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Abstract

The development of tissue-engineered vascular grafts for use in cardiovascular surgery holds great promise for
improving outcomes in pediatric patients with complex congenital cardiac anomalies. Currently used synthetic
grafts have a number of shortcomings in this setting but a tissue engineering approach has emerged in the past
decade as a way to address these limitations. The first clinical trial of this technology showed that it is safe and
effective but the primary mode of graft failure is stenosis. A variety of murine and large animal models have been
developed to study and improve tissue engineering approaches with the hope of translating this technology into
routine clinical use, but challenges remain. The purpose of this report is to address the clinical problem and review
recent advances in vascular tissue engineering for pediatric applications. A deeper understanding of the
mechanisms of neovessel formation and stenosis will enable rational design of improved tissue-engineered
vascular grafts.

Keywords: Tissue-engineered vascular grafts, congenital heart disease, translational research

The Tissue Engineering Approach
Tissue engineering offers a strategy for constructing
autologous grafts and thereby increasing the pool of
potential autografts for use as vascular conduits [1].
Using the classical tissue engineering paradigm, autolo-
gous cells can be seeded onto a biodegradable tubular
scaffold, which provides sites for cell attachment and
space for neotissue formation [2]. As the neotissue
forms, the scaffold degrades creating a purely biological
graft. The resulting neotissue can thus function as a vas-
cular graft in cardiothoracic operations [3]. Extensive
large animal studies have demonstrated the feasibility of
using tissue engineering methodology to construct con-
duits for use as large grafts [3-6].
Research groups have used a variety of different

approaches to develop tissue-engineered vascular grafts
(TEVG). Several methods are now in use in the lab and
at various stages of clinical development. These include
in vivo engineering of blood vessels, using explanted
native vessels as a living scaffold for tissue engineering,
a variety of biodegradable polymeric scaffolds onto
which cell types can be seeded, and scaffold-free

approaches [7-9]. The ideal tissue-engineered vascular
conduit is not yet in use and when it comes to optimiz-
ing the translation of this emerging technology, all ele-
ments of the process of TEVG development need to be
considered including scaffold materials, cells for seeding
grafts, and seeding techniques.

Scaffold Materials
Scaffold materials must not only be biodegradable and
non-immunogenic, but also must provide space for cell
attachment while allowing for appropriate structural
integrity until neotissue can form. Standard approaches
involve the use of polymers of polyglycolic acid (PGA),
polylactic acid (PLA), and poly e-caprolactone (PCL) in
varying concentrations to meet the compliance specifi-
cations of the vascular system into which the graft is
being introduced [10,11]. Electrospinning is a newer
approach for creating vascular graft scaffolds that can be
made with finely tuned biomechanical specifications
[12]. Other groups have pioneered the use of decellular-
ized biologic materials including human and porcine
vessels [13]. Additional novel approaches involve the use
of human umbilical vein as a living scaffold and grafts
made using sheets of a patient’s own fibroblasts [7-9].
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Cells for Seeding
Many cell types have been considered as possibilities for
seeding vascular grafts [14,15]. Some groups have inves-
tigated the use of endothelial cells and smooth muscle
cells for seeding but these approaches require long incu-
bation times, presenting additional risk of contamination
along with delaying the implantation. Recent investiga-
tion has focused on shortening the time required for
this approach, including the use of novel flow chambers
and other bioreactors [15].
Bone marrow mononuclear cells have been found to

be a useful cell source as they are readily available from
patients by means of bone marrow aspiration. There are
several different approaches for purifying mononuclear
cells from the bone marrow. The traditional approach
has involved Ficoll centrifugal separation based on cell
mass, but this takes several hours. A newer approach
involves using a specially designed filter to separate out
cells of a particular size [16]. Alternative methods need
to optimize speed and specificity for the cells of interest,
while maintaining sterility and cell viability.
Alternative cell sources that might provide additional

benefits include embryonic stem (ES) cells or induced
pluripotent stem (iPS) cells, the latter offering a new
autologous approach to developing pluripotent cells
[17-19]. All pluripotent cells present the risk of teratoma
formation and so more investigation is needed into the
use of these cell types for the seeding of TEVGs. It is
yet to be seen whether an optimal approach would
involve seeding with undifferentiated ES or iPS cells or
rather using these cells derived from a patient to make a
differentiated cell line of smooth muscle and/or
endothelial cells before the seeding of vascular grafts
[20].

Seeding Techniques
The traditional approach to placing cells on a scaffold
for TEVG creation is static cell seeding, in which the
patient’s cells are pipetted directly onto a graft before
being given several hours to attach. There are a number
of recognized shortcomings of the static seeding
method, including lower efficiency and inter-operator
variability. A number of alternatives have been pro-
posed, including dynamic, magnetic, vacuum, electro-
static, and centrifugal seeding [21]. The leading option
at this point seems to be vacuum seeding in a specially
designed chamber, which is both more standardized and
more effective in that it allows for rapid, operator-inde-
pendent, and self-contained cell seeding [22].

Clinical Background
It will be important to have a deeper understanding of
the mechanisms of neotissue formation and stenosis for
an upcoming FDA approved clinical trial that is to be

initiated at Yale School of Medicine to investigate the
use of TEVGs in pediatric patients [23,24]. The develop-
ment of tissue-engineered vascular grafts for use in car-
diovascular surgery holds particular promise for
improving outcomes in pediatric patients with complex
congenital cardiac anomalies.
Despite major advances in medical and surgical treat-

ment, congenital heart disease (CHD) remains the lead-
ing cause of death due to congenital anomalies in the
newborn period [25]. Single ventricle anomalies make
up one of the largest groups of cardiac anomalies result-
ing in life-threatening diseases. These include diseases
such as tricuspid atresia, pulmonary atresia, and hypo-
plastic left heart syndrome, in which only one ventricle
is of adequate functional size. These anomalies result in
mixing of the deoxygenated pulmonary circulation and
the oxygenated systemic circulation, causing chronic
hypoxia and cyanosis. This mixed circulation can cause
volume overload that can lead to heart failure.
Untreated single ventricle anomalies are associated with
up to 70% mortality during the first year of life [26].
The treatment of choice for this CHD is surgical recon-
struction, the goal of which is to separate the pulmonary
circulation from the systemic circulation [27,28]. This is
accomplished through a series of staged procedures
referred to as the modified Fontan operation with extra
cardiac total cavopulmonary connection (EC TCPC).
This operation has considerably improved long-term
survival but is considered only a palliative procedure
with significant morbidity and mortality [27,28].
An important cause of complications in EC TCPC is

the conduit used to connect the inferior vena cava
(IVC) to the pulmonary artery [29]. Much of the late
morbidity is attributed to problems with conduit use
[30] and while as many as 10,000 children undergo such
reconstructive cardiothoracic operations each year, it is
widely accepted that the ideal conduit has not yet been
developed [31-33]. Data describing long-term graft fail-
ure rates for conduits used for EC TCPC is limited but
long-term data for similar congenital heart conduit
operations suggest outcomes are poor [34]. Late pro-
blems include conduit degeneration with progressive
obstruction and susceptibility to infection. Synthetic
conduits are also a significant cause of thromboembolic
complication due to the area of synthetic material in
contact with blood causing activation of the coagulation
cascade [35]. Synthetic conduits lack growth potential,
necessitating re-operation when a pediatric patient out-
grows the graft. Re-operation is associated with signifi-
cant morbidity and early post-operative mortality rates
as high as 5% [34]. Long-term graft failure rates have
been reported at 70-100% at 10-15 years [36,37]. The
best results have been obtained when autologous tissue
was used for the conduit with long-term patency rates
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of over 80% [38]. Autografts, conduits created from an
individual’s own tissue, have better long-term effective-
ness than any synthetic or biological conduit currently
available but these are limited in supply, suggesting the
need for an alternate approach [34,37-39].

Clinical Trial
Based on the success of animal studies, Shinoka per-
formed a pilot clinical study in Japan in 2001 to evaluate
the feasibility and safety of using TEVG as conduits for
EC TCPC in patients with single ventricle cardiac
anomalies [40-42]. Twenty-five TEVG seeded with auto-
logous bone marrow mononuclear cells (BM-MNC)
were implanted with follow-up out through seven years
[4,43]. At the most recent follow-up, the tissue-engi-
neered vascular grafts were shown to function well with-
out evidence of graft failure. No graft had to be replaced
and there was no graft related mortality. An additional
advantage of this technology is almost eliminating the
need for antiplatelet, antigoagulant, and immunosup-
pressive therapy. All patients had both antiplatelet and
anticoagulant medications discontinued by 6 months
postoperatively and 40% of patients remained free of

any daily medications long term in stark contrast to the
lifetime need for anticoagulation with the use of syn-
thetic grafts [40]. Long-term follow-up, however,
revealed graft stenosis in 16% of patients (Table 1). Ste-
nosis in these patients was frequently asymptomatic and
all were successfully treated with angioplasty and stent-
ing. In addition, serial imaging demonstrated the growth
potential of these grafts, an element that is extremely
important in the pediatric population (Figure 1). These
data support the overall feasibility and safety of using
vascular tissue engineering technology in the pediatric
clinical setting [40].
Complications arising from the use of currently avail-

able synthetic vascular grafts are a leading cause of mor-
bidity and mortality after congenital heart surgery [29].
The lack of growth potential of synthetic conduits is
problematic. Use of over-sized grafts in an attempt to
avoid outgrowing a conduit is widely practiced, but graft
over-sizing has an increased risk of complications [44].
Delaying surgery to minimize re-operations can lead to
cardiac dysfunction or heart failure due to prolonged
exposure to volume overload and chronic hypoxia [35].
The development of a vascular graft with growth

Table 1 Late term status after TEVG implantation in clinical trial

Patient Age at Operation (Years) Patient Status Graft Status Graft Patency Graft Related Complications

1 2 alive intact patent none

2 1 alive intact patent none

3 7 alive intact patent stenosis

4 21 alive intact patent none

5 4 alive intact patent none

6 12 alive intact patent none

7 17 alive intact patent none

8 19 dead intact patent none

9 3 alive intact patent stenosis

10 2 dead intact patent none

11 13 alive intact patent stenosis

12 2 dead intact patent none

13 2 alive intact patent thrombosis

14 2 alive intact patent none

15 2 alive intact patent none

16 2 alive intact patent none

17 24 alive intact patent none

18 1 alive intact patent stenosis

19 11 alive intact patent none

20 2 alive intact patent none

21 3 alive intact patent none

22 4 alive intact patent none

23 4 alive intact patent none

24 13 alive intact patent none

25 2 dead intact patent none

Most recent follow-up at mean of 5.8 years showed no graft-related mortality and no evidence of aneurysm formation, graft rupture, or ectopic calcification. 4
out of 25 patents developed asymptomatic stenosis that was picked up on routine serial imaging and were successfully treated with angioplasty. All implanted
TEVG are currently intact and patent. (Adapted from Hibino (2010) with permission from Elsevier [40]).
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potential would eliminate this problem. Review of the
data suggest that the safety and efficacy of the use of
TEVG in congenital heart surgery is excellent, but
mechanisms underlying the process of neovessel forma-
tion that lead to TEVG failure have remained incomple-
tely understood. Exploring these processes is essential to
create an improved tissue-engineered vascular conduit.
Also, as noted at long-term follow-up, it was found that
the primary mode of failure for TEVG is stenosis
[3-6,40,43]. Identification of the mediators of stenosis in
TEVG and determination of the mechanisms underlying
neovessel formation would identify targets and potential
strategies for preventing stenosis and thereby enable the
rational design of improved TEVG.

Mechanisms of Neotissue Formation
Neotissue Growth
In order to better study the mechanisms of TEVG for-
mation and stenosis in vivo, mouse models have been
developed to recapitulate the results of the human trial.
This approach includes a method for constructing sub-1
mm tubular scaffolds similar to the scaffold used in the
clinical trial [45]. These scaffolds can be seeded with
cells to create TEVG. Use of immunodeficient SCID-
beige mice has enabled transplantation of human cells
or cells from strains of transgenic mice without the
need for immunosuppression. This has proven to be an
excellent model for evaluating TEVG [46,47]. In an
initial pilot study, TEVG were implanted as infrarenal
IVC interposition grafts and observed over a six-month

time course to determine the effect of human BM-MNC
seeding on neovessel formation. The seeded TEVG
functioned well and had better long-term graft patency
and less stenosis than the unseeded scaffolds [48].
Quantitative morphometric analysis demonstrated that
unseeded TEVG had significantly increased wall thick-
ness and luminal narrowing compared to seeded TEVG.
Further analysis revealed that the primary mode of fail-
ure was stenosis characterized by graft wall thickening
and progressive luminal narrowing, which ultimately led
to luminal obliteration and vessel occlusion by inward
remodeling. Cell seeding appeared to inhibit inward
remodeling and promote outward remodeling in neoves-
sel formation [48].
A series of time course experiments using ovine and

canine models demonstrated the stepwise morphologic
changes and graft growth that occur when a seeded
scaffold is implanted as a vascular interposition graft
[4-6,49]. The process begins with a host-derived inflam-
matory response followed by formation of a monolayer
of endothelial cells lining concentric layers of smooth
muscle that develop on the luminal surface of the scaf-
fold. As the scaffold degrades, the cells produce an
extracellular matrix rich in collagen, elastin, and glyco-
saminoglycans, resulting in the formation of a neovessel
with biomechanical properties similar to native blood
vessel complete with intimal, medial, and adventitial
layers that histologically resemble native vessel. The vas-
cular neotissue shows evidence of normal growth and
development including increase in size proportional to

Figure 1 Growth potential of TEVG in clinical trial. A. Magnetic resonance image (MRI) 9 months following implantation of EC TCPC graft. B.
3-D computed tomography angiogram (CTA) of graft one year after implantation. Red arrows indicate location of tissue-engineered vascular
graft. (Adapted with permission from Shinoka (2008) [23]).
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the surrounding native tissue and expression of Ephrin
B4, the molecular determinant of veins, when implanted
as an IVC graft [49].

Neotissue Remodeling
Extensive histological and immunohistochemical (IHC)
characterization has been performed to show the
changes in TEVG over time in a murine model and
these have documented the natural history of neovessel
formation, the process of developing from a biodegrad-
able tubular scaffold seeded with BM-MNC into a vas-
cular conduit that resembles a native blood vessel. Six-
months after implantation, the resulting neotissue pos-
sesses an internal monolayer of endothelial cells sur-
rounded by inner smooth muscle layers, and an
organized extracellular matrix. Some groups have
hypothesized that stem cells within the bone marrow
cell population differentiate into the cells of the neotis-
sue [50]. However, characterizing the human BM-MNC
population revealed very few endothelial cells, smooth
muscle cells and vascular progenitor cells and therefore
it seemed that the seeded cells were unlikely to be the
ultimate source of the vascular neotissue. This hypoth-
esis is not consistent with classic tissue engineering the-
ory, which views the seeded cells as building blocks of
neotissue, but instead supports a regenerative medicine
paradigm in which the seeded scaffold is used to aug-
ment the body’s own reparative mechanisms to “regen-
erate” missing tissue. To test this hypothesis, species-
specific IHC stains were used to determine the fate of
the seeded human BM-MNC in the mouse host. Results
of these studies revealed that seeded cells were replaced
by host cells one to three-weeks after implantation.
These findings were confirmed using human specific
GAPDH RNA detection via RT-PCR, which validated
the presence of human RNA on the TEVG prior to
implantation. This was followed by a dramatic decrease
such that no human RNA could be found by post-
operative day 7 [48].
Based on these preliminary studies it has been

hypothesized that seeded cells exert their effect via a
paracrine mechanism by releasing chemokines that
recruit host cells to the scaffold. These host cells are
then critical for vascular neotissue formation and pro-
mote outward remodeling to maintain graft patency.
IHC characterization demonstrated that the TEVG
were initially infiltrated by host-derived monocytes and
macrophages. Based on quantitative IHC data a corre-
lation was noted between degree of early inflammatory
response and graft patency. Specifically, the seeded
grafts had significantly more macrophages in the early
period compared to unseeded vascular grafts, suggest-
ing that macrophage recruitment may be important in
the process of promoting outward remodeling during

neovessel formation. IL-1b and MCP-1 were found to
be produced in abundant quantity. Studies have been
conducted on TEVG seeded with BM-MNC from
either MCP-1 knockout mice or wild-type. These
TEVG implanted into a SCID-beige vascular interposi-
tion graft model revealed that TEVG seeded with
MCP-1 knockout BM-MNC developed significantly
more wall thickening and luminal narrowing, suggest-
ing that MCP-1 plays a critical role in inducing out-
ward remodeling. Alginate microspheres were created
and incorporated into the wall of the scaffold to pro-
vide controlled release of MCP-1. A study using this
scaffold showed that an MCP-1 eluting scaffold can
inhibit stenosis in the absence of BM-MNC seeding.
These studies suggest that BM-MNC scaffolds trans-
form into functional vessels by means of an inflamma-
tion-mediated process of vascular remodeling (Figure
2) [48].
According to this model, the seeded BM-MNC attach

to the scaffold and begin to release MCP-1. Once
implanted as an IVC interposition graft, MCP-1 recruits
host monocytes, which infiltrate the scaffold and begin
to direct or participate in vascular neotissue formation.
This remodeling ultimately results in the formation of
neovessels composed of a concentric layers of smooth
muscle cells recruited from the neighboring native vessel
wall embedded in an extracellular matrix with a mono-
layer of endothelial cells lining the luminal surface [48].
Recent studies have focused on determining the source
of neotissue cells. These studies used composite grafts
consisting of male vessel segments that were implanted
into female mice and wildtype mice given GFP bone
marrow transplants. These studies showed that the cells
of the neovessel do not derive from the bone marrow or
the seeded cells but actually arise as a result of migra-
tion from the adjacent vessel segment as an augmented
regenerative response [51].

Conclusions: Improving Clinical Outcomes
The findings of Shinoka’s clinical trial in Japan are
encouraging but also point to some of the possible
issues with the use of vascular grafts in the pediatric
population. Translational research groups can now
return to animal models in the lab to improve TEVG
outcomes [24]. Further investigation will identify critical
mediators controlling the formation of stenosis in
TEVG. An important goal is to use these discoveries to
guide rational design of second-generation TEVG: first,
by targeting critical mediators of stenosis, the primary
cause of TEVG failure, in order to design grafts with
improved long-term patency; and second, by elucidating
molecular mechanisms that control vascular neotissue
formation in order to create cytokine-eluting TEVG,
which would not require cell seeding. The development
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of a TEVG that does not require cell seeding would
improve the off-the-shelf availability of TEVG and dra-
matically increase its clinical utility.
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