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Widespread signatures of recent selection linked
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In this study we investigated the strengths and modes of selection associated with nucleosome positioning in the human
lineage through the comparison of interspecies and intraspecies rates of divergence. We identify significant evidence for
both positive and negative selection linked to human nucleosome positioning for the first time, implicating a widespread
and important role for DNA sequence in the location of well-positioned nucleosomes. Selection appears to be acting on
particular base substitutions to maintain optimum GC compositions in core and linker regions, with, e.g., unexpectedly
elevated rates of C!T substitutions during recent human evolution at linker regions 60–90 bp from the nucleosome dyad
but significant depletion of the same substitutions within nucleosome core regions. These patterns are strikingly con-
sistent with the known relationships between genomic sequence composition and nucleosome assembly. By stratifying
nucleosomes according to the GC content of their genomic neighborhood, we also show that the strength and direction of
selection detected is dictated by local GC content. Intriguingly these signatures of selection are not restricted to nucle-
osomes in close proximity to exons, suggesting the correct positioning of nucleosomes is not only important in and
around coding regions. This analysis provides strong evidence that the genomic sequences associated with nucleosomes
are not evolving neutrally, and suggests that underlying DNA sequence is an important factor in nucleosome positioning.
Recent signatures of selection linked to genomic features as ubiquitous as the nucleosome have important implications for
human genome evolution and disease.

[Supplemental material is available for this article.]

The fundamental level of chromatin compaction in the nucleus is

the nucleosome, consisting of ;147 bp of DNA wrapped around a

histone octamer, with adjacent nucleosomes separated by variable

length DNA linker sequences generally falling in the range of 20–

80 bp. Due to the inherent inaccessibility of DNA compacted onto

nucleosomes, the effect of nucleosomes and their positioning on

transcription has been studied extensively, and it has been shown

that there is a complex interplay between transcription factors,

nucleosomes, and chromatin remodeling enzymes that together

regulate the expression of genes (Cairns 2009). In addition to gene

expression, nucleosome positioning has been shown to be asso-

ciated with other key cellular processes, including mRNA splicing,

DNA replication, and DNA repair (Berbenetz et al. 2010; Duan and

Smerdon 2010; Tilgner and Guigó 2010). Consequently, deter-

mining the mechanisms involved in controlling the positioning of

nucleosomes and their variants is fundamentally important not

only to understanding a critical component of many biological

processes but also to understanding the regulation of an epigenetic

level associated with several diseases (Portela and Esteller 2010).

Although a number of chromatin remodeling enzymes have

been identified, what controls the positioning of nucleosomes along

DNA is still poorly understood. However, it has been proposed that

the underlying DNA sequence itself may, to an extent, control nu-

cleosome locations (Segal et al. 2006). To begin to test this hypoth-

esis, two recent studies compared in vitro yeast nucleosome maps to

those derived in vivo to begin to characterize any intrinsic affinity

nucleosomes have for certain stretches of DNA (Kaplan et al. 2009;

Zhang et al. 2009). In spite of the experimental similarities between

these studies, they differed markedly in their estimates of the extent

to which DNA plays a role in positioning nucleosomes (Kaplan et al.

2010; Zhang et al. 2010) and the extent to which DNA controls the

location of nucleosomes remains unclear.

Certain links between nucleosomes and their underlying base

composition are well known. The relationship between dinucle-

otide frequencies and the relative position from the nucleosome

dyad (the mid-point of the nucleosome core) is well established,

and a clear 10-bp periodicity in dinucleotides has been observed

in a number of eukaryotes (Reynolds et al. 2010). A recent study

has shown that there is also a marked, asymmetrical periodicity in

mononucleotide patterns observed in both yeast and human ge-

nomes when DNA sequences are aligned at nucleosome dyads, and

it was these mononucleotide patterns, rather than di- or trinucle-

otide frequencies, that were most informative in the prediction of

nucleosome positions (Reynolds et al. 2010).

Periodicities in nucleotide frequencies have generally been

thought to be a result of the requirement of DNA to curve around

the histone octamer and the differing abilities of base pairs and DNA

sequences to bend (Segal and Widom 2009). If this is the case, it is

possible that base compositional biases are a result of selection for or

against sequences that differ in their affinities for the nucleosome

core, and there may therefore be detectable signatures of selection at

the DNA level linked to nucleosome positioning. Examination of

the correlation between sequence divergence and nucleosome po-

sitioning in coding regions has so far shown that substitution rates

are lower in linker regions than at DNA wrapped around core his-

tones, and this has been attributed to purifying selection at linker

regions for DNA sequences that occlude nucleosome occupancy

rather than selection for DNA curvature (Warnecke et al. 2008).

There are, however, alternative explanations for lower divergence

rates in linker regions, most notably mutational bias or positive se-

lection in nucleosome core regions (Semple and Taylor 2009). There
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is substantial evidence that nucleosomes impede the access of DNA

repair enzymes to underlying DNA sequences (Méndez-Acuña et al.

2010), and the base composition in linker regions is different from

regions underlying nucleosomes (Reynolds et al. 2010), suggestive of

different mutational loads. Consequently, any search for potential

signatures of selection in and around nucleosomes must account for

the differing rates of mutation and repair observed in these regions.

In this study we investigated whether signatures of selection

associated with the positioning of nucleosomes could be observed

in underlying DNA. If DNA plays a fundamentally important role

in regulating nucleosome locations, there may be evidence that

the DNA in and around nucleosomes is not evolving neutrally, and

any observed deviations from selective neutrality should correlate

with the associated chromatin structure.

Results

Complex patterns of divergence around nucleosomes

Two of the most comprehensive human nucleosome maps currently

available are those produced by Schones et al. (2008) and Barski et al.

(2007). Whereas the study of Barski et al. (2007) focused on the

positioning of nucleosomes carrying at least one of 20 types of

methylated histone, the study of Schones et al. (2008) examined nu-

cleosome positioning irrespective of such modifications. Both data

sets were generated in CD4+ Tcells that play a central role in adaptive

immunity and depend upon remodeling of chromatin structure for

important aspects of their differentiation and function (Wilson et al.

2009), but the methodologies of the two studies differ extensively. In

order to investigate signatures of selection in the human lineage, we

first investigated human–chimpanzee sequence divergence patterns

in and around the nucleosomes defined in these data sets.

As shown in Figure 1, human lineage-specific divergence rates

were in general lower at nucleosomes in the Barski et al. (2007) data

set, likely as a result of this data set being restricted to nucleosomes

carrying modifications preferentially enriched at conserved regions

in and around genes. Nucleosomes carrying two particular modifi-

cations (H2A.Z and H3K4me3) have recently been found to be as-

sociated with lower rates of genomic sequence variation compared

with unmodified nucleosomes (Tolstorukov et al. 2011). The current

data suggest that this phenomenon extends to nucleosomes carry-

ing a broader range of histone modifications. As shown in other

studies, in a range of eukaryotes (Warnecke et al. 2008; Washietl et al.

2008; Sasaki et al. 2009; Ying et al. 2010) the overall levels of diver-

gence were observed to be lower in linker regions than at the cores of

nucleosomes in both data sets (Fig. 1). Not only are strong peaks in

divergence observed at the nucleosome dyads, the substitution rates

in the linker regions immediately beside the nucleosomes are lower

than the mean rates of divergence in flanking regions (defined as

the sequences 6250–500 bp from the dyads). These low rates of di-

vergence at linker DNA suggest that purifying selection may be oc-

curring at these regions as previously proposed in other studies

(Warnecke et al. 2008). However, other explanations are also possible,

involving different combinations of mutation rate biases and varia-

tion in the mode and strength of selection present. Also, increases in

the substitution rates of certain base changes could potentially mask

decreases in others, which can further complicate analysis. To mini-

mize this problem, we looked at each class of base change indepen-

dently by determining the human–chimpanzee–orangutan ancestral

base at each position and comparing it to the base observed in the

human reference genome sequence. This allowed us to identify the

relative contribution of each base change to the overall divergence

patterns observed in Figure 1, and ensured that all patterns de-

tected were specific to the human lineage since divergence from

the chimpanzee.

Analysis of each possible base change independently clearly

demonstrated (Fig. 2 [Schones et al. 2008 data set]; Supplemental

Fig. 1 [Barski et al. 2007 data set]) that a number of different patterns

of divergence contribute to the overall pattern (Fig. 1). Strong peaks

of T!C, T!G, A!C, and A!G changes were observed at and

around the nucleosome dyad with matching low rates of C!T,

G!T, C!A, and G!A changes observed in the same regions. There

consequently appears to be a strong preference for changes from AT

to GC base pairs in regions underlying dyads.

The overall pattern observed in Figure 1 is therefore in fact a

composite of many different divergence traces, dominated by the

more common transition changes. Although Figure 1 is generally

suggestive of high substitution rates in nucleosome core regions,

Figure 2 highlights that there are in fact both high and low rates of

different base changes at these positions.

By using geographically diverse SNP data compiled from vari-

ous recently published, high coverage, human whole-genome se-

quencing studies (Levy et al. 2007; Bentley et al. 2008; Wang et al.

2008; Wheeler et al. 2008; Ahn et al. 2009; Kim et al. 2009; Drmanac

et al. 2010; Schuster et al. 2010; Tong et al. 2010), we also inves-

tigated the rates of intraspecies divergence relative to the same two

data sets of nucleosomes. Analysis of this intraspecies polymor-

phism data showed that the broad variation in total polymorphism

density in and around nucleosomes is similar to those patterns ob-

served in the overall pattern of interspecies divergence; rates are

highest at the nucleosome core and lowest toward the linker regions

(Fig. 1). However, whereas the lowest rates of intraspecies divergence

occur precisely at the edges of the predicted nucleosomes, i.e., 670

bp from the dyad, the lowest rates of interspecies divergence occur

further into the expected linker regions at around 6125 bp from the

dyad (corresponding to the approximate mean mid-point of linker

regions, i.e., half a nucleosome [;75 bp] + 50 bp of linker). As with

the treatment of interspecies divergence, we also measured the rate

of each possible base change and calculated the number of observed

intraspecies changes (polymorphisms) at each position relative to

the nucleosome dyad. The ancestral base at each position was de-

termined by comparison to the chimpanzee genome.

As can be seen in Figure 3 (Schones et al. 2008 data set; for

equivalent Barski et al. 2007 data set graph, see Supplemental Fig. 2),

Figure 1. Human lineage-specific intra- and interspecies divergence rates
around nucleosome dyads. Rates of intraspecies divergence are plot-
ted on the secondary, right-hand y-axis, interspecies divergence on the
primary, left-hand axis. Solid trend lines correspond to a sliding window
size of 25 bp around each position. Nucleosome positioning data were
derived independently from the Schones et al. (2008) and Barski et al.
(2007) data sets.
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the patterns of variation within the recent human lineage, like those

of interspecies divergence, also fluctuate widely in and around nu-

cleosomes. Most notably, the rates of T/C!A and G/A!T are de-

pressed in the region of the nucleosome core. These patterns are

consistent with observations that different classes of higher-order

chromatin structure appear to suffer different mutational spectra

(Prendergast et al. 2007), but here the differences seen are at the level

of the nucleosome, the fundamental building block of higher-order

structures.

Despite similarities, comparisons of

inter- and intraspecies divergence rates

were found to reveal surprising contrasts

for certain classes of substitutions. For ex-

ample, although there are strong peaks in

the rate of interspecies T-to-G and A-to-C

changes to either side of the nucleosome

dyad, there are no matching peaks at the

same positions in the corresponding in-

traspecies substitution rates.

Recent selection linked to human
nucleosome positioning

Observed differences in rates of interspe-

cies and intraspecies divergence, such as

those seen in Figures 2 and 3, are poten-

tially indicative of selection. Positive se-

lection is expected to lead to an excess of

interspecies divergence over intraspecies

divergence; negative selection, the reverse.

Such comparison of rates of fixed inter-

species divergence and intraspecies poly-

morphisms has been formalized as the

widely used McDonald-Kreitman (MK) test

for selection and its variants (McDonald

and Kreitman 1991). However since dif-

ferences in substitution rates can be attri-

buted to a number of other factors, such as

altered rates of mutation and repair in

a region (Semple and Taylor 2009), such

tests need to account for these potentially

confounding factors. Typically, in studies

of protein-coding sequence, this has been

achieved by comparing the divergence

observed at sites of interest (e.g., non-

synonymous sites) to an estimate approx-

imating the rate of neutral divergence and

reflecting the background mutation rate

(e.g., synonymous site divergence rates)

(Hurst 2002). Therefore four rates of diver-

gence are generally used in MK-type tests;

not only the rates of inter- and intraspecies

divergence at the sites of interest but also

the inter- and intraspecies divergence rates

at selectively ‘‘neutral’’ sites. However,

there is increasing evidence that neutral

proxies such as synonymous sites are ac-

tually evolving non-neutrally (Chamary

and Hurst 2005; Prendergast et al. 2007),

and given the ubiquitous presence of nu-

cleosomes across the genome, there is

no available estimate of neutral change

that is not associated with either nucleosomes or linker regions. In

this analysis, we therefore used the average rates of inter- and in-

traspecies divergence observed at�500 to�250 and +250 to +500 bp

from the dyads of our sets of well-positioned nucleosomes as an

indication of the average rates of divergence observed at flanking

DNA sequences: those sequences not aligned according to nucleo-

some dyads (and likely to disproportionately contain nucleosomes

less well positioned and under less control by DNA sequence). By

Figure 2. Interspecies rates of divergence around nucleosome dyads in the human lineage. Colored
solid lines correspond to 25-bp sliding averages. Dotted vertical lines represent the estimated dyad
position. Transversions are plotted on the secondary y-axis due to their substantially lower rates. Nu-
cleosome positioning data were derived from the Schones et al. (2008) data set.

Figure 3. Intraspecies rates of divergence around nucleosome dyads in the human lineage. Colored
solid lines correspond to 25-bp sliding averages. Dotted vertical lines represent the estimated dyad
position. Transversions are plotted on the secondary y-axis due to their substantially lower rates. Nu-
cleosome positioning data were derived from the Schones et al. (2008) data set.
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taking matched flanking regions for each nucleosome, we expect to

control for any local compositional, demographic, and substitution

rate variation occurring in the region. Although these flanking re-

gions will also be associated with nucleosome and linker regions to

some extent, these will not be regularly arranged (due to variation in

nucleosome density and linker length around the genome), and

they therefore provide an estimate of the average rates of divergence

at these regions. Since it is unlikely that all flanking regions are se-

lectively neutral, our comparisons are potentially overly conserva-

tive, but they do allow a comparison of divergence rates in and

around the positioned nucleosomes in the Schones et al. (2008) and

Barski et al. (2007) data sets to an estimate of mean divergence in the

same regions. If all regions relative to the nucleosome dyad are

evolving neutrally, or under the same selective pressure, we would

expect to see no significant deviations in the rates of Sx!y (the ratio

of interspecies to intraspecies base changes corrected for flanking

sequence rates; see Methods) across the 1-kb regions examined.

However, positive selection will lead to elevated rates of Sx!y due

to an excess of interspecies divergence relative to intraspecies

polymorphism, and negative selection de-

creased rates (due to a relative excess of in-

traspecies polymorphism over interspecies

substitutions).

As can be seen in Figure 4 (equivalent

Barski et al. 2007 data set graph shown in

Supplemental Fig. 3), a number of posi-

tions relative to the nucleosomal dyad

showed a relative excess or depletion in

the rate of interspecies divergence com-

pared with intraspecies rates of change.

For example, significantly elevated rates

of interspecies C!T changes can be ob-

served at around 660–90 bp from the

dyad, indicative of positive selection in

the linker regions between nucleosomes.

However, the area immediately around

the dyad appears to be depleted for these

changes, suggestive of negative selection

for these substitutions in this region.

Consequently, there is evidence for both

elevated and depleted rates of interspecies

divergence in close proximity for the

same base changes. This is a striking result

in view of the fact that A- and T-rich se-

quences are known to disfavor nucleosome

assembly, and supports the view that such

compositional preferences can be critical

in nucleosome positioning and function

(Henikoff 2008). It also suggests that broad

patterns of nucleotide composition across

the human genome have been influenced

by complex, and sometimes opposing,

forces of selection within the past few mil-

lion years. Although others have postu-

lated that selection may have acted upon

human nucleosome positioning via se-

quence composition (Tolstorukov et al.

2011), to our knowledge the present study

provides the first evidence for this. Ex-

amination of the selection on each pos-

sible base change at each position sug-

gests that, in general, selection has acted

to maintain higher GC compositions in and around nucleosome

dyads and lower GC compositions at linker regions.

MK test–inspired analyses have been shown to be potentially

skewed by the presence of slightly deleterious mutations. To

overcome this, previous studies have removed low frequency poly-

morphisms when using a MK-based test, as deleterious variants

disproportionately segregate at low frequencies. We consequently

repeated our analysis having removed SNPs with a minor allele

frequency of <15% (Charlesworth and Eyre-Walker 2008; He et al.

2011). However, this had little effect on the broad patterns seen in

our analysis, suggesting they are not being driven by the presence

of an excess of low-frequency, deleterious variants (Supplemental

Fig. 4). Similar significant deviations from the expected (flanking)

interspecies-to-intraspecies divergence ratio are still observed.

As a result of the particular histone modifications examined

in the Barski et al. (2007) ChIP-seq data, a disproportionate num-

ber of the nucleosomes in this data set are associated with exons

and transcription start sites (TSSs), features that have also been

associated with what have been termed ‘‘barrier’’ positions of low

Figure 4. Rates of selection in and around nucleosome dyads. Ratios of background corrected inter-
and intraspecies divergence rates plotted against position from nucleosomal dyad (Sx!y scores). Dotted
horizontal lines correspond to an uncorrected P-value of 0.004 (corrected P-value of 0.05). Nucleosome
positioning data were derived from the Schones et al. (2008) data set.
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nucleosome occupancy (located at transcriptional start sites and

the 39 end of open reading frames) (Mavrich et al. 2008). We

therefore investigated whether the signatures of selection seen in

this data set were exclusively associated with nucleosomes near

genes and barrier positions by restricting the analysis to only those

(296,858) nucleosomes at least 500 bp from the nearest exon

(around 69% of the Barski et al. 2007 data set). As can be seen in

Supplemental Figure 5, nucleosomes not associated with exons

show similar patterns of selection, suggesting that these signatures

of selection are not restricted to nucleosomes in close proximity to

coding regions and known nucleosome barriers.

Selection maintains optimal GC content
for nucleosome positioning

These results (Fig. 4) suggest selection in the human lineage has

acted to favor particular, complementary compositional biases at

nucleosome cores and linker regions; high GC content at nucleo-

some cores and high AT composition at linker regions. If these

patterns of selection were really linked to increasing the correct

positioning of nucleosomes, it would be expected that selection

along the human lineage has acted to increase the affinity of nu-

cleosomes for their current positions in the human genome. Ex-

amination of mononucleotide and 5mer frequencies associated

with current nucleosome positions in the human genome high-

lighted that nucleosomes do indeed preferentially assemble on

DNA sequences of particular base compositions. As can be seen in

Supplemental Figure 6, 5mers composed exclusively of AT base

pairs are depleted at the nucleosome core. and the 32 5mers

composed exclusively of A and T base pairs were observed to be the

32 most depleted sequences observed at the dyad (with respect to

their levels in flanking sequences). This is in agreement with the

known low nucleosome occupancies associated with AT-rich re-

gions in other eukaryotes where 5mers composed exclusively of AT

base pairs were observed to have the lowest occupancies (Kaplan

et al. 2009). Consequently. the apparent observed positive selec-

tion for CG-to-AT substitutions and the negative selection against

T!C and A!G changes at linker regions, over recent human

evolution, are consistent with previous in vitro studies and the

compositional biases observed in the human genome today.

However, despite the selection for AT-to-CG changes at the dyad, this

region is not enriched for 5mers composed

exclusively of G and C bases. The 5mers

most enriched around the dyad contain

a mix of both CG and AT base pairs, with

the most enriched sequence over its flank-

ing levels being ACGTG in the Barski et al.

(2007) data set (16th out of 1024 in the

Schones et al. 2008 data set) and TGCCG in

the Schones et al. (2008) data set (136th in

the Barski et al. 2007 data set). Those 100

5mers most enriched at the dyad on aver-

age contained 1.8 and 1.4 A or T bases in

the Barski et al. (2007) and Schones et al.

(2008) data sets, respectively (compared

to a genome-wide average of 2.5). Conse-

quently, although some of the strongest

signals of selection observed in Figure 4 are

for TA-to-CG base changes at the nucleo-

some core and selection against G-to-A and

C-to-T changes, nucleosomes only appear

to favor regions of slight GC bias.

In order to begin to reconcile these observations, we directly

examined how local GC composition affects the observed diver-

gence rates. If selection is maintaining an optimum GC content at

nucleosome cores and linkers, it would be expected that the

strengths of selection would depend on the local GC content, with

nucleosomes in regions of GC most distant from the optimum

levels coming under the strongest selection. Examination of the

relationship between underlying mononucleotide frequencies and

the flanking (�500 to �250 and +250 to +500 bp from the dyads)

GC content of nucleosomes highlighted that the elevated rates of

G and C base pairs at the nucleosome core are indeed most no-

ticeable where the flanking GC rate is low. At a flanking GC per-

centage of 60%–70%, the mononucleotide frequencies show the

least difference between flanking and nucleosome core regions

(Supplemental Figs. 7, 8), suggesting that this is the optimum

equilibrium between AT and GC base pairs, recapitulating the ap-

parent optimum of 64%–72% GC content (1.8 A or T bases) ob-

served at the nucleosome cores in the 5mer analysis.

To formally test how selection was affected by local GC con-

tent, we examined modes and strengths of selection as before, but

stratified the nucleosomes by the flanking GC content (�500 to

�250 and +250 to +500 bp from the dyads). As can be seen in Figure

5, the signatures of selection (as measured by an excess or depletion

in interspecies divergence rates) in the nucleosome core are stron-

gest where the local GC content is low, with stronger selection ap-

pearing to have acted to overcome the local AT bias. However, a

different picture emerges in linker regions, consistent with their

biophysical preferences for relatively AT-rich sequences. Signatures

of what is predominantly purifying selection at these regions are

strongest in GC-rich neighborhoods, as the elevated rates of GC

leads to strong selection against A-to-G and T-to-C changes in par-

ticular that would lead to an elevation in the GC content of already

GC-rich regions, in areas where GC base pairs are disfavored. Con-

sequently, strengths and directions of selection depend on the GC

content of the genomic neighborhood nucleosomes are found in. It

is known that large scale, multi-megabase fluctuations in GC con-

tent occur in the human genome, corresponding to variation in

higher-order chromatin structures, such as replication timing do-

mains (Hiratani et al. 2010) and lamin-associated domains (Peric-

Hupkes et al. 2010). This suggests that a stretch of genomic DNA

may be subject to conflicting compositional pressures from different

Figure 5. Deviation of interspecies divergence rates from flanking rates in and around nucleosomes
and at different flanking GC compositions. The percentage of enrichment (or depletion) of flanking
corrected interspecies rates of changes with respect to corresponding observed rates of intraspecies
change. Significantly elevated or depleted levels are indicated by * (uncorrected P-value of 0.05) and **
(uncorrected P-value of 0.00046, corrected P-value of 0.05). Nucleosome positioning data were derived
from the Schones et al. (2008) data set.
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levels of structural organization, leading to varying patterns of se-

lection on the local positioning of nucleosomes between different

genomic neighborhoods.

Previous work has successfully used in vitro evolution to derive

novel sequences that position nucleosomes more stably than those

occurring in nature, and so it has been assumed that eukaryotic

genome sequences have evolved to accommodate lower affinity

‘‘metastable’’ interactions with nucleosomes (Henikoff 2008). The

current data are also consistent with this assumption and provide

the first clear evidence for a complex interplay of selective forces in

the human genome acting to produce the often delicately poised

landscape of nucleosome associated DNA.

Extent of selection associated with nucleosome positioning

We next estimated the proportion of interspecies fixed differences in

the human genome that is likely to be a consequence of selection.

We compared the rates of substitution in and around nucleosomes

to mean flanking sequence rates in the same regions (again esti-

mated using the regions of DNA 6250–500 bp from our nucleosome

midpoints; for more details, see Methods).

The rates of A-to-C base changes (one of

the substitutions observed to be strongly

favored by selection) were shown to be on

average ;14.1% higher in the nucleosome

core (dyad 675 bp) in the Schones et al.

(2008) data set (10.6% in Barski et al. 2007

data set), compared with the correspond-

ing rates of intraspecies change at the

same positions, suggesting there has been

a 14.1% increase in the number of A-to-C

changes in these regions as a result of

positive selection (Fig. 5; Barski et al. 2007

data set shown in Supplemental Fig. 9). At

nucleosomes where the GC percentage of

the flanking sequence was <45% and

where selection for A to C changes at the

nucleosome core was observed to be the

strongest, this figure was 16.3% (17.4% in

the Barski et al. 2007 data set). Under the

assumption that each nucleosome is as-

sociated with, on average, 60 bp of linker

DNA, examination of 6105 bp of the nu-

cleosome dyads (core region 630 bp) il-

lustrated that the proportion of the total

data set–wide A-to-C changes likely to be a

result of positive selection linked to nucle-

osome positioning is ;12.6% in AT-rich

regions and ;10.5% in the data set as

a whole (12.6% and 7.6% in the Barski et al.

2007 data set, respectively). Consequently,

there appears to have been a substantial

increase in the number of A-to-C changes

in the human lineage as a result of positive

selection for nucleosome occupancy. It

should be noted that these figures are based

on the assumption that these large nucle-

osome data sets are representative of the

genome at large, though the techniques

used to define these data are undoubtedly

biased toward strongly positioned nucleo-

somes. It is possible (if not likely) that this

minority subset of nucleosomes is under greater control of their po-

sitioning and is therefore associated with unusual levels of selection.

However, our results comparing the observed patterns of selection at

coding and noncoding regions and between nucleosomes carrying

different modifications (Figs. 6, 7) suggest that the observed signa-

tures of selection are broadly similar and a general feature of the well-

positioned nucleosomes in these data sets.

It is also worth noting that the estimates of background

(flanking region) substitution rates used here are unavoidably de-

rived from a population of sequences at least partially occupied by

nucleosomes themselves and therefore also putatively subject to any

of the signatures of selection detected here. Similarly, the in-

traspecies rates of change are likely to have been affected, to an ex-

tent, by any significant selection linked to nucleosome positioning.

These caveats suggest that our results are potentially conservative.

However, even taken at face value, these data suggest that a sub-

stantial number of the fixed A-to-C base changes between human

and chimpanzee are attributable to selection associated with nu-

cleosome positioning, and that a not-insubstantial proportion of

the human genome has been subject to recent selection linked to

Figure 6. Histone modification-specific mononucleotide biases (1). The ratio of a variety of histone
modification–specific nucleotide frequencies versus the nucleotide frequencies observed in the total
pool of nucleosomes (restricted to nucleosomes with a flanking GC percentage between 30% and
40%).
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nucleosome positioning. The nucleosome data sets studied here

encompass >160 Mb of genomic sequence, or over 5% of the human

genome, exceeding the span of the protein-coding component of

the genome for example.

Nucleosome modifications and compositional bias

Although the base compositional biases and patterns of selection at

nucleosome dyads in the Schones et al. (2008) and Barski et al.

(2007) data sets are broadly similar, differences can be observed be-

tween the two data sets (e.g., Fig. 5 vs. Supplemental Fig. 9). Histone

modifications are known to affect the accessibility and functional

role of the chromatin at a locus (Bell et al. 2010). It is therefore pos-

sible that these differences appear because the Barski et al. (2007)

data set is restricted to nucleosomes carrying one of 20 different

histone modifications, which may have distinct compositional biases

and be under unusual modes and strengths of selection. Examination

of the mononucleotide patterns underlying different modifications

in the Barski et al. (2007) data set showed that for nucleosomes in

similar GC environments, the broad patterns of nucleotide frequen-

cies are similar. However, closer examination of the frequencies ob-

served for nucleosomes carrying specific modifications versus those

observed in the total pool of nucleosomes highlights that there are

subtle differences in the biases for certain base pairs at given positions

from the dyad in this data set. Although these biases are generally

relatively small, different histone modifications clearly show distinct

patterns of base composition in the un-

derlying DNA even after controlling for

local GC bias (Figs. 6, 7). We therefore

tested whether modification-specific sig-

natures of selection could also be detected.

This was achieved by comparing the values

of Sx!y observed at those nucleosomes

carrying a modification of interest to all

other nucleosomes in the data set. How-

ever, the vast majority of positions showed

no significant difference in the Sx!y scores

between nucleosomes carrying a modifica-

tion and those that did not, and no broad

patterns for or against particular substi-

tutions were observed (data not shown).

This potentially suggests that the differ-

ences in nucleotide patterns observed be-

tween modifications is a result of local

mutational biases rather than selection;

however, given the relatively small biases

for certain base pairs observed in Figures 6

and 7 in conjunction with the relatively

short evolutionary distance examined in

this analysis, it is possible this analysis lacks

the required power to detect what may be

relatively subtle differences between nucle-

osomes carrying different modifications.

Discussion
Previous studies have shown that rates of

divergence differ in and around nucleo-

somes in various species, with divergence

rates observed to be higher in nucleosome

core regions than in linker DNA (Warnecke

et al. 2008; Washietl et al. 2008; Sasaki

et al. 2009). This has so far been attributed to negative selection in

DNA sequences flanking nucleosomes (Warnecke et al. 2008),

though there are potentially other explanations for these fluctua-

tions in divergence rates. In this study we have shown that

the patterns of interspecies divergence associated with nucleosomes

are unexpectedly complex. Although the more common transi-

tions, and in particular T!C and A!G changes, show elevated rates

in the nucleosome core, rates of other changes, e.g., G!T, show

substantially lower levels at DNA wrapped around the histones. By

comparing rates of interspecies and intraspecies divergence, we

have shown these differing rates of base change are not likely to be

the result of altered mutation rates in and around nucleosomes but

rather are a consequence of differing patterns of selection.

It is important to note that signatures of apparent selection are

not always a result of the accumulation of adaptive changes. Recent

studies have shown that what often appears to be positive selection

is actually a result of the biased conversion of AT to GC base pairs by

a process termed biased gene conversion (BGC) (Galtier and Duret

2007). BGC leads to the accumulation of AT-to-GC base changes via

the biased repair of A:C and G:T mismatches through meiotic re-

combination. Therefore, in theory, BGC could underlie the subset of

AT-to-GC changes observed at nucleosome cores in this study. It is,

however, difficult to reconcile the current knowledge of BGC with

the observations in this study. One of the fundamental observations

underlying BGC is that it has been most prevalent in GC-rich, nu-

cleosome-poor regions of the human genome, which are known to

Figure 7. Histone modification–specific mononucleotide biases (2). The ratio of a variety of histone
modification–specific nucleotide frequencies versus the nucleotide frequencies observed in the total
pool of nucleosomes (restricted to nucleosomes with a flanking GC percentage between 30% and
40%).
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experience higher recombination rates (Duret and Galtier 2009).

However, the highest rates of AT-to-CG fixation (importantly per A

or Tancestral site) observed in this study were at nucleosomes in AT-

rich regions, with little selection observed in GC-rich regions, the

opposite of the pattern that would be expected under BGC. Criti-

cally, nucleosome cores have also been shown to occlude meiotic

recombination (Getun et al. 2010); therefore to explain the results

in this study, BGC would have to be highest specifically at the only

regions where it is known to be occluded. Although it is of course

possible that BGC may underlie a small number of base changes

observed in our analysis, BGC does not appear to be a plausible

explanation for the main trends observed here.

It has been shown by a number of approaches that AT-rich

regions disfavor nucleosome assembly (Iyer and Struhl 1995; Kaplan

et al. 2009), and in yeast, AT-rich, nucleosome occluding regions are

thought to be maintained by a combination of selection against A/T-

depleting substitutions and selection for A/T-gaining substitutions

(Kenigsberg et al. 2010). We have shown that not only are similar

substitution patterns observed in the linker regions of human nu-

cleosomes but also an optimum GC content also appears to be

maintained by selection at the core regions of human nucleosomes.

Importantly, the strength of selection favoring this optimum ap-

pears to depend on the local GC content of the nucleosome, with

substitution rates highest where the local GC content is furthest

from the optimum. Consequently, the most parsimonious expla-

nation for the results in this study is that differing modes and

strengths of selection have acted to maintain favorable base com-

positions in both linker and core regions of human nucleosomes.

These data suggest that changes at the DNA level can affect

nucleosome occupancy in a region and, ultimately, an organism’s

fitness. Although we have shown in this study that single base

changes between 5mer sequences can dramatically affect their af-

finity for the nucleosome core, it may, at first, be difficult to see

how single base changes could have a sufficiently large effect on

nucleosome positioning for fitness to be affected. However, recent

studies in yeast have shown that not only can nucleosome occu-

pancy be predicted from DNA sequence but also the same models

based on sequence alone can be used to predict changes in nu-

cleosome occupancy between yeast species (Tirosh et al. 2010).

Similarly, changes in gene expression have been linked to DNA

sequence changes that directly alter the DNA-encoded nucleosome

organization of yeast promoters (Field et al. 2009). Consequently,

at least in yeast, single base changes can lead to predictable

changes in nucleosome occupancy and alterations in gene ex-

pression. It is unlikely that all such changes would have no effect

on fitness and be selectively neutral.

Although the direct effect of DNA sequence changes on nu-

cleosome positioning in humans has been less well investigated,

links between nucleosome positioning and single base changes have

also been observed. For example, a polymorphism associated with

asthma, type 1 diabetes, primary biliary cirrhosis, and Crohn’s dis-

ease has been associated with allele-specific changes in nucleosome

positioning (Verlaan et al. 2009). The discovery of widespread sig-

natures of selection at DNA in and around nucleosomes therefore

has substantial implications for the study of diseases and traits. It is

possible that changes affecting nucleosome occupancy may be in-

volved in a variety of diseases and help explain some of the variants

emerging from genome-wide association studies, unlinked to genes

and other known functional genomic regions (Manolio et al. 2009).

This novel link between divergence patterns and nucleo-

somes also brings into question how much of the genome is in fact

evolving neutrally. Positive selection in the human lineage has

previously been thought to be restricted to a relatively small pro-

portion of genes and some noncoding regions (Kelley and Swanson

2008). Nucleosomes are a ubiquitous feature of DNA packaging, and

signatures of positive selection linked to features that are so wide-

spread appear to be unprecedented. We have estimated that there is

an excess of up to 10.5% of certain base substitutions in the human

lineage, as a result of selection linked to nucleosome positioning in

the data sets examined. Although such estimates are derived from a

group of relatively well-positioned nucleosomes potentially under

unusual levels of selection, a substantial fraction of the human ge-

nome is implicated. Even if such signatures of selection are restricted

to the DNA at the well-positioned nucleosomes examined in this

study, they cover a greater proportion of DNA than protein coding

genes (800,000 nucleosomes will cover ;5%). The previously held

belief of coding synonymous sites evolving neutrally has already

been shown to be inappropriate (Chamary and Hurst 2005;

Prendergast et al. 2007), and these results suggest that the posi-

tioning of nucleosomes is likely to impact the divergence of other

traditionally ‘‘neutrally’’ evolving regions, such as intronic and

intergenic DNA.

It is formally possible that the broad signatures of selection seen

in this analysis are not directly linked to nucleosomes but are instead

related to some category of functional sequence that to some extent

co-occurs. However, this seems implausible given that these signa-

tures are largely the same when only those nucleosomes distinct

from exons and TSSs are examined. We see the same patterns in both

data sets examined and when subdividing the nucleosome data set

by their locations or histone modifications, illustrating that these

results are not attributable to a small proportion of the nucleosomes

examined but are a more general feature of the data sets.

Perhaps surprisingly, these signatures of selection are appar-

ent over a relatively short evolutionary time: the past ;5 Myr since

human–chimpanzee divergence. Nucleosome positioning is criti-

cal to transcriptional activity, and patterns of transcription have

been shown to differ extensively between humans and chimpan-

zees (Gilad et al. 2006). Divergence of expression patterns between

yeast species has previously been associated with changes in nu-

cleosome occupancy (Field et al. 2009). It is possible the novel

lineage-specific signatures of selection observed here are associated

with recent chromatin remodeling and nucleosome repositioning

in primate evolution, contributing to the expression differences

seen between species.

The observation of distinct nucleotide patterns underlying

different histone modifications is suggestive of DNA playing a role

in controlling the positioning of specific histone modifications.

However, the distribution of nucleosome modifications has been

shown to differ between cell types, and therefore, further exami-

nation is required to investigate whether the biases observed in this

study are specific to the CD4+ cells examined in the Schones et al.

(2008) and Barski et al. (2007) data sets. Even if histone modifica-

tions generally show a bias toward certain underlying base compo-

sitions a number of other factors, such as histone acetylases and

methyl transferases, are known to govern the distribution of histone

modifications.

Finally, although the patterns of selection described in this

study appear to be linked to the maintenance of optimum GC

content, this explanation cannot underlie all the patterns of sub-

stitutions observed. For example, despite the apparent selection

against A and T bases at the dyad, no significant selection against

C!A, and its complement G!T, changes is observed. Therefore

there appears to be much to learn about the factors driving sequence

evolution in and around nucleosomes in the human genome.
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Methods

Interspecies divergence rates
Nucleosome dyad positions were estimated from the Barski et al.
(2007) data set of positioned nucleosomes derived using NPS (Zhang
et al. 2008) by taking the midpoint of called nucleosomes as in the
method of Reynolds et al. (2010). Dyad positions derived from the
Schones et al. (2008) data set as used by Reynolds et al. (2010) were
kindly provided by Sheila Reynolds and William Noble. In total, the
Barski et al. (2007) and Schones et al. (2008) data sets contained the
predicted positions of 432,541 and 817,774 autosomal nucleo-
somes, respectively. Human–chimpanzee–orangutan multiple se-
quence alignments were generated for each nucleosome, 6500 bp
of the midpoint, using the pairwise alignments available at the
UCSC Genome Browser (http://genome.ucsc.edu/cgi-bin/hgGateway;
Homo sapiens build hg18, Pan troglodytes build 2, Pongo pygmaeus
abelii build 2). To determine rates of human lineage-specific base
changes at each position relative to the predicted dyad, the an-
cestral base at each position was determined to be the base shared
by at least two of the three primates, with human-specific changes
being where the human base did not match this ancestral base
at the corresponding position. At the positions where ancestral
bases could not be determined (e.g., due to gaps in the alignment
or multiple differences between species), the corresponding posi-
tion was excluded from further analyses.

Intraspecies divergence rates

SNP data from 10 geographical diverse fully sequenced human ge-
nomes were compiled into a MySQL database and used in the esti-
mates of intraspecies divergence rates (both NA07022 and NA19240
were used from Drmanac et al. 2010, but only the Bantu genome
from Schuster et al. 2010 was used due to the inclusion of extra exome
data in the calling of the Khosian variants and potential resulting
biases in SNP calling) (Levy et al. 2007; Bentley et al. 2008; Wang et al.
2008; Wheeler et al. 2008; Ahn et al. 2009; Kim et al. 2009; Drmanac
et al. 2010; Schuster et al. 2010; Tong et al. 2010). The ancestral base at
any position was assumed to be any observed allele (including that
observed in the reference genome) that matched the corresponding
base in the chimp genome. Sites where the ancestral base could not be
determined were excluded. As with interspecies substitutions, human
lineage-specific changes were deemed to be those changes observed
in the human SNP data set not matching the ancestral base.

Rates of selection and significance

The rate of base changes at each position from the dyad of nucle-
osomes was measured by dividing the observed number of base
changes by the total number of matching ancestral bases at each
position (Equations 1 and 2).

dInterx!y =
InterDiff x!y

ancestralBasex
ð1Þ

dIntrax!y =
IntraDiff x!y

ancestralBasex
ð2Þ

Equations 1 and 2 calculate the rates of base change at given po-
sitions from the nucleosome dyad. x and y correspond to the bases
before and after the specific change, respectively, x being the an-
cestral base and y being the base observed in the human lineage.
interDiffx!y and intraDiffx!y are the total number of relevant in-
terspecies and intraspecies changes observed at the position of
interest relative to the dyad. ancestralBasex is the number of cor-
responding ancestral bases observed at the same position.

Due to the abnormal rates of divergence seen on the sex
chromosomes (The Chimpanzee Sequencing and Analysis
Consortium 2005), only nucleosomes from autosomes were used
when investigating both inter- and intraspecies divergence rates.

Note that at shorter evolutionary distances, observed sub-
stitutions are expected to more closely reflect underlying rates of
mutation; however, as evolutionary distance increases, the effect of
selection will become more apparent. Consequently, where changes
are selected against the ratio of fixed interspecies differences relative
to intraspecies, changes will be lower relative to other areas of the
genome. Where positive selection is occurring, there will be a high
rate of accumulation of changes at a given position (in this case
relative to nucleosome dyads), and the ratio of interspecies rates of
change to intraspecies rates of change will be elevated relative to
other positions.

Positions relative to the nucleosome dyad where interspecies
rates of change showed unusual deviations from intraspecies rates
were identified by first correcting each value of dInterx!y and
dIntrax!y for flanking rates of divergence. Flanking rates of change
were estimated by averaging over those 500 positions at 6250–500
bp from the nucleosome dyads. The rate of interspecies base
changes observed across all nucleosomes at each position was then
divided by the corresponding rate of intraspecies change to pro-
vide an indication of selection (Equation 3).

Sx�> y =
dInterx!y=backgroundInterx�> y

dIntrax!y=backgroundIntrax�> y

ð3Þ

The ratio of background corrected inter- and intraspecies divergence
rates was calculated for each base change and each position from the
nucleosome dyad. BackgroundInter and backgroundIntra are the
estimated background (flanking) rates of x!y changes.

Values of Sx!y > 1 indicate an excess of interspecies change and
positive selection relative to flanking rates, and values <1 indicate
an excess of intraspecies changes and negative selection. To assess
whether a particular region relative to the nucleosome dyad ex-
hibited significant evidence of selection, we ran a 25-bp sliding
window with a 1-bp offset across our 1001 values of Sx!y (nucleo-
some midpoint 6500 bp). Windows significantly larger or smaller
than expected by chance were determined by randomly permuting
the positions of each value of Sx!y and rerunning the 25-bp sliding
window analysis. This was repeated 10,000 times for each base
change, and observed windows greater or smaller than 99.8% of all
permuted windows across all positions were deemed significant
(corresponding to a two tailed P-value of 0.004; although the per-
mutation approach corrected for the number of windows tested, this
cutoff corresponds to a P-value of 0.05 with a further Bonferroni
correction for the 12 base changes tested). The proportion of ele-
vated or depleted rates of interspecies divergence at different flank-
ing GC compositions (Fig. 5; Supplemental Fig. 9) was assessed using
a chi-square test. Raw counts of inter- and intraspecies divergence
rates for both data sets are provided in Supplemental Table 1.

SNPs with a minor allele frequency >15% were identified by
comparison to the frequencies observed at the same polymor-
phisms in the 1000 Genomes Project data set (which contains the
majority of human, common SNPs) (The 1000 Genomes Project
Consortium 2010). SNPs not detected in the 1000 Genomes Pro-
ject, and consequently likely to be rare, were ignored.

To determine whether certain positions relative to nucleo-
some dyads were putatively under unusual levels of selection for
subsets of nucleosomes with particular modifications, values of
Sx!y calculated using only the subset of interest were compared to
values of Sx!y obtained using all other positioned nucleosomes in
the data set. Only modifications with at least 100,000 positioned
nucleosomes in the data set were examined (H2AZ, H2BK5me1,
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H3K27me1, H3K36me3, H3K9me1, H3K4me1, H3K4me2, H3K4me3,
and H4K20me1). Significance was assessed by randomly sampling
the same number of nucleosomes from the total data set and again
comparing the resulting values of Sx!y to the remaining set. This
was repeated 100 times for each histone modification and base
change, providing a distribution of Sx!y ratios. This distribution
was used to calculate standard (z) scores and corresponding P-values.
These P-values were converted to q values using the R qvalue
package for FDR calculations (Storey and Tibshirani 2003).
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