were assessed in wild-type, pat1D, edc3D pat1D, edc3D, edc1D, edc2D,
edc1D edc2D, edc1D edc2D edc3D, edc1D edc3D, and edc2D edc3D strains.
doi:10.1371/journal.pone.0026547.g003
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interaction with Edc3 and in the absence of Upf2. If decay rates

are significantly altered with the Upf1 mutants compared to wild-

type Upf1 in a upf2D strain background, it would suggest that Upf2

functions as the ‘switch’ to trigger Edc3 release. Additionally, the

absence of Upf2 allows for easier detection of changes in decay

rates due to its impairment of NMD [6,17]. We monitored decay

of PGK1c142 by galactose shut-off experiments to assay the effect

of our Upf1 mutants in the upf1D upf2D strain. The decay rates of

PGK1c142 were comparable between wild-type Upf1 and all five

of the Upf1 mutants tested (Figure 5A). Additionally, CYH2

steady-state pre-mRNA/mRNA levels were comparable between

wild-type Upf1 and the Upf1 mutants in the upf1D upf2D
background (Figure 5B). These results suggest that the Edc3-

Upf1 interaction is not inhibitory and relieved by the Upf1-Upf2

interaction.

Second, we analyzed decay of CYH2 in the presence of Upf2

mutants defective for Upf1 association, NMD, or both. Upf2 may

have an additional role in NMD independent of the Upf1-Upf2

interaction, so we utilized Upf2 mutants to better assess the

requirement for a ‘switch’ in NMD. Thus, in the presence of the

Upf2 mutants defective in NMD it is possible that we can sidestep

the requirement for the ‘switch’ by disrupting the Edc3-Upf1

interaction. This should potentially lead to the suppression of the

NMD defects caused by mutations in Upf2. To do this

experiment, we compared the steady-state ratio of CYH2 pre-

mRNA/mRNA when Upf2 mutants were present with either

wild-type Upf1 or Upf1 mutant 27 (defective in Edc3-Upf1 and

Upf2-Upf1 interaction). Four different classes of Upf2 mutants

were utilized [8]: 1) Mutants which still interact with Upf1 by yeast

two-hybrid assay and show wild-type levels of NMD (Upf2 M13).

2) A mutant which showed significant reduction in the Upf2-Upf1

interaction but still showed wild-type levels of NMD (Upf2 M6-

NE). 3) A mutant which interacts at wild-type levels with Upf1 but

shows a defect in NMD (Upf2 M6-G). 4) Mutants which both

impair the Upf2-Upf1 interaction and lead to defects in NMD

(Upf2 M5).

Our results suggest that the Edc3-Upf1 interaction does not

have an inhibitory role on NMD, as Upf1 mutant 27 did not

suppress the NMD defects caused by Upf2 mutants with inefficient

NMD (Figure 5C). Rather, Upf1 mutant 27 lead to impairment of

NMD in the presence of both wild-type Upf2 and Upf2 mutants

that were still able to undergo moderate to normal levels of NMD.

In conjunction with Upf1 mutant 27, class 1 Upf2 M13 and class 2

Upf2 M6-NE showed impaired NMD compared to wild-type

Upf1 levels. Class 3 Upf2 M6-G showed higher levels of NMD in

the presence of wild-type Upf1 in our hands compared to that

which was previously published [8], and this was impaired in the

presence of Upf1 mutant 27. Lastly, class 4 Upf2 M5, which

showed impaired NMD with wild-type Upf1, likewise showed

impaired NMD with Upf1 mutant 27. There was a slight

suppression of the NMD defect in the presence of Upf1 mutant

27, but not a significant reduction. Thus, it appears that Upf1

mutant 27 leads to further defects in NMD and does not

sufficiently suppress defects caused by Upf2 mutants. This provides

additional evidence against an inhibitory role for the Edc3-Upf1

interaction.

However, it is possible that Upf1 mutant 27 does not suppress

the Upf2 mutants because we have insufficiently disrupted the

Edc3-Upf1 interaction by the specific mutations we used in Upf1.

Therefore, to be sure that the Edc3-Upf1 interaction is eliminated,

we constructed an edc3D upf2D strain to test if the loss of Edc3

could suppress the NMD defects of the Upf2 mutants. Loss of

Edc3 does not alter the NMD phenotypes of the Upf2 mutants

(Figure 5D). Therefore, our results suggests that the Edc3-Upf1

interaction does not impair decapping of NMD targets by blocking

Dcp2 function, thereby confirming results obtained by analysis of

PGK1c142 mRNA in the absence of Upf2 and results obtained

using Upf1 mutant 27 in conjunction with the Upf2 mutants.

Discussion

Nature of the NMD decapping complex
In yeast, efficient NMD of aberrant mRNA transcripts is

dependent upon the decapping enzyme Dcp2/Dcp1, but the

mechanism of how the decapping enzyme associates with the

mRNA is unknown. Herein, we have identified interactions

Figure 4. Edc3-Upf1 interaction does not promote NMD. Upf1 mutants that disrupt the Upf1-Edc3 interaction (mutants 3, 18, 23, and 24) or
the Upf1-Edc3 and Upf1-Upf2 interaction (mutant 27) were assessed for their role in NMD. (A) Decay of a reporter transcript containing a premature
termination codon (PTC) at codon 142 under a galactose-inducible promoter, gal-PGK1c142, was assessed in a upf1D strain containing either empty
vector, Upf1 wild-type, Upf1 mutant 3, Upf1 mutant 18, Upf1 mutant 23, Upf1 mutant 24, or Upf1 mutant 27 on a plasmid. (B) Steady-state pre-
mRNA/mRNA ratios of the endogenous NMD transcript, CYH2, were assessed in a upf1D strain containing either Upf1 (WT), empty vector, Upf1
mutant 3, Upf1 mutant 18, Upf1 mutant 23, Upf1 mutant 24, or Upf1 mutant 27 on a plasmid.
doi:10.1371/journal.pone.0026547.g004

Interactions between Upf1 and Edc3/Pat1 in Yeast

PLoS ONE | www.plosone.org 7 October 2011 | Volume 6 | Issue 10 | e26547



Figure 5. The Edc3-Upf1 interaction is not a negative regulator of NMD. (A) NMD of the PTC-containing galactose-inducible reporter
transcript, gal-PGK1c142, was assessed in a upf1D upf2D double deletion strain containing either empty vector, Upf1 wild-type, Upf1 mutant 3, Upf1
mutant 18, Upf1 mutant 23, Upf1 mutant 24, or Upf1 mutant 27 on a plasmid. (B) Steady-state pre-mRNA/mRNA ratios of the endogenous NMD
transcript, CYH2, were assessed in the upf1D upf2D strain containing either wild-type Upf1, empty vector, Upf1 mutant 3, Upf1 mutant 18, Upf1
mutant 23, Upf1 mutant 24, or Upf1 mutant 27 on a plasmid. (C) Steady-state pre-mRNA/mRNA ratios of CYH2 were assessed in a upf1D upf2D strain
containing either wild-type Upf1 or Upf1 mutant 27 and either Upf2 mutant 13, Upf2 mutant 6-NE, Upf2 mutant 6-G, Upf2 mutant 5, empty vector, or
Upf2 wild-type plasmids. (D) Steady-state pre-mRNA/mRNA ratios of CYH2 were assessed in a upf2D and an edc3D upf2D strain containing either Upf2
mutant 13, Upf2 mutant 6-NE, Upf2 mutant 6-G, Upf2 mutant 5, empty vector, or Upf2 wild-type plasmids.
doi:10.1371/journal.pone.0026547.g005
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between the decapping stimulators, Edc3 and Pat1, and Upf1.

Interaction of both of these factors occurs on the N-terminal

domain of Upf1. Dcp2 interacts with both Edc3, via the Edc3 Lsm

domain, and Pat1 via the middle and C-terminal domains of Pat1

[27,35]. This raises the possibility that Edc3 and/or Pat1 may be

bridging an interaction between Upf1 and Dcp2/Dcp1. Our yeast

two-hybrid results suggest that Edc3, but not Pat1, mediates the

Upf1-Dcp2 interaction. These results argue that Upf1 can interact

with and nucleate a decapping complex that includes interactions

of Upf1 with components of a larger decapping complex.

An interesting observation was that the Edc3 and Upf2 binding

sites on the N-terminal domain of Upf1 overlap. We constructed a

series of mutations along the surface of the Upf1 N-terminal domain

and assayed for their ability to interact with both Edc3 and Upf2 by

yeast two-hybrid. We find that the Edc3-Upf1 interaction is

disrupted when residues at or near one of the two predicted

Upf2-binding sites are mutated. One of these five mutants, which

contains alanine substitutions at ,80% of the residues within this

predicted Upf2-binding site, also disrupted the Upf1-Upf2 interac-

tion. Further, we confirmed that Upf1 interaction with both Edc3

and Upf2 is not mediated by the opposite factor. This argues that

Edc3 and Upf2 share overlapping, although not identical, binding

sites on the N-terminal domain of Upf1.

There are two potential models for how Edc3 and Upf2 might

interact at an overlapping site on Upf1. One possibility is that

these interactions occur on the same mRNA substrate but at a

different stage of the NMD process. Alternatively, these interac-

tions may instead occur on different mRNA populations. For

example, Upf1 might interact with Edc3 to promote the decay of

some yeast mRNAs analogous to how mammalian Upf1 interacts

with Staufen in an Upf2-independent manner to recruit Upf1 to a

second pool of mRNAs for their degradation [36].

Table 1. Yeast strains used in this study.

Strains Properties References

yRP2093 MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4D gal80D LYS2::GAL1-HIS3
GAL2::ADE2 met2::GAL7-lacZ

[37]; provided by Stanley Fields, Yeast Resource Center

yRP2094 MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4D gal80D LYS2::GAL1-HIS3
GAL2::ADE2 met2::GAL7-lacZ

[37]; provided by Stanley Fields, Yeast Resource Center

yRP2366 MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4D gal80D LYS2::GAL1-HIS3
GAL2::ADE2 met2::GAL7-lacZ plasmid AD-Dpc2 (102–300)

[35]

yRP2365 MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4D gal80D LYS2::GAL1-HIS3
GAL2::ADE2 met2::GAL7-lacZ plasmid AD-Dpc2 (1–300)

[35]

yRP2368 MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4D gal80D LYS2::GAL1-HIS3
GAL2::ADE2 met2::GAL7-lacZ plasmid AD-Edc3 full-length

[35]

yRP2834 MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4D gal80D LYS2::GAL1-HIS3
GAL2::ADE2 met2::GAL7-lacZ edc3D::NEO

This Study

yRP2835 MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4D gal80D LYS2::GAL1-HIS3
GAL2::ADE2 met2::GAL7-lacZ upf2D::NEO

This Study

yRP2836 MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4D gal80D LYS2::GAL1-HIS3
GAL2::ADE2 met2::GAL7-lacZ pat1D::NEO

This Study

yRP2077 MATa his3D1 leu2D0 met15D0 ura3D0 upf1D::NEO Invitrogen/Resgen Collection

yRP2065 MATa his3D1 leu2D0 met15D0 ura3D0 Invitrogen/Resgen Collection

yRP2067 MATa his3D1 leu2D0 lys2D0 ura3D0 pat1D::NEO Invitrogen/Resgen Collection

yRP840 MATa leu2-3,112 trp1 ura3-52 his4-539 cup1::LEU2/PGK1pG/MFA2pG [38]

yRP2413 MATa leu2-3,112 trp1 ura3-52 his4-539 cup1::LEU2/PGK1pG/MFA2pG pat1D::LEU2 Muhlrad, Denise unpublished

yRP1752 MATa leu2-3,112 trp1 ura3-52 cup1::LEU2/PGK1pG/MFA2pG pat1D::LEU2 edc3D::NEO [28]

yRP1745 MATa leu2-3,112 trp1 ura3-52 his4-539 cup1::LEU2/PGK1pG/MFA2pG edc3::NEO [28]

yRP1503 MATa his3-D200 ade2-101 leu2-3,112 lys2-21 trp1 ura3-52 cup1::LEU2/PGK1pG/
MFA2pG edc1::HIS3

[24]

yRP1504 MATa leu2-3,112 trp1 ura3-52 his4-539 cup1::LEU2/PGK1pG/MFA2pG edc2::NEO [24]

yRP1505 MATa leu2-3,112 lys2-21 trp1 ura3-52 cup1::LEU2/PGK1pG/MFA2pG edc1::HIS3
edc2::NEO

Dunckley, Travis unpublished

yRP1754 MATa leu2-3,112 lys2-21 trp1 ura3-52 cup1::LEU2/PGK1pG/MFA2pG edc1::HIS3
edc3::NEO

Doma, Meenakshi unpublished

yRP1755 MATa leu2-3,112 lys2-21 trp1 ura3-52 his4-539 cup1::LEU2/PGK1pG/MFA2pG
edc2::NEO edc3::NEO

Doma, Meenakshi unpublished

yRP1756 MATa leu2-3,112 trp1 ura3-52 cup1::LEU2/PGK1pG/MFA2pG edc1::HIS3 edc2::NEO
edc3::NEO

Doma, Meenakshi unpublished

yRP2103 MATa his3D1 leu2D0 met15D0 ura3D0 upf1D::NEO upf2D::NEO [17]

yRP2078 MATa his3D1 leu2D0 met15D0 ura3D0 upf2D::NEO Invitrogen/Resgen Collection

yRP2141 MATa his3D1 leu2D0 lys2D0 ura3D0 edc3::NEO Invitrogen/Resgen Collection

yRP2837 MATa his3D1 leu2D0 lys2D0 ura3D0 upf2D::NEO edc3D::NEO This Study

doi:10.1371/journal.pone.0026547.t001
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Significance of Upf1 interaction with decapping
stimulators

Upon investigating the role of the interaction of Upf1 with the

decapping stimulators, Edc3 and Pat1, we found that neither the

Upf1-Edc3 nor the Upf1-Pat1 interactions were essential for

NMD. Additionally, we found that Edc3 and Pat1 do not have

redundant roles with each other in promoting NMD, as NMD of

both a reporter transcript and an endogenous NMD substrate was

not altered in an edc3D pat1D strain. Upon examining the role of

additional decapping stimulators in NMD, we also found that

Edc1 and Edc2 were dispensable for NMD. These results strongly

argue that decapping stimulators are not required for global NMD

in yeast, and raise the possibility that Edc3-Upf1 interaction might

regulate a different pool of mRNAs.

One possibility was that the interaction between Edc3 and Upf1

functioned as a negative regulator of NMD. In this model, the

Upf1-Edc3 interaction is required to prevent the stimulation of

Dcp2 decapping activity on NMD substrates. If this interaction

does serve an inhibitory role, some signal must be present to

trigger release of Edc3, and subsequently Dcp2, in a temporally

dependent manner. The overlapping binding sites of Edc3 and

Upf2 on Upf1 suggest that Upf2 may provide the ‘switch’ to

trigger release of Edc3 and degradation of the NMD substrate.

Upon testing this switch model, we find that the Upf1-Edc3

interaction does not confer negative regulation. Here, disruption of

the Upf1-Edc3 interaction did not suppress NMD defects caused

by loss of the Upf1-Upf2 interaction. This argues that Edc3 does

not negatively regulate NMD, as simple release of Edc3 from Upf1

is not capable of triggering NMD when it is impaired by disrupted

Upf1-Upf2 association.

These results raise the question as to the significance of the Upf1

interaction with both Edc3 and Pat1. Additionally, if these

interactions are dispensable for NMD, why would loss of Upf2 or

Upf3 lead to their accumulation with Upf1 and Dcp2 in

cytoplasmic P-bodies [17]? We envision a couple of possible roles

for the Upf1-Edc3 and/or Upf1-Pat1 interactions. 1) Edc3 and/or

Pat1 might associate with Upf1 to regulate a subset of NMD

transcripts. 2) Edc3 and/or Pat1 may be essential for promoting

NMD when environmental or growth conditions are altered. It is

possible that under normal conditions, Dcp2 is efficiently recruited

Table 2. Plasmids used in this study.

Plasmids Properties References

pRP1289 pOBD-II (Binding domain empty vector) [37]; provided by Stanley Fields, Yeast Resource Center

pRP1290 pOAD (Activating domain empty vector) [37]; provided by Stanley Fields, Yeast Resource Center

pRP2277 BD-Upf1 N-terminus (1–230) This Study

pRP2278 AD-Dcp2 (102–300) Recovered from yRP2366, [35]

pRP2279 AD-Dcp2 (1–245) This Study

pRP2280 AD-Dcp2 (102–245) This Study

pRP2281 AD-Dcp2 (102–300) Mutant 19: L255A K256A This Study

pRP2282 AD-Dcp2 (102–300) Mutant 21: E252A L255A K256A This Study

pRP2283 AD-Edc3 Full-length Recovered from yRP2368, [35]

pRP2284 AD-Upf2 C-terminus (Ct 157 AA) This Study

pRP1511 BD-Pat1 C-terminus (D10-422) [32]

pRP2285 AD-Upf1 N-terminus (1–230) This Study

pRP2286 BD-Upf1 Mutant 3: Q166A E170A L175A W177A This Study

pRP2287 BD-Upf1 Mutant 18: P111A D112A D114A D117A This Study

pRP2288 BD-Upf1 Mutant 23: L115A Y123A This Study

pRP2289 BD-Upf1 Mutant 24: W177A This Study

pRP2290 BD-Upf1 Mutant 27: L115A Y123A W177A VVVL143AAAA This Study

pRP249 pRS415 empty vector; cen; leu [39]

pRP910 Flag-Upf1 wild-type; cen; leu [17]

pRP1076 gal-PGK1c142; cen; ura [4]

pRP2291 Flag-Upf1 Mutant 3: Q166A E170A L175A W177A This Study

pRP2292 Flag-Upf1 Mutant 18: P111A D112A D114A D117A This Study

pRP2293 Flag-Upf1 Mutant 23: L115A Y123A This Study

pRP2294 Flag-Upf1 Mutant 24: W177A This Study

pRP2295 Flag-Upf1 Mutant 27: L115A Y123A W177A VVVL143AAAA This Study

pRP609 gal-PGK1c103; cen; ura [3]

pHF713 pRS316-HA-NMD2(X-S) [8]; Gift from Alan Jacobson lab

pHF889 pRS316-nmd2-M13 (mutations 7958H, K963H, D987G, E1018G, K1024R, Y1027H) [8]; Gift from Alan Jacobson lab

pHF961 pRS316-nmd2-M6-NE (mutations Y955N, K1010E) [8]; Gift from Alan Jacobson lab

pHF964 pRS316-nmd2-M6-G (mutations E1070G) [8]; Gift from Alan Jacobson lab

pHF893 pRS316-nmd2-M5 (mutations S997G, F1061S, I1079T) [8]; Gift from Alan Jacobson lab

doi:10.1371/journal.pone.0026547.t002
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to an NMD substrate and does not require further assistance from

its associating factors. But, under different conditions, a cell may

rely upon a broader decapping complex including Edc3 and Pat1,

to dramatically increase the levels of NMD transcripts targeted for

decapping and subsequent degradation.

Materials and Methods

Yeast strains
The yeast strains used in this study, and their genotypes, are found

in Table 1. Strains yRP2834, yRP2835, and yRP2836 were

constructed by homologous recombination in strain yRP2093. The

deletion cassettes were PCR amplified from genomic DNA prepared

from the Invitrogen/Resgen Collection strains, yRP2141 (edc3D),

yRP2078 (upf2D), and yRP2067 (pat1D) using oligos complementary

to the 59 and 39 untranslated regions for each open reading frame.

Each PCR product was then transformed into yRP2093 and selected

for transformants on media containing Geneticin. Yeast strain

yRP2837 was constructed by standard laboratory procedure by

crossing yRP2078 (upf2D) with yRP2141 (edc3D) and verifying the

presence of the double deletion by PCR. All yeast strains were

transformed using standard laboratory techniques.

Plasmids
The plasmids and oligos used in this study are presented in

Table 2 and Table 3, respectively. Plasmids pRP2277, pRP2285,

pRP2279, pRP2280, and pRP2284 were constructed by digestion

of either pRP1289 (pOBD-II) or pRP1290 (pOAD) with PvuII

and NcoI and repaired by homologous recombination using PCR

products for Upf1 (N-terminal 1–230), Dcp2 (1–245), Dcp2 (102–

245), and Upf2 (C-terminal 157 Amino Acids). All constructed

plasmids were verified by sequencing. Plasmids pRP2281 and

pRP2282 were constructed from pRP2278 by QuickChange

mutagenesis according to the manufacturer’s instructions (Strata-

gene, CA) using oligos oRP1542 with oRP1543 and oRP1544 with

oRP1545, respectively. QuickChange mutagenesis was also used

to construct the Upf1 mutations in plasmids pRP2286–2290 and

pRP2291–2295 from pRP2277 and pRP910, respectively. Oligos

oRP1546–1553 were used to construct Upf1 mutant 3, Upf1

mutant 18, Upf1 mutant 23, and Upf1 mutant 24 by one

QuickChange reaction each. Upf1 mutant 27 required three

QuickChange reactions: (1) Construction of Upf1 mutant 23 using

oRP1550 with oRP1551, (2) addition of Upf1 mutant 24 using

oRP1552 with oRP1553, (3) and final addition of four alanine

substitutions using oRP1554 with oRP1555. All plasmid muta-

genesis was verified by sequencing.

Yeast two-hybrid analysis
Two-hybrid analysis was done in two different manners. The

first method relied upon mating of the MATa (yRP2094) and

MATa (yRP2093) strains containing specific Activating Domain

(AD) or Binding Domain (BD) derivatives, respectively, and

selection for diploids on drop-out media. Following this,

interaction was assessed using the b-galactosidase plate assay.

Assessment of interaction between AD-Dcp2 (102–300) point

mutants and BD-Upf1 Nt or AD-Edc3 FL and between BD-Upf1

point mutants and AD-Dcp2 (102–300), AD-Edc3 FL, or AD-

Upf2 Ct was done in this manner. The second method relied upon

transformation of one strain with both the AD and BD plasmids

and selection for these haploids on drop-out media. Following this,

the interactions were assessed using the b-galactosidase plate assay.

This method was used for assessing interactions in yRP2834

(edc3D), yRP2835 (upf2D), and yRP2836 (pat1D).

RNA Analyses
Half-life experiments were preformed as previously described

[4]. Briefly, cells were grown in selective media containing 2%

Table 3. Oligos used in this study.

Oligo Sequence Purpose

oRP1542 AATCCTATGCGGAAGAACAAgcagctTTGTTGTTGGGTATCACTAA Dcp2 Mutant 19: Mutations L255A K256A

oRP1543 TTAGTGATACCCAACAACAAagctgcTTGTTCTTCCGCATAGGATT Dcp2 Mutant 19: Mutations L255A K256A

oRP1544 ATCAATTGAAATCCTATGCGgctGAACAAgcagctTTGTTGTTGGGTATCACTAA Dcp2 Mutant 21: Mutations E252A L255A
K256A

oRP1545 TTAGTGATACCCAACAACAAagctgcTTGTTCagcCGCATAGGATTTCAATTGAT Dcp2 Mutant 21: Mutations E252A L255A
K256A

oRP1546 ACTGGGATACTGATCAATGGgctCCATTAATTgctGACAGACAACTTgctTCAgctGTCGCAGAGCAACCAACTGA Upf1 Mutant 3: Mutations Q166A E170A L175A
W177A

oRP1547 TCAGTTGGTTGCTCTGCGACagcTGAagcAAGTTGTCTGTCagcAATTAATGGagcCCATTGATCAGTATCCCAGT Upf1 Mutant 3: Mutations Q166A E170A L175A
W177A

oRP1548 TAACGTAGTTTCTTTACATgcagcaTCTgcaTTAGGGgcaACCGTTTTGGAATGTTATA Upf1 Mutant 18: Mutations P111A D112A
D114A D117A

oRP1549 TATAACATTCCAAAACGGTtgcCCCTAAtgcAGAtgctgcATGTAAAGAAACTACGTTA Upf1 Mutant 18: Mutations P111A D112A
D114A D117A

oRP1550 CTTTACATCCAGATTCTGACgcaGGGGATACCGTTTTGGAATGTgcaAACTGTGGACGTAAGAACGT Upf1 Mutant 23: Mutations L115A Y123A

oRP1551 ACGTTCTTACGTCCACAGTTtgcACATTCCAAAACGGTATCCCCtgcGTCAGAATCTGGATGTAAAG Upf1 Mutant 23: Mutations L115A Y123A

oRP1552 AAGACAGACAACTTTTATCAgcaGTCGCAGAGCAACCAACTGA Upf1 Mutant 24: Mutation W177A

oRP1553 TCAGTTGGTTGCTCTGCGACtgcTGATAAAAGTTGTCTGTCTT Upf1 Mutant 24: Mutation W177A

oRP1554 TTTCCGCTAAAAGTGAGGCCgcagctgcagcaCTTTGTAGAATACCTTGTGC Final construction of Upf1 Mutant 27:
Mutations VVVL143AAAA

oRP1555 GCACAAGGTATTCTACAAAGtgctgcagctgcGGCCTCACTTTTAGCGGAAA Final construction of Upf1 Mutant 27:
Mutations VVVL143AAAA

doi:10.1371/journal.pone.0026547.t003
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galactose until OD600 0.3–0.4. Due to the slow growth phenotype

of yRP1752, this strain along with the wild-type yRP840 was

grown in selective media containing 2% galactose and 1% sucrose

until OD600 0.3–0.4. Cells were then harvested and re-suspended

in selective media containing 4% glucose to repress transcription

of the galactose-inducible reporter transcripts. 2 ml aliquots were

then taken at 12 time points over the course of one hour and

frozen quickly in liquid nitrogen.

For assessment of CYH2 steady-state pre-mRNA and mRNA

levels, cells were grown in selective media containing 2% glucose

until OD600 0.3–0.4. Cells were then harvested and quickly

frozen in liquid nitrogen.

For assessment of RNA half-lives and CYH2 steady-state levels,

RNA was extracted by a hot phenol method. RNAs were analyzed

by running 10 mg of each sample on a 1.5% formaldehyde agarose

gel. PGK1c142 northern analysis was done using the radiolabeled

oligo, oRP121. PGK1c103 northern analysis was done using a

radiolabeled oligo, oRP252, which is specific for a nucleotide

sequence ‘tag’ inserted in frame within PGK1, preventing

detection of PGK1pG found within the strains used [3]. CYH2

pre-mRNA and mRNA transcripts were detected using the

radiolabeled oligo, oRP1300. Radiolabeled signal was detected

and quantified using a Typhoon phosphoimager (Molecular

Dynamics). Determination of half-lives and steady-state levels

was done by normalization of each lane to the stable 7S RNA

using radiolabeled oligo, oRP100.
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