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SUMMARY
The receiver operating characteristics (ROC) curve is a widely used tool for evaluating
discriminative and diagnostic power of a biomarker. When the biomarker value is missing for
some observations, the ROC analysis based solely on the complete cases loses efficiency due to
the reduced sample size, and more importantly, it is subject to potential bias. In this paper, we
investigate nonparametric multiple imputation methods for ROC analysis when some biomarker
values are missing at random (MAR) and there are auxiliary variables that are fully observed and
predictive of biomarker values and/or missingness of biomarker values. While a direct application
of standard nonparametric imputation is robust to model misspecification, its finite sample
performance suffers from curse of dimensionality as the number of auxiliary variables increases.
To address this problem, we propose new nonparametric imputation methods, which achieve
dimension reduction through the use of one or two working models, namely, models for prediction
and propensity scores. The proposed imputation methods provide a platform for a full range of
ROC analysis, and hence are more flexible than existing methods that primarily focus on
estimating the area under the ROC curve (AUC). We conduct simulation studies to evaluate the
finite sample performance of the proposed methods, and find that the proposed methods are robust
to various types of model misidentification and outperform the standard nonparametric approach
even when the number of auxiliary variables is moderate. We further illustrate the proposed
methods using an observational study of maternal depression during pregnancy.
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1. Introduction
First proposed in the 1950s, the receiver operating characteristic (ROC) analysis is one of
the most commonly used statistical tools for evaluating biomarkers for diagnostic tests [1].
In a typical diagnostic test setting, a biomarker is measured from both the diseased and
nondiseased subjects. Without loss of generality, we assume throughout that a large
biomarker value is indicative of disease. Typically, a well-suited test is more likely to
produce large biomarker values in the diseased population than in the nondiseased
population. In an ideal setting, the diseased and nondiseased subjects are perfectly separated
with regard to their biomarker values. However, more often than not, the distribution of
biomarker values in the diseased overlaps with the distribution in the nondiseased. In these
cases, it is meaningful to summarize the discrimination power of the biomarker using the
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ROC analysis, which characterizes the two most important properties of a test, sensitivity
(the proportion of diseased subjects who are correctly identified as such) and 1-specificity
(the proportion of nondiseased subjects who are incorrectly identified), by varying a
threshold over the range of the biomarker values. When the biomarker values are missing for
some subjects (e.g., due to inadequate biomarker samples, or invalid/unreturned
questionnaires), a naive ROC analysis that only uses subjects with observed biomarker
values is subject to potential bias when missingness depends on the observed data, i.e.,
missing at random (MAR) [2]. In addition, the naive estimate is subject to loss of efficiency
even when missingness is independent of all data, i.e., missing completely at random
(MCAR) [2]. Nevertheless, in many biomedical studies, additional information (i.e.,
auxiliary variables) are available to researchers, such as baseline variables or measurements
from other tests, which may be predictive of biomarker values or missingness of biomarker
values. Hence, those auxiliary variables can be utilized to improve the ROC analysis. In this
paper, we investigate appropriate ROC analysis in the presence of missing biomarker values
that utilizes the auxiliary variables, under the assumption of MAR.

Many methods have been proposed for the general missing data problem under the
assumption of MAR and we refer to the text by Little and Rubin [2] for a complete review.
In this paper, we focus on multiple imputation (MI) methods, which generate multiple
imputed complete datasets to account for uncertainty of imputation. Model-based
approaches have been proposed to impute missing values and have been shown to perform
well in many settings [2]. However, it is well known that model-based imputation
approaches are subject to misspecification of the parametric models. To overcome this
difficulty, nonparametric imputation approaches can be used, which avoid using parametric
models for imputation and hence are more robust to model misspecification. For example,
one can define a similarity measure between observations based on auxiliary variables and
adopt a K – nearest neighbor (K-NN) approach to identify candidates for imputation;
intuitively, the observations that are most similar to the one with a missing value are
considered suitable candidates for imputation.

As the number of auxiliary variables can be large in practice, observed data often turn out to
be sparse in the high dimensional space of all possible values of auxiliary variables.
Therefore, a common challenge in nonparametric imputation is to identify observations that
are reasonably “similar” to the ones with missing biomarker values when the number of
auxiliary variables considered in the similarity measure is large. This is also known as the
curse of dimensionality in nonparametric regression literature. To alleviate this problem, we
propose to reduce the dimension of auxiliary variables through the use of prediction scores
for biomarker values, which is similar to prognostic scores defined by Hansen [3]. In
addition, we propose to use a propensity score model for missingness of biomarkers in
combination with the prediction score model to improve the robustness of the nonparametric
MI method. The resulting method based on both working models is expected to be doubly
robust, i.e., it is consistent if either or both working models are correctly specified.
Furthermore, we add a bootstrap step into the proposed nonparametric MI methods to
account for uncertainty in estimating parameters in the working model(s) so that the
standard MI variance formula can be used [4]. Our approach of using prediction and
propensity scores to construct doubly robust estimators is similar to the approach first
proposed for survival data by Zeng [5] and subsequently extended to missing data problem
in regression settings by Zeng and Chen [6]; the key difference is that our research focuses
on multiple imputation methods, which are more flexible and better suited for ROC analysis.

A nice feature of the proposed MI approaches is that they allow for a full range of ROC
analysis, e.g., any summary statistic of a ROC curve can be computed. Among the limited
research on the ROC analysis in the presence of missing biomarker values, Long et al. [7]
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discuss a doubly robust semiparametric approach specifically for estimating the area under
the ROC curve (AUC), and the extension of their method, say, to plot the ROC curve, is not
straightforward. In this work, we discuss the estimation of the AUC as well as plotting the
ROC curve. Other analyses based on a ROC curve can be performed along similar lines. We
also emphasize that we focus on the case of missing biomarker values and assume that the
disease status is confirmed for all subjects. There is a related but different missing data
problem in ROC analysis, often known as the verification bias in the literature, where the
disease status is only verified in a subset of the observations and unknown in the rest; this
problem has been investigated by Zhou [8, 9, 10], and more recently by Rotnitzky et al. [11]
and Fluss et al. [12]. Since the selection for testing may depend on the disease status and/or
other variables, the naive ROC analysis based on disease-verified subjects may be subject to
bias.

The remainder of this article is organized as follows. In Section 2, we first describe a
standard nonparametric MI method via K-NN, and then propose a nonparametric MI method
based on estimated prediction scores and a nonparametric MI method based on both
estimated prediction and propensity scores; we also introduce a bootstrap step in estimation
of the working model parameters. In Section 3, we evaluate the finite sample performance of
the proposed methods through simulations. In Section 4, we illustrate our methods using
data from an observational study of postpartum depression among pregnant women. Finally,
we provide some discussion remarks in Section 5.

2. Methodology
Suppose we are interested in using a biomarker to detect the disease status, and let D denote
the true disease status (D = 0 for nondiseased and 1 for diseased) and X denote the
biomarker value, which is unavailable for some subjects. We write XD to represent the
biomarker value for a subject with disease status D, i.e., X0 and X1 represent biomarker
values for the nondiseased and diseased, respectively. Let δ denote the missing indicator of
X, i.e., δ = 1 if X is observed, and δ = 0 otherwise. For each disease group (D = 0 or 1), we
denote the set of all subjects with observed X by D = {i : δi = 1 and Di = D} and the set of
subjects with missing X by ℳD = {i : δi = 0 and Di = D}. Lastly, we introduce the auxiliary
variables that are predictive of X or δ by Z = (Z(1), …, Z(P)), which are fully observed.
Following convention, we use bold font to denote vectors. We emphasize that, throughout,
we assume MAR, i.e., δ ⫫ X | Z.

In the rest of this section, we first describe the standard and the proposed nonparametric MI
methods for the estimation of AUC, i.e., θ = Pr(X1 > X0), and then discuss, as an example,
the estimation of the ROC curve itself based on the imputed datasets. We note that when all
biomarker values are available (observed or through imputation), the estimate of θ and its
variance follow readily from Equations (5.5) and (5.10) in [1]. In particular, the estimate of
θ is as follows,

(1)

where n0 and n1 denote the number of subjects in the nondiseased and diseased group,
respectively.

2.1. Standard Nonparametric MI
We now describe a standard nonparametric MI approach via K-NN. In order to identity
observations that are suitable candidates of imputation, we first need to define a distance (or
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similarity) measure between observations; we here adopt a weighted Euclidian distance, i.e.,

, where wp is a positive weight and may represent
importance of each auxiliary variable and ∑p wp = 1. For each given observation i ∈ ℳD,
one can order the distance d(i, j) for all observation j’s with the same disease status (i.e., j ∈

D). The K observations with the shortest distances are then identified as the nearest
neighbors of observation i, denoted by i. One then randomly chooses an observation out of

i for imputation. After the biomarker values for all observations in ℳ0 and ℳ1 are
imputed, an imputed complete dataset is obtained. This imputation procedure is repeated
multiple times (L). We denote the estimate of θ following Equation (1) based on the lth (1 ≤ l

≤ L) imputed complete dataset by θ̂(l), and denote the estimate of its variance by . The

resulting nonparametric MI estimate of θ is then defined as , and its

variance is computed as , following Rubin and Schenker [4], where

 and BMI is the sample variance of L estimates, namely, {θ̂(l), l = 1, …, L}.

2.2. Nonparametric MI Based on Prediction Scores
When the number of auxiliary variables is more than a few, the standard method discussed
in Section 2.1 often encounters difficulties in identifying “similar” observations for
imputation in a finite sample. To address this issue, we first consider a nonparametric MI
method based on prediction scores of biomarker values. We denote the subset of the
auxiliary variables that are predictive of X by Z1 (Z1 ⊆ Z). The proposed MI procedure
consists of four steps detailed below:

1. We first fit a working model for the biomarker values via linear regression, i.e.,
E(X) = αTW1, using observations in 0∪ 1, where W1 may include Z1, D, and
their interaction terms. We denote the estimate of α by α ̂.

2. We then compute a prediction score for each subject, namely, s1 = α ̂TW1 for all
observations, i.e., 0 ∪ 1 ∪ ℳ0 ∪ ℳ1.

3. The next step is to select appropriate observed biomarker values for imputation
based on estimated prediction scores. For each observation i ∈ ℳD, we identify K
observations with the smallest absolute difference (|s1i − s1j|, where j ∈ D),
denoted by i. We then impute the missing biomarker value of observation i with
Xj (j ∈ i), where j is randomly selected out of i. Once all observations in ℳ0
and ℳ1 are imputed with suitable biomarker values, we obtain an imputed complete
dataset. This is repeated multiple times (L). We denote the estimate of θ and its

estimated variance from the lth (1 ≤ l ≤ L) imputed dataset by θ̂(l) and .

4. We then summarize across all L imputed datasets and compute the MI estimate of θ

and its variance following Section 2.1, denoted by θ̂MI − 1 and , respectively.

2.3. Nonparametric MI Based on Prediction and Propensity Scores
As will be shown in Section 2.6, one disadvantage of the MI method discussed in Section
2.2 is its dependency on a correctly specified working model to ensure the consistency of
θ ̂MI − 1. In practice, the functional form of the working model may not reflect the true
relationship between D, Z and X, or, influential auxiliary variables may be left out of the
working model. Under those circumstances, θ̂MI − 1 may not be consistent. To address this
issue, we introduce a second working model of propensity scores [13] which includes a set
of auxiliary variables Z2 (Z2 ⊆ Z) as the covariates that are predictive of δ and could be
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different from Z1. The nearest neighbors for imputation are then identified on a two-
dimensional space, namely, one for prediction scores and the other for propensity scores, in
contrast to the one-dimensional space of prediction scores in Section 2.2. Specifically, we
propose the following four-step procedure:

1. We first fit the working model for X using observations in 0 ∪ 1 and the working
model for δ using all observations ( 0 ∪ 1 ∪ ℳ0 ∪ ℳ1). The prediction score
model, namely, E(X) = αTW1, is fitted as discussed in Section 2.2. We employ a
logistic regression model for δ, i.e., logit(Pr(δ = 1)) = βTW2, where W2 may
include Z2, D, and their interaction terms. We denote the estimate of β by β̂.

2. We then compute two scores for all observations based on the working models in
Step 1 by plugging in the respective estimates, i.e., s1 = α ̂TW1 and s2 = α ̂TW2.
Considering that the two scores may be on different scales, we standardize their
values to mean 0 and standard deviation 1, and denote the standardized values by
(s̃1, s̃2).

3. To impute missing X for each observation i ∈ ℳD, we define its nearest neighbors
among observations with the same disease status (i.e., D) based on the
standardized scores, (s̃1, s̃2). We calculate a weighted Euclidian distance as a
similarity measure, i.e., d(i, j) = {w1(s̃1i − s̃1j)2 + w2(s̃2i − s̃2j)2}0.5 for all j ∈ D,
where w1 and w2 are positive weights and w1 + w2 = 1. Similar to Section 2.2, we
identify K observations in D that have the shortest distance to observation i ∈ ℳD,
denoted by i; and then randomly draw one observation out of i for imputation.
Similar to Step 3 in Section 2.2, the estimate of θ and its estimated variance can be
obtained for each imputed complete dataset.

4. The MI estimates of θ and σ2 are then summarized across all L imputed datasets in

the same way as in Sections 2.1 and 2.2, and are denoted by θ̂MI − 2 and .

2.4. Bootstrap MI
In Sections 2.2 and 2.3, the estimates of the regression coefficients in the working models,
namely, α ̂ and β̂, are directly plugged into the calculation of the predictive/propensity scores
and are fixed throughout multiple imputation; in other words, these MI procedures fail to
account for uncertainty in estimating α and β. As a result, these MI procedures are improper
(Little and Rubin [2]; Chapter 10); while the resulting estimators for θ, namely, θ̂MI − 1 and

θ ̂MI − 2, are still consistent, the standard MI variances (i.e., ) tend to
underestimate their true variabilities. To address this issue, we now introduce a bootstrap
step and describe this updated approach for the nonparametric MI method discussed in
Section 2.3 as follows:

1. We draw the lth (1 ≤ l ≤ L) bootstrap sample with replacement from the original
observed dataset and fit working models as described in Step 1 in Section 2.3 using
the bootstrap sample to obtain estimated regression coefficients, α ̂(l) and β̂(l).

2. Following Steps 2 through 3 detailed in Section 2.3, we compute the standardized

scores  using α ̂(l) and β̂(l) and impute the missing X in the original data
set. Subsequently, the estimate of θ and its estimated variance can be obtained for

the lth imputed complete dataset, which are denoted by ,
respectively.

3. We calculate the bootstrap MI estimate of θ as the average across all L samples,

i.e., . The according variance adjusting for both within and
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across sample variation is , where

 and BMIB − 2 is the sample variance of L point estimates,

.

Similarly, a bootstrap step can be incorporated into the nonparametric MI method discussed
in Section 2.2, which is based solely on prediction scores, and we denote this new estimator

by θ ̂MIB − 1 with variance . The addition of a bootstrap step in MI has been used in
other settings [14, 15]; it introduces uncertainty of estimating parameters in working models
and makes the resulting MI procedures proper [2]. Consequently, the standard MI variance
formula by Rubin and Schenker [4] can be directly used to estimate the variances of these
MI estimators, namely, θ̂MIB − 1 and θ̂MIB − 2.

We further note that it is straightforward to show that all nonparametric MI estimators
discussed in Sections 2.1 through 2.4 are equivalent when there is only one auxiliary
variable available (P = 1).

2.5. ROC Curve Based on Multiple Imputation
As noted in Section 1 that one advantage of the proposed MI approaches is that they provide
a platform to derive any summary statistics in the ROC analysis. As an example, we now
discuss how to plot the ROC curve based on the imputed datasets. This is applicable to all
MI approaches discussed previously (Sections 2.1 through 2.4).

The ROC curve plots the true positive rate, TP(c) = Pr(XD > c | D = 1)+0.5 Pr(XD = c | D =
1), against the false positive rate, FP(c) = Pr(XD > c | D = 0) + 0.5 Pr(XD = c | D = 0), for a
threshold value, c, in the range of the biomarker values. We calculate the above pair for each

imputed dataset,  for 1 ≤ l ≤ L, and compute the respective average value

on each axis, i.e. , where .
By varying the value of the threshold, we can plot the entire ROC curve for multiply
imputed datasets for any of the proposed methods.

2.6. Properties of Proposed MI Methods
We now discuss the properties of the proposed MI methods.

Proposition 1. If the working model for prediction scores (s1) is correctly specified, X and δ
are independent given s1.

Along the lines of Hansen [3], it is straightforward to prove Proposition 1. It follows
immediately from Proposition 1 that it is valid to impute missing values conditional on
prediction scores, if its working model is correctly specified; hence, θ̂MI − 1 and θ̂MIB − 1 are
consistent, if the working model for prediction scores is correctly specified and the usual
regularity conditions underlying K-NN methods [16, 17] are satisfied. However, if the
working model for prediction scores is misspecified, then θ̂MI − 1 and θ̂MIB − 1 are subject to
potential bias.

Proposition 2. If at least one of the two working models for prediction scores (s1) and for
propensity scores (s2) is correctly specified, X and δ are independent given s1 and s2.

Along the lines of Zeng [5], it is straightforward to prove Proposition 2. It follows
immediately from Proposition 2 that it is valid to impute missing values conditional on
prediction and propensity scores, when one of the working models is correctly specified;
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hence, θ̂MI − 2 and θ̂MIB − 2 are consistent, if either or both of the two working models are
correctly specified and the usual regularity conditions underlying K-NN methods are
satisfied. If both weights are positive, then both prediction and propensity scores are used to
define distance and the resulting estimators are doubly robust. If one weight is set to zero,
then either prediction or propensity scores are used to define distance and the resulting
estimators are no longer doubly robust; they are consistent only if the corresponding
working model is correctly specified. Thus, the addition of propensity scores makes the
resulting MI methods doubly robust.

3. Simulation
In this section, we evaluate the finite sample performance of the proposed MI methods under
various true models for the biomarker value (X) as well as its missing mechanism (δ).
Throughout, we let aP denote a P-vector of a and IP denote the identity matrix of P
dimension. In all simulations, the auxiliary variables are generated from a P-dimensional
multivariate Gaussian distribution, i.e., Z0 ~ MVN(μZ, Σ) with (μZ) = 0P and Σ = IP (P = 5).
Assuming that  is predictive of X, the biomarker value (X) is generated under
two schemes. In the first scheme (to be discussed in Section 3.1), X is generated from X = μX

+ ε, where  is the mean of X given  and ε is a random error; we
set α0 = 0.5, α1 = 2.5, α2 = 0.5P and α3 = 1P. Under the second scheme (to be discussed in

Section 3.2), X is generated from log(X) = μlog(X) + ε, where 
is the mean of log(X) given , ε is a random error, and the base of the logarithm function is
1.1 throughout; we set α0 = 0.5, α1 = 2, α2 = 0.5P and α3 = 2P. We write the according true

regression coefficients under either scheme as . In addition, we consider
either Gaussian random errors, i.e., ε ~ N(0, 1), or skewed non-Gaussian errors, i.e., ε = 5{ν
− E(ν)} with ν ~ Beta(5, 1). Assuming that  is predictive of δ, we generate δ

from a logit model, i.e.,  and write ;
we set β0 = 0.1, β1 = 0.2, β2 = 0.1P, β3 = 0.2P. The resulting probabilities of missing X range
from 56.9% to 96.8%.

For each Monte Carlo data set, we follow the MI methods presented in Sections 2.1 through
2.4 to compute the standard nonparametric MI estimator (θ̂MI) and the proposed
nonparametric MI estimators (θ̂MI − 1, θ ̂MI − 2, θ ̂MIB − 1, and θ̂MIB − 2); for θ̂MI − 2 and
θ ̂MIB − 2, both weights are set to 0.5 when defining d(i, j). Throughout our simulations, we
use a linear regression model with covariates Z1, D, and their interaction terms to estimate
prediction scores and a logistic model with covariates Z2, D, and their interaction terms to
estimate propensity scores, respectively. For the sake of simplicity, we will only refer to the
set of auxiliary variables used in the working models hereafter, knowing that the disease
status (D) as well as their interaction terms will always be included. For each true model for
X, we evaluate the performance of the proposed estimators under the following five
scenarios: (a) both working models use the correct set of covariates, i.e., ;
(b) the working model for propensity scores is misspecified and only uses the first two
covariates, i.e.,  (i.e., Z2 is a proper subset of ); (c) the working model
for prediction scores is misspecified and only uses the first two covariates, i.e.,

; (d) both working models are misspecified and only use the first two
covariates, i.e., ; and (e) the working model for prediction scores
includes the correct set of covariates and P noise variables, and the propensity score working

Long et al. Page 7

Stat Med. Author manuscript; available in PMC 2012 November 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



model is misspecified and only uses the first two covariates, i.e.,  (i.e., Z1 is a proper
superset of ) and .

In addition to the MI estimators discussed in Section 2, we compute an estimator of θ,
denoted by θ̂GS, assuming all biomarker values are observed, as a gold standard to
benchmark bias in finite samples as well as loss of efficiency due to missing data; we note
that θ̂GS is not applicable in real-life studies. For comparison, we also compute a so-called
naive estimator (denoted by θ̂o), which uses only observations in 0 ∪ 1. Of note, in one
extreme case of  being mutually exclusive, it can be readily shown that θ̂o is
unbiased. Hence, we focus on the other extreme case where  are identical
( ) in the simulations. To assess potential loss of efficiency due to nonparametric
nature of the proposed MI methods, we compute an estimator (denoted by θ̂MIP) based on a
parametric imputation procedure [18], which is implemented in the R package, mice [19];
basically, we impute missing X using mice and then compute θ̂MIP using the standard MI
rule.

For each setting, we generate 1000 simulated datasets with a sample size of n1 = n0 = 100,
and we summarize the simulation results using the following quantities: relative bias (RB)
measured as the percentage of true θ, mean standard error (SE), Monte Carlo standard
deviation (SD), root mean squared error (rMSE), and coverage rate (CR) of the 95% Wald’s
confidence intervals (CI). We use K = 3 nearest neighbors and L = 10 imputed datasets in
Sections 3.1 and 3.2 and evaluate other choices in Section 3.3.

3.1. Mean of X is Linear in 

In the setting of , we first consider the case of Gaussian errors
(Table I). The naive estimator (θ̂o) underestimates the true value substantially. In all
scenarios, the proposed MI estimators with a bootstrap step have SEs that are closer to SDs
and coverage rates that are closer to the nominal level compared to the MI methods without
a bootstrap step, and the improvement can be small in some cases such as Scenario (a) and
considerable in some cases such as Scenario (b); in addition, the SD of the proposed doubly
robust MI estimator (θ̂MI − 2) is comparable to that of the parametric MI estimator (θ̂MIP),
indicating that there is minimal loss of efficiency in estimating AUC as a result of using
nonparametric imputation methods, likely due to that the AUC is estimated using only ranks
of biomarker values; it is also noteworthy that the SDs of both θ̂MI−2 and θ̂MI − P are not
much larger than that of θ̂GS. In Scenario (a), the working models for both prediction and
propensity scores are correctly specified. The standard nonparametric estimator (θ̂MI)
exhibits moderate bias and unsatisfactory coverage rate, likely due to curse of
dimensionality. Our proposed nonparametric MI estimators as well as the parametric MI
estimator exhibit negligible bias and improved coverage rates, and their SDs are
comparable. In Scenario (b), the working model for propensity scores is misspecified; since
θ ̂MI, θ ̂MI − 1, and θ̂MIB − 1 depend on only the working model for prediction scores, these
estimators remain the same in Scenario (b) as those in Scenario (a) and are not duplicated in
Table I. Despite the misspecification of the working model for propensity scores in Scenario
(b), θ ̂MI − 2 and θ̂MIB − 2 still exhibit negligible bias, due to its double robustness. In Scenario
(c), the working model for prediction scores is misspecified. θ̂MI, θ ̂MI − 1 and θ̂MIB − 1 exhibit
substantial bias and inadequate coverage rates, since they rely entirely on the misspecified
working model for prediction scores. In comparison, θ̂MI − 2 and θ̂MIB − 2 have substantially
smaller bias as a result of their double robustness, since the working model for propensity
scores is still correctly specified. In Scenario (d), both working models are misspecified; as
previously noted, estimation of θ̂MI, θ ̂MI − 1, and θ̂MIB − 1 does not involve propensity scores,
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and therefore they remain identical as those in Scenario (c). The performance of θ̂MI − 2 and
θ ̂MIB − 2 is similar to that of θ̂MI − 1 and θ̂MIB − 1; and all four proposed methods still perform
slightly better than θ̂MI and θ̂MIP. In Scenario (e), θ̂MI has a considerably larger bias
compared to the proposed methods, suggesting that the performance of θ̂MI deteriorates very
quickly as the dimension of the auxiliary variables increases due to curse of dimensionality.
On the other hand, the performance of all proposed methods remains comparable to their
respective performance in Scenarios (a) and (b), as a result of effective dimension reduction.

We then consider the case of non-Gaussian errors (Table I). The same conclusions can be
drawn on comparisons across different methods within the five scenarios investigated. Note
that a linear regression working model for prediction scores is still valid for the case of non-
Gaussian errors, although it is efficient for the case of Gaussian errors.

3.2. Mean of log(X) is Linear in 
We now investigate robustness of the proposed approaches when the mean of log(X), not X,

is linear, i.e.,  (II). In this case, the working model for
prediction scores is always misspecified regardless of whether the correct set of covariates is
used; as a result, θ̂MIP exhibits larger bias in Scenario (a) of II compared to Scenario (a) of
Table I. We, again, first consider the case of Gaussian errors (Table II). Most of the
comparisons reported in Section 3.1 still hold. Interestingly, θ̂MI − 1 in Scenario (a) and
θ ̂MI − 2 in Scenario (b) still exhibit negligible bias when the correct set of covariates is
included in the working model for prediction scores but the mean structure is misspecified.
In addition, the magnitude of improvement associated with the use of a bootstrap step is
greater in this setting compared to that in Section 3.1. For instance, under Scenario (a), the
CR improves 4.2%, from θ̂MI − 1 (92.4%) to θ̂MIB − 1 (96.6%), and 3.8%, from θ̂MI − 2
(91.6%) to θ̂MIB − 2 (95.4%). This is in comparison to an improvement of 1.0% and 1.2% in
Table I Scenario (a). Similarly, in Scenario (b) when , the CR improves 4.4%, from
91.8% (θ ̂MI − 2) to 96.2% (θ̂MIB − 2). Although to a lesser degree, the same is also true for
Scenarios (c), (d), and (e). In the case of non-Gaussian errors (Table II), the main
conclusions remain unchanged and the performance of the proposed θ̂MI − 2 and θ̂MIB − 2 is
still doubly robust.

3.3. Impact of K and L
We also investigate other choices of K and L in the MI procedures for both linear and
nonlinear true models (results not shown). We find that a larger number of imputed datasets
(e.g., L = 100) leads to no more than a marginal improvement (e.g., an increase of less than
1% in CR). When a larger number of nearest neighbors (e.g., K = 10) is used in the MI
procedures, all methods perform slightly worse, likely because the candidates identified for
imputation are less similar to the observation with missing biomarker values as K increases.
However, this impact on the proposed methods is smaller compared to the standard MI
method, likely due to the dimension reduction feature of the proposed methods.

3.4. Summary
In summary, the proposed nonparametric MI methods outperform the standard
nonparametric MI method even for a moderate number of auxiliary variables, and their
efficiency is comparable to that of a parametric MI method. As shown in Scenario (e) in
Tables I and II, the inclusion of noise covariates in a working model has a minimal impact
on the proposed estimators, whereas its impact on the standard nonparametric MI method is
considerable. Therefore, one could include all auxiliary variables that are potentially
predictive of biomarker values or its missingness in the working models, when using the
proposed methods. We also observe that θ̂MI − 2 and θ̂MIB − 2 exhibit the expected double
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robustness against misspecification of either working model, whereas θ̂MIP is subject to
substantial bias when the working model for X is misspecified. Since the proposed
nonparametric MI methods do not directly use auxiliary variables to impute X and instead
use them to define distance between observations, they also exhibit a robustness to
misspecification of the mean structure as long as the correct set of covariates is included. In
addition, the bootstrap estimators generally further improve the performance of the 95%
Wald CI by accounting for uncertainty in estimating α ̂ and β̂. Our results also show that a
relatively small number of imputation data sets suffices, e.g., L = 10, which is consistent
with the literature [2], and a small number of nearest neighbors is preferred, e.g., K = 3, in
finite samples.

4. Data Analysis
We now illustrate the proposed methods using an observational study of maternal depression
during pregnancy. In this study, the disease of interest is the presence of depression during
pregnancy and the true disease status (D) is established through a clinical assessment of the
Mood Module of the Structured Clinical Interview for DSM-IV Axis I Disorder (SCID)
[20]. However, this evaluation is not only lengthy but also requires administration by a well
trained professional. In practice, a brief self-administered questionnaire, Edinburgh
Postnatal Depression Scale (EPDS) [21], is often used instead, which consists of ten
questions and usually takes only a few minutes to complete. Therefore, it is meaningful to
investigate the ability of the EPDS score to predict the depression status; in other words, the
EPDS score is considered the biomarker of interest (X). Since the completion of the EPDS
questionnaire is voluntary in this study, the EPDS score is unavailable for a considerable
portion of the participants. In the same study, researchers also assessed the Structured
Interview Guide for the Hamilton Rating Scale for Depression to obtain 17-item (HRSD17),
which is known to be highly correlated with EPDS. In our analysis, six other baseline
variables are also considered, namely, maternal age, race, martial status, education level,
gravidity and parity. Both HRSD17 and the above baseline covariates are fully observed and
regarded as the auxiliary variables (Z) in this analysis.

We first compute the naive estimator, θ̂o = 0.861 (SE = 0.038). Subsequently, we conduct a
sensitivity analysis to evaluate the impact of the number of auxiliary variables included in
the working models; specifically, we compute all nonparametric MI estimators when
working models include one auxiliary variable (HRSD17), two auxiliary variables (HRSD17
and age), and all seven auxiliary variables. When only one covariate is included in the
working models, all nonparametric imputation methods are equivalent and give the same
estimate of θ, 0.870, and the same SE, 0.019. The results using two covariates (Setting (a))
and seven covariates (Setting (b)) are summarized in Table III. In Setting (a), we observe
that the standard nonparametric MI estimate (θ̂MI = 0.864), as well as the proposed MI
estimators, all of which are in the range of [0.860,0.867], are similar to the naive estimate
(θ ̂o = 0.861), suggesting that the missing mechanism may be completely at random
(MCAR). The SEs of both the standard nonparametric MI and the proposed MI estimators
are in the range of [0.018,0.019], which are almost half of the SE of the naive estimator
(0.038), suggesting considerably efficiency gain through the use of auxiliary information. In
Setting (b), the proposed AUC estimators range between 0.869 and 0.880 and are slightly
higher than the corresponding estimates in Setting (a), and in particular, θ̂MIB − 1 and
θ ̂MIB − 2 are very close to their respective estimate in Setting (a); θ̂MI, however, is 0.892,
which is substantially higher than its estimate in Setting (a), likely due to the increased
dimension of auxiliary variables (from two to seven). This reaffirms that the proposed
methods are less sensitive to inclusion of a large number of auxiliary variables as a result of
dimension reduction achieved before imputation.
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We also plot the ROC curve for each method in Figure 1. When only two auxiliary variables
are included in the working models (Panel (a)), the ROC curve based on the standard
approach is similar to the ones using the proposed approaches. This is consistent with the
similarity in the point estimate of AUC in Table III Setting (a). However, when all seven
auxiliary variables are included in the working models, the curves diverge (Panel (b)). While
the ROC curve based on the proposed methods remain similar, they are generally lower than
the ROC curve based on the standard approach (red dashed line). We note that the naive
ROC curves (solid black lines) are identical on both panels; thus, they can serve as a
benchmark for comparisons across Panels (a) and (b). As the ROC curve can be used to
identify an optimal threshold (or cutoff) biomarker value, say, maximizing the sum of
sensitivity and specificity, we plot in Figure 1 this sum over the range of the EPDS score (X)
for each method when only two (Panel (c)) and all seven (Panel (d)) auxiliary variables are
included in the working models. We find that an EPDS score of 16 is the unanimous
optimum threshold that attains the maximum sum among all methods. Similarly, the solid
black lines from the naive approach can serve as a benchmark when comparing Panels (c)
and (d); our data analysis again shows that the number of auxiliary variable has a smaller
impact on the proposed MI estimators than the standard approach.

5. Discussion
In this paper, we investigate nonparametric MI methods based on prediction scores alone or
in combination with propensity scores and show that our proposed methods have several
attractive features. First, they alleviate the issue of curse of dimensionality, a well-known
issue for nonparametric methods in the presence of a large number of auxiliary variables.
While we focus on the K-NN nonparametric imputation, other nonparametric methods can
be readily adopted for imputation, say, kernel methods [22]. Furthermore, our methods can
take advantage of modern regression models for high-dimensional data, say, lasso models
[23], when building working models for prediction and propensity scores. Second, our
proposed methods using both prediction and propensity scores are doubly robust, which are
consistent when at least one working model is correctly specified. In addition, our numerical
results show that the proposed MI estimators perform well as long as the correct set of
covariates is included, even when the mean structure of a working model is misspecified. By
correctly accounting for uncertainty in estimating parameters in the working models (i.e., α ̂
and β̂), our estimators are further improved through a bootstrap step (i.e., θ̂MIB − 1 and
θ ̂MIB − 2). As a result, it is recommended that θ̂MIB − 2 be used in practice.

The proposed methods are also very flexible. First, they provide a platform for estimating
any measure of interest in a ROC analysis, e.g., the ROC curve itself, which, in turn, can be
used to identify an optimal threshold (or cutoff) value, say, maximizing the sum of
specificity and sensitivity, as illustrated in Section 4. Second, the proposed methods can be
extended to the case where multiple biomarkers are compared and they all have missing
values. When multivariate biomarker values of a subject is either completely observed or
completely missing (e.g., either the questionnaire is completed and returned by a subject or
not returned at all), imputation will be similar to what is proposed in Section 2. When
multivariate biomarker values are partially observed and follow certain missing patterns, the
observed (partial) biomarker values may be utilized in step-wise imputation procedures.

When using the MI method based on both predication and propensity scores, weights play
an important role for defining distance between observations. As long as the weights are
positive, the main results in Proposition 2 hold; thus, in our numerical studies, we fix the
weights to 0.5. However, the use of weights allows investigators to incorporate their prior
beliefs on validity of two working models, e.g., one could use a larger weight or even put the
entire weight on the working model that is more likely to hold; we are currently
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investigating the impact of varying weights and the strategies of choosing weights in finite
samples. Future research will also include extensions to more complicated missing patterns
including missing disease status or missing auxiliary variables and sensitivity analysis in the
case of missing not at random (MNAR) [2].
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Figure 1.
Comparison of the naive, standard nonparametric, and proposed MI approaches; the ROC
curves when (a) only two auxiliary variables or (b) all seven auxiliary variables are included
in the working models; the sum of sensitivity and specificity for all cutoff values of EPDS
score when (c) only two auxiliary variables or (d) all seven auxiliary variables are included
in the working models.
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Table III

Comparison of θ̂MI, θ ̂MI − 1, θ ̂MI − 2, θ ̂MIB − 1, and θ̂MIB − 2, when (a) only two auxiliary variable are used in the
working models, and (b) all seven auxiliary variables are used in the working models. SE, standard error.

(a) (b)

Estimate SE Estimate SE

θ ̂MI 0.864 0.019 0.892 0.017

θ ̂MI − 1 0.866 0.019 0.880 0.017

θ ̂MI − 2 0.860 0.019 0.872 0.019

θ ̂MIB − 1 0.867 0.018 0.869 0.025

θ ̂MIB − 2 0.867 0.018 0.872 0.020
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