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Next-generation sequencing technologies offer new approaches for global measurements of gene expression but are
mostly limited to organisms for which a high-quality assembled reference genome sequence is available. We present
a method for gene expression profiling called EDGE, or EcoP15I-tagged Digital Gene Expression, based on ultra-high-
throughput sequencing of 27-bp cDNA fragments that uniquely tag the corresponding gene, thereby allowing direct
quantification of transcript abundance. We show that EDGE is capable of assaying for expression in >99% of genes in the
genome and achieves saturation after 6–8 million reads. EDGE exhibits very little technical noise, reveals a large (106)
dynamic range of gene expression, and is particularly suited for quantification of transcript abundance in non-model
organisms where a high-quality annotated genome is not available. In a direct comparison with RNA-seq, both methods
provide similar assessments of relative transcript abundance, but EDGE does better at detecting gene expression differences
for poorly expressed genes and does not exhibit transcript length bias. Applying EDGE to laboratory mice, we show that
a loss-of-function mutation in the melanocortin 1 receptor (Mc1r), recognized as a Mendelian determinant of yellow hair
color in many different mammals, also causes reduced expression of genes involved in the interferon response. To illustrate
the application of EDGE to a non-model organism, we examine skin biopsy samples from a cheetah (Acinonyx jubatus) and
identify genes likely to control differences in the color of spotted versus non-spotted regions.

[Supplemental material is available for this article.]

Recent and ongoing advances in DNA sequencing technology have

created new opportunities for measuring gene expression based on

‘‘counting,’’ in which a cDNA population is heavily oversampled

by massively parallel sequencing, and transcript abundance is in-

ferred from the relative frequencies with which different cDNAs are

identified. The most widely used approach, RNA-seq, uses randomly

sheared RNA or cDNA in which sequence reads generated by an

Illumina or SOLiD instrument that align to a reference genome are

analyzed with regard to transcript identity and read position within

the transcript; these observations are then used to make inferences

about transcript abundance (Cloonan et al. 2008; Mortazavi et al.

2008; Nagalakshmi et al. 2008; Wilhelm et al. 2008).

RNA-seq and related approaches (LQ-RNA-seq and digital tran-

scriptome profiling with NSR primers) are best suited to organisms

for which a high-quality assembled and annotated genome is

available (Armour et al. 2009; Ozsolak et al. 2010). Mapping short

reads to incomplete genome sequences entails both reduced power

(reads that fail to align) and false-positive errors (reads that align

uniquely to a partial genome sequence but arise from elsewhere).

Furthermore, these approaches are especially challenging for natu-

ral populations with high levels of polymorphism. At the same time,

sequencing-based approaches to assess gene expression are partic-

ularly appealing for non-model organisms with unique ecological,

evolutionary, or developmental features. Cichlid fish, thirteen-lined

ground squirrels, and songbirds are examples of animals for which

there are significant biological questions that would benefit from

transcriptome profiling but for which the respective research com-

munities are insufficiently large to benefit from genomic resources

associated with large economies of scale such as oligonucleotide

microarrays (Renn et al. 2004; Replogle et al. 2008; Liu et al. 2010).

Here, we report molecular biologic and informatic develop-

ment of a short-read sequence approach that is particularly suited

for measuring gene expression in non-model organisms: EDGE, or

EcoP15I-tagged Digital Gene Expression. Each expressed transcript

in the genome is identified by a unique 27-bp tag; thus, the number

of potential tags in an experiment corresponds to the number of

genes in the genome, yielding a library of much less complexity

than random shearing and that is less susceptible to amplification

bias since every library molecule is exactly the same size. Conse-

quently, the frequency at which a particular EDGE tag appears in

a library serves as a proxy for quantifying and comparing transcript

abundance. Importantly, the one-to-one correspondence between

transcript and sequence tag allows gene expression differences to

be measured by statistical analysis of relative tag frequencies, thus

obviating the need to identify every sequence tag. Finally, tag-to-

gene assignments can be accomplished effectively by leveraging

a comparative genomics approach that relies on partially assembled

transcriptomes.

We first describe the development of EDGE and its perfor-

mance relative to RNA-seq in laboratory mice segregating a loss-

of-function mutation for the melanocortin 1 receptor (Mc1r) gene,

which underlies a fundamental aspect of pigmentary variation

in many vertebrate species (Andersson 2003; Eizirik et al. 2003;

Mundy et al. 2003; Rees 2003). Using a conventional approach

in which individual tags are first mapped to a reference genome,

we detect validated gene expression differences over a 106-fold

dynamic range; we also identify a previously unappreciated

component of MC1R signaling. We then apply the EDGE ap-

proach to a non-model organism, the cheetah, to investigate the
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molecular basis of black spotting. Our results illustrate various

strategies for making tag-to-gene assignments and reveal gene ex-

pression signatures that provide new biologic insight into pigment

patterning in a non-model organism.

Results

Overview of molecular biology and informatics

The EDGE approach starts with modest amounts of total RNA

(1–2 mg) and uses paramagnetic oligo(dT) beads for mRNA en-

richment and to facilitate subsequent biomolecular handling steps

(Fig. 1A). Individual transcripts are directionally ‘‘tagged’’ accord-

ing to a 27-bp sequence that begins with a 4-bp restriction site,

NlaIII, and the 23 bp that lie immediately downstream, generated

by the type III restriction endonuclease EcoP15I (Fig. 1A). Theo-

retically, each tag begins with the NlaIII site that lies closest to the

poly(A) tail; in practice, we observe several-fold more tags than

transcripts due to partial cleavage with NlaIII. We note that NlaIII

sites are present in >99% of mouse or human cDNA sequences and

that the application of EDGE to two types of mouse tissue captures

;90% of the more than 20,000 genes represented in RefSeq (de-

scribed below in Fig. 3C).

For organisms with high-quality assembled and annotated

genomes, individual pass-filter EDGE tags from a massively parallel

sequencing instrument that uniquely align to a reference tran-

scriptome are ‘‘translated’’ to gene counts, and quantitative analysis

of gene expression profiles is performed with a statistical model

similar to SAM in which false discovery rates are estimated by per-

mutation. For non-model organisms, tag-to-gene assignments are

inferred using a comparative approach when there exists a closely

related genome, and/or a stepwise approach using first-pass tran-

scriptome data from 454 Life Sciences (Roche) or paired-end Illumina

reads that serve as a scaffold to link EDGE tags to genes (Fig. 1B).

EDGE in a model organism: Technical characteristics

We first applied EDGE to laboratory mice carrying a loss-of-function

alteration in the MC1R, a G-protein-coupled receptor mainly ex-

pressed in melanocytes. In this model, animals from the C57BL/6J

strain exhibit a black coat color due to active MC1R signaling,

whereas isogenic Mc1re/e mutants exhibit a yellow coat color (Robbins

et al. 1993). Mc1r mutations are well recognized in a wide range of

vertebrate species, including humans, where they cause red hair

(Rees 2003) and have been proposed to underlie additional non-

pigmentary phenotypes including increased susceptibility to skin

cancer (Bastiaens et al. 2001; Kennedy et al. 2001) and altered sen-

sitivity to general anesthesia (Liem et al. 2004; Mogil et al. 2005).

Summary alignment and mapping statistics from 21 mouse

EDGE libraries (10 from Mc1r+/+ and 11 from Mc1r e/e tissues) are

presented in Table 1 and show that 87% of pass-filter sequence

reads conform to expectation with a 26–28-bp read anchored at

one end with the NlaIII recognition site. Of these, 86% could be

aligned uniquely to the mouse transcriptome. This compares favor-

ably with analogous results from two mouse skin RNA-seq libraries,

in which 60% of the 36-bp pass-filter reads aligned uniquely to

the mouse transcriptome (Table 1). In contrast, MmeI, a Type IIs

restriction endonuclease commonly used in tag-based cDNA se-

quencing protocols (Asmann et al. 2009; Wu et al. 2010), generates

a 21-bp tag that results in a smaller proportion of uniquely mapped

tags—78% of a simulated MmeI-tagged data set mapped uniquely to

the mouse transcriptome compared to 86% with EDGE—and that

translates to 3% reduction in genes detected. Among the EDGE tags,

78% and 8% mapped uniquely to the sense and antisense strands of

mouse transcripts, respectively (Table 1), and 6% mapped to mul-

tiple genomic locations or to introns and unannotated regions of

the genome (Table 1).

The enzymology of the EDGE methodology ensures that each

transcript is sampled by sequencing a single 26–28-bp tag that is

anchored by NlaIII restriction digest. In theory, the one-to-one

correspondence between transcript and EDGE tag would enable us

to measure relative transcript levels by comparing tag frequencies

between libraries. However, since there could be multiple tran-

script isoforms per gene and since NlaIII digestion is not 100%

efficient, each transcript can, in theory, be represented by multiple

tags. In practice, we found that, on average, 82% of tags for each

transcript arise from a single site, indicating that the relative fre-

quencies of most tags provide an accurate measure of gene ex-

pression. Furthermore, >99% of genes that showed considerable

expression levels in an alternative method (>1.5 RPKM by RNA-

seq) were also detected by EDGE, indicating that the efficiency of

NlaIII cleavage does not limit the ability of EDGE to assay for

transcript abundance.

To assess technical performance of the EDGE methodology,

we examined correlations among libraries for both technical and

biological replicates; we also compared both the general architec-

ture of gene expression and specific biological findings obtained by

EDGE to gene expression measurements obtained using alternative

approaches. For this and subsequent work, we use the number of tags

per million mapped exonic reads (TPM) as primary data for com-

parison of different libraries and for subsequent statistical analyses.

Pearson correlation coefficients of tag counts between li-

braries generated from the same pool of RNA or the same library

sequenced at two different sites range from 0.927 to 0.992 with a

mean of 0.975 (Supplemental Fig. S1). Correlations for biological

replicates—tissues from age-matched isogenic animals—range from

0.869 to 0.992 with a mean of 0.955 (Supplemental Fig. S2). Thus,

the EDGE protocol exhibits very little noise from library construc-

tion, amplification, and Illumina flow cell sequencing processes.

Like other sequence-based assays, EDGE reveals a wide

spectrum of gene expression, with mean tag counts ranging from

0.09 to 25,846 TPM. Also like other sequence-based assays for

gene expression, the distribution of tag counts is highly skewed

toward a large number of genes expressed at low levels (Fig. 2A;

Nagalakshmi et al. 2008; Asmann et al. 2009). In the skin, many

of the genes expressed at low levels are melanocyte-specific in-

cluding Tyrp1 (28.2 TPM), Tyr (5.7 TPM), Mc1r (9.8 TPM), and

Oca2 (0.9 TPM), which indicates that EDGE is capable of detecting

biologically relevant gene expression from a minor cell type in

a heterogeneous tissue (we estimate that melanocytes represent

0.1%–1% of the cells in neonatal dermis).

EDGE achieves near saturation in genes detected after 6–8

million tags (Supplemental Fig. S3A). Furthermore, saturation of

moderately to very highly expressed genes (>2 TPM) occurs with

;3 million exonic EDGE tags (Supplemental Fig. S3B). Thus, bar-

coding strategies would allow multiple EDGE libraries to be se-

quenced efficiently and economically while still achieving robust

measurements of the majority of the transcriptome.

EDGE in a model organism: A role for the MC1R
in the interferon response

Using a Poisson log linear model to analyze gene counts from

libraries of neonatal dermis—selected originally because Mc1r is

expressed mainly on melanocytes and neonatal dermis is enriched
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for melanocytes relative to other skin compartments—we identi-

fied 72 genes that were down-regulated and 255 genes that were

up-regulated in mutant (n = 6) compared with non-mutant (n = 5)

tissue at an FDR of <5% (Fig. 3A; Witten et al. 2010). For eight

differentially expressed genes chosen to represent a broad range of

expression levels, quantitative RT-PCR confirmed the EDGE results

for seven genes (Fig. 2B; Table 2); the eighth gene, Rfng, was down-

regulated 2.8-fold as determined by EDGE (145.1 TPM in Mc1r+/+

vs. 51.3 TPM in Mc1r e/e samples), but quantitative RT-PCR failed to

detect a difference.

Figure 1. Outline of EDGE methodology and informatic pipeline for tag identification. (A) Double-stranded cDNA synthesis is performed using
paramagnetic oligo(dT) beads to capture polyadenylated RNA. Next, each cDNA molecule is ‘‘anchored’’ by NlaIII restriction cleavage that exposes the 39-
most ‘‘CATG’’ site within the transcript. Following this, the EDGE_Rev adaptor (green) carrying an EcoP15I recognition site (59-CAGCAG-39) is ligated, and
the resulting molecule is ‘‘tagged’’ by EcoP15I restriction digest, generating a 27-bp sequence tag. The sticky end is ligated to the EDGE_For adaptor
(blue). Finally, a 15-cycle PCR amplification using adaptor-specific primers (red half-arrows) is performed to add on the additional sequence required to
complete the EDGE_For adaptor and to enrich the desired final product. (B) Thirty-six base-pair pass-filter reads from the Illumina Genome Analyzer were
processed to obtain EDGE tags. If a high-quality reference transcriptome was available, e.g., mouse, EDGE tags were mapped to transcript sequence and
uniquely aligned tags were counted for each gene. Otherwise, EDGE tags, e.g., cheetah, were mapped to a de novo assembled reference transcriptome,
e.g., cat, which acts as a scaffold to identify the orthologous gene in the organism in which the EDGE tags were derived.
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Several genes down-regulated in mutant skin are expressed at

very low to moderate levels, including Tyrp1 (56.2 TPM in Mc1r+/+

vs. 4.8 TPM in Mc1r e/e skin), Brca2 (2.7 TPM in Mc1r+/+ vs. 1.4 TPM

in Mc1r e/e skin), and Smug1 (10.1 TPM in Mc1r+/+ vs. 4.1 TPM in

Mc1r e/e skin). Tyrp1, Dct, and Pmel encode melanogenic genes and

are well-known targets of Mc1r based on studies of cultured mela-

nocytes (Kobayashi et al. 1995; Lamoreux et al. 1995), but an effect

of Mc1r on Brca2 and Smug1 has not been described previously and

may contribute to differences in skin cancer susceptibility. We also

note that Slc7a11, which encodes a melanocyte-specific cystine

transporter that is essential for pheomelanin (yellow pigment)

synthesis (and in which a loss-of-function is responsible for the

subtle gray coat color mutation), is up-regulated (19.2 TPM in

Mc1r+/+ vs. 44.5 TPM in Mc1r e/e skin), which supports a hypothesis

based on biochemical studies that cystine transport plays an in-

structive role in pigment-type switching (Chintala et al. 2005;

Simon et al. 2009).

We carried out an unsupervised Gene Ontology analysis on

the 327 differentially expressed genes and identified several unex-

pected biological processes affected by the Mc1r mutation (Sup-

plemental Table S1). These functional categories are represented

mostly by genes that are up-regulated in mutant skin except in one

intriguing case, where genes down-regulated in mutant skin rep-

resent a functional classification category called ‘‘response to in-

terferon-gamma’’ (Supplemental Table S1). Several of these genes,

such as Oas2 and its family members Oasl1 and Oasl2, encode 29–59

oligoadenylate synthetases that play a direct role in anti-viral path-

ways (Baglioni et al. 1978; Hovanessian and Wood 1980; Perelygin

et al. 2002). Others, such as Iigp1 and Gm12250, are involved in re-

sistance to pathogens/viruses (Supplemental Table S2; Zerrahn et al.

2002; Uthaiah et al. 2003; Bernstein-Hanley et al. 2006; Miyairi et al.

2007). Notably, most of these genes are expressed at low levels in

skin—the eight anti-viral genes are expressed 17.9 times lower

(3.4 vs. 60.9 TPM) than the other 64 genes that were down-regulated

in mutant skin—which probably explains why they were missed by

previous studies that used microarrays (April and Barsh 2006; Le

Pape et al. 2009).

To further investigate a possible role of MC1R signaling in

interferon-mediated immunity, we constructed and analyzed EDGE

libraries from spleen obtained from five Mc1r+/+ and five Mc1r e/e

adult animals. Surprisingly, a large number of genes were differen-

tially expressed in adult spleen: 945 genes were differentially ex-

pressed at an FDR of <0.1% (Fig. 3B). Consistent with the functional

signature from neonate dermis, genes involved in interferon-

mediated immunity were also down-regulated in the adult mutant

tissues (Supplemental Tables S1, S3).

Because EDGE detects transcripts expressed at extremely low

levels, a large fraction of the transcriptome is sampled from a

single tissue. For neonatal dermis and adult spleen, EDGE tags

were detected in at least one tissue for 17,535 unique mouse genes;

only 9% of the genes were limited to a single tissue (Fig. 3C).

Direct comparison with RNA-seq

We randomly selected an Mc1r+/+ and an Mc1r e/e neonatal dermis

RNA sample from which EDGE libraries had already been made,

then constructed and sequenced conventional RNA-seq libraries

from the same RNA samples, generating between 10 and 16 mil-

lion reads per library. Summary statistics for the fraction of reads

that aligned uniquely to the transcriptome and for the number of

genes detected were all similar to that of EDGE (Table 1).

Estimates of transcript abundance from EDGE TPM values are

correlated with those from RNA-seq values (based on reads per

kilobase of exon model per million mapped reads, RKPM), as shown

in Supplemental Figure S4. However, the extent of correlation, with

Spearman coefficients of 0.82 and 0.81 for the Mc1r+/+ and Mc1r e/e

samples (Supplemental Fig. S4), respectively, is considerably less

than observed for technical replicates by EDGE (mean 0.975)

(Supplemental Fig. S1). Reduced correlation is most evident for

genes expressed at lower levels and is symmetric; in other words,

;20% of genes (about 1000 genes) that are poorly expressed (<1.5

RPKM by RNA-seq, or <2 TPM by EDGE) according to one plat-

form are captured at moderate to high levels of expression by the

reciprocal platform (Supplemental Fig. S4). In the case of the eight

differentially expressed genes previously chosen for validation

(and with the caveat that no biological replicates were generated

in the case of RNA-seq), six displayed differences in RPKM values

that were concordant with the EDGE and qRT-PCR results (Table 2).

Next, we explored the sensitivity and precision of EDGE and

RNA-seq as a function of sequencing depth by random subsam-

pling of sequence reads. Saturation of gene detection for moder-

ately to very highly expressed genes (>2 TPM or >1.5 RPKM) occurs

at ;1 million exonic reads, whereas the detection of poorly ex-

pressed genes steadily increases up to ;7 million exonic reads (Sup-

plemental Fig. S3A). Furthermore, RPKM or TPM values for 80% of

genes fall within 20% of the value in the total data set at ;5 million

and ;6 million exonic reads for RNA-seq and EDGE, respectively

(Supplemental Fig. S3B). Thus, both methods perform similarly

across a broad range of expression levels.

For genes that were differentially detected by either method,

several observations suggest that the underlying explanation ap-

pears to be transcript length bias and the frequency of NlaIII sites.

Because RNA-seq reads are randomly distributed and EDGE relies

on the availability of NlaIII sites to generate tags, we expect the

sensitivity of RPKM-based and TPM-based estimates to be inversely

correlated with transcript length and the frequency of NlaIII sites,

respectively. Indeed, in our direct comparison data sets—with the

caveat that RNA-seq does not discriminate between sense or anti-

sense reads—the mean length of the 436 genes detected only by

EDGE is 548 bp shorter than the 1295 genes detected only by RNA-

seq (p < 1310�8) (Supplemental Fig. S5A). On the other hand,

genes that were only detected by EDGE and genes that were only

detected by RNA-seq have 5.4 and 4.6 NlaIII sites per kilobase of

transcript, respectively (p < 1310�6) (Supplemental Fig. S5B).

To further explore potential bias in the entire data set, we ex-

amined the relationship between the relative number of RNA-seq

Table 1. Mapping statistics of mouse EDGE and RNA-seq libraries

EDGE (n = 21)a
RNA-seq
(n = 2)b

Sequence readsc (A) 13,669,354 13,403,260
EDGE tagsd (B) 11,826,474 (B/A = 87%)
Exonic tags (C) 9,187,952 (C/B = 78%) 8,070,026

(C/A = 60%)e

Antisense exonic tags (D) 942,414 (D/B = 8%)
Genes detectedf 14,638 15,895

aMedian value of 21 EDGE libraries.
bAverage value of two RNA-seq libraries.
cThirty-six base-pair sequence reads from the Illumina Genome Analyzer.
dTwenty-six to twenty-eight base-pair pass-filter EDGE tags.
eExonic reads for RNA-seq could come from sense or antisense transcripts
since the RNA-seq protocol is non-directional.
fRefSeq genes detected by at least one EDGE tag or RNA-seq read.

Hong et al.

1908 Genome Research
www.genome.org



reads or EDGE tags per gene as a function of transcript length and

the frequency of NlaIII sites. Not surprisingly, compared with

EDGE, RNA-seq exhibits a strong bias toward detecting reads from

longer transcripts (p < 1310�4) (Fig. 4A). In contrast, the relative

rate of RNA-seq reads and EDGE tags does not depend on the fre-

quency of NlaIII sites within transcripts (p = 0.51), implying that

EDGE is capable of providing robust measurements for transcript

abundance using tags from one or a few NlaIII sites in each tran-

script (Fig. 4B). As a consequence of transcript length bias caused

by random sampling, statistical power for detecting differentially

expressed genes by RNA-seq has been found to depend on transcript

length (Oshlack and Wakefield 2009). Conversely, among the 21

EDGE libraries from mouse tissue, our ability to detect differentially

expressed genes is independent of transcript length (Fig. 4C).

To assess the performance of EDGE and RNA-seq in situations

in which a complete reference transcriptome is unavailable, we

simulated an incomplete reference that represented a subsample of

the existing mouse reference in which

each transcript contained 30% of contig-

uous sequence selected randomly from

mouse RefSeq genes. Using this simulated

reference, we assigned genes to fastq reads

from an EDGE and a RNA-seq library

generated from mouse neonatal dermis

and calculated the rate of tag-to-gene as-

signment relative to the complete refer-

ence. Consistent with the results described

above, EDGE and RNA-seq performed

equally well—34% of EDGE tags and 32%

of RNA-seq reads were correctly assigned

to mouse genes in the incomplete refer-

ence, while 3.0% and 2.8%, respectively,

were incorrectly assigned due to multiple

locations in the full transcriptome (Sup-

plemental Table S4).

In summary, both EDGE and RNA-

seq provide similar estimates of transcript

abundance for most genes, but the two

approaches have different strengths and

weaknesses, and EDGE is likely to perform

better for short genes.

Analyzing transcript abundance
with a tag-based approach

A principal advantage of EDGE over RNA-

seq or related methods is the opportunity

to study gene expression without a high-

quality reference genome, by first identi-

fying differentially expressed tags and then

inferring tag-to-gene assignments with

partial and/or comparative information

(Fig. 1B, see below). We used the existing

mouse data to compare the previous ‘‘by-

gene’’ approach to what would have been

obtained with a ‘‘by-tag’’ approach (had a

reference genome not been available).

We applied the Poisson log-linear

model to tag counts from EDGE library

reads of mutant (n = 6) and non-mutant

(n = 5) neonatal dermis, ranked all unique

tags by increasing FDR (or decreasing

statistical significance for differential expression), and compared

the results with the by-gene approach.

Overall, there was good agreement between the by-gene and

the by-tag approaches. Among the genes that were previously

identified as differentially expressed (<5% FDR) in mouse neonatal

dermis, 52% were detected as differentially expressed tags at <5%

FDR, and 90% were detected as differentially expressed tags at

<10% FDR (data not shown). Thus, in the absence of a high-quality

reference genome, an approach that relies on statistical analysis

of EDGE tag frequencies is adequate for profiling differences in

transcript abundance.

Applying EDGE to a non-model organism: Color variation
in the cheetah

As a direct test of EDGE profiling in a non-model organism, we

carried out a pilot study to compare gene expression in areas of

Figure 2. (A) Dynamic range of gene expression detected by EDGE. The TPM distribution (x-axis) for
genes detected by EDGE is plotted against number of genes (y-axis) and identifies poorly expressed
genes below 2 TPM, moderately expressed genes with 2 to 10 TPM, highly expressed genes with 10 to
50 TPM, and very highly expressed genes above 50 TPM. (B) Seven out of eight differentially expressed
genes from EDGE showed significant differences when transcript abundance was measured by quan-
titative RT-PCR. Brca2: <2 TPM; Smug1: 2 to 10 TPM; Tyrp1, Kit, Slc7a11: 10 to 50 TPM; Pmel, Dct, Rfng:
>50 TPM in EDGE libraries. (*) p < 0.05; (**) p < 0.001; (***) p < 0.0001; (ns) not significant.
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differently colored skin regions of a cheetah (Acinonyx jubatus).

Periodic color patterns of black versus yellow hair, such as spots on

a cheetah or stripes on a tiger—for which a suitable model organ-

ism does not exist—represent a subject of long-standing interest to

developmental and evolutionary biologists.

Two EDGE libraries were generated from cheetah skin, one

from a black-pigmented region (hereafter referred to as ‘‘black spot’’)

and the other from an adjacent yellow-pigmented region (hereafter

referred to as ‘‘yellow background’’). Each library was sequenced

on one lane of the Illumina Genome Analyzer IIx, generating an

average of ;27 million EDGE tags per library. After removing poorly

expressed tags, 194,225 unique tag sequences were used for tag-

to-gene assignments (Table 3).

We used two different approaches for tag-to-gene assign-

ments, both of which are based on existing genome resources in

the domestic cat (Felis catus), which diverged from the cheetah

;4–6 million years ago, and therefore predict >98% sequence

identity between the two species for most regions of the genome,

including non-protein-coding transcribed regions where the ma-

jority of EDGE tags are located. The two genomic resources include

a 23-coverage cat genome that has been partially annotated by

comparison to other mammalian genomes and a partial cat tran-

scriptome generated by 454 sequencing of 10 different cat tissues,

but that has not yet been integrated with the genome assembly.

Approximately 21% of the unique cheetah tags could be

assigned to genes by alignment to the cat genome, and an addi-

tional 24% could be assigned to genes by alignment to the cat

transcriptome (Table 3). As with the mouse data, the distribution of

unique cheetah EDGE tags is highly skewed toward those that are

expressed at low levels (Supplemental Fig. S6); thus, of ;53 million

tags from the two cheetah libraries, ;37 million could be assigned

to genes. Overall, this provided information for 14,247 different

genes and illustrates how EDGE can capture the majority of vari-

ation in gene expression in the absence of a high-quality genome

sequence.

The Pearson correlation coefficient of gene counts between

the two EDGE libraries was 0.945; thus, patterned control of color

variation in cheetahs is not accompanied by significant differences

in gene expression at a genome-wide level (Supplemental Fig. S6).

Figure 3. Application of EDGE to mouse tissues. (A) Using a Poisson log linear model, 327 and 945 genes were identified as differentially expressed
between Mc1r+/+ and Mc1r e/e in (A) neonate dermis (FDR < 5%) and (B) spleen (FDR < 0.1%), respectively. Average gene counts from wild-type (five
libraries each for neonate dermis and spleen) and mutant (six for neonate dermis and five for spleen) EDGE libraries are plotted against each other on
a log10 scale. Differentially expressed genes are plotted in red. (C ) EDGE tags were detected for 17,535 unique mouse genes in at least one tissue, and 1589
genes were expressed in only a single tissue.

Table 2. Fold difference in transcript abundance

Fold difference in transcript abundancea

Tyrp1 Brca2 Smug1 Kit Slc7a11 Pmel Dct Rfng

EDGEb �19.0 �1.9 �2.5 +3.4 +5.7 �2.0 �3.0 �2.8
RNA-seqb �13.7 +1.1 �1.1 +1.6 +1.4 �2.4 �3.0 +1.1
qRT-PCRc �14.3 �2.0 �1.7 +1.9 +2.4 �2.3 �2.7 +1.5

aA positive or negative fold difference indicates that the gene was up-
regulated or down-regulated in the neonatal dermis of Mc1r e/e animals,
respectively.
bCompared TPM in EDGE (n = 5 for Mc1r+/+; n = 6 for Mc1r e/e ) and RPKM
in RNA-seq (n = 1 for Mc1r+/+ and Mc1r e/e ).
cNormalized to Actb expression (n = 5 for Mc1r+/+; n = 6 for Mc1r e/e ).
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Because the lack of biological replicates does not allow statistical

evaluation of genome-wide expression differences, we instead ex-

amined tag counts for sets of known pigmentation genes based on

whether they lie upstream of or downstream from MC1R signaling.

As described above, an Mc1r loss-of-function mutation in

laboratory mice and many other mammals converts black hair to

yellow hair in the entire animal by altering the expression of genes

involved in the synthesis of eumelanin versus pheomelanin, so-

called pigment-type switching. Comparing black spot to yellow

background RNA for cheetah skin (Table 4), we observed substan-

tially higher tag counts in several genes that lie downstream from

MC1R signaling and that promote switching from pheomelanin

to eumelanin: SILV (+11-fold), TYR (+3.7-fold), DCT (+3-fold), and

TYRP1 (+1.6-fold). One gene that lies downstream from MC1R

signaling exhibited small changes in expression whose direction

was opposite to that predicted from laboratory mouse studies,

SLC7A11 (+1.2-fold). In contrast, genes that encode upstream reg-

ulators of MC1R signaling exhibited relatively small changes in tag

count, including ASIP (+1.5-fold), POMC (+1.6-fold), CORIN (�1.2-

fold), and DEFB103 (�1.4-fold).

The significance of the changes described is difficult to eval-

uate without replicate samples; however, we note that the di-

rection of change for three of the upstream genes (ASIP, CORIN,

and DEFB103) occurs in a direction opposite to that expected for

an instructive role in pigment-type switching. Furthermore, con-

sidered as a group (Fig. 5), the distribution of Z-scores for the

downstream genes is significantly different from the entire data

set ( p = 2.7310�6); in contrast, neither the range nor the values of

individual Z-scores for upstream genes stand out from the entire

data set (Fig. 5; Table 4). Taken together, these results suggest that

black spots in cheetahs are brought about by localized alterations

downstream from MC1R signaling that engage known components

of the pigment type-switching apparatus.

Discussion
Established and emerging technologies for ultra-high-throughput

sequencing are being increasingly applied to measure gene ex-

pression in a variety of basic science and translational settings. Like

other so-called digital gene expression approaches (pioneered with

serial analysis of gene expression, or SAGE), EDGE is based on a

molecular biologic strategy in which the relative frequencies of

unique cDNA tags are used to infer transcript abundance. However,

unlike classical SAGE methods that use Sanger sequencing, EDGE

relies on ultra-high-throughput sequencing technology to gener-

ate millions of cDNA tags per RNA sample with increased time and

cost savings. Compared with classical SAGE, EDGE provides sub-

stantially improved sensitivity for detecting rare transcripts and

more robust measurements of transcript abundance across a broad
Figure 4. Systematic biases in RNA-seq and EDGE. The relative fre-
quency of RNA-seq reads and EDGE tags is dependent on transcript
length (A) and independent of NlaIII site frequency within transcripts (B).
RefSeq genes were sorted by transcript length (A) and frequency of NlaIII
sites (B) and placed into bins of 300 genes and 500 genes, respectively.
The relative ratio of reads per million exonic RNA-seq reads (RPM) and tags
per million exonic EDGE tags (TPM) within each bin is plotted (diamonds).
Linear regression lines are plotted for each graph and show a significant
correlation in RPM/TPM ratio with transcript length (p < 1310�4) and an
insignificant relationship in RPM/TPM ratio with NlaIII site frequency (p =
0.51). (C ) The ability of EDGE to detect differential gene expression is not
dependent on transcript length. Genes that were detected by EDGE were
sorted by transcript length and placed into bins of 300 genes. The per-
centage of differentially expressed genes within each bin is plotted (di-
amonds). Linear regression lines are plotted for neonate dermis (p = 0.68)
and spleen (p = 0.29).

Table 3. Identification of cheetah EDGE tags using two
complementary informatic approaches

Cheetah EDGE
libraries (n = 2)

Total number of EDGE tags 53,237,863
EDGE tags assigned to gene 37,353,625
Unique EDGE tagsa 194,225
Unique genes detected 14,247
Aligned to Ensembl transcript in felCat3 42,021
Used for assigning genesb (A) 41,301
Identified Homo sapiens ortholog using match

within F. catus transcriptome assembly
66,171

Used for assigning genesc (B) 46,033
Positive gene ID from informatic pipeline (A + B) 87,334

aGreater than or equal to five tags per library.
bGene assignments based on alignment with F. catus Ensembl transcript
annotated on felCat3.
cGene assignments based on alignment to a de novo assembled F. catus
transcript.
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range of expression levels, resulting in stronger statistical power to

detect differentially expressed transcripts. In addition, the EDGE

method is facilitated by the high cleavage efficiency of EcoP15I,

resulting in improved transcriptome coverage compared to other

tag-sequencing approaches that rely on shorter tags generated

by MmeI. Like RNA-seq, EDGE is extraordinarily sensitive, able to

detect transcripts present at low levels or in a minority of cells in

a heterogeneous tissue. Unlike RNA-seq, EDGE is not subject to

transcript length bias; however, EDGE provides little or no infor-

mation about transcript structure. An important application of

EDGE as shown here is the ability to evaluate transcriptomic changes

in non-model organisms where a high-quality reference genome

is not available.

Applied to the skin of laboratory mice carrying a classical coat

color mutation, EDGE detects expression from approximately

17,500 genes. Most of these are represented at very low levels, in-

cluding components of the interferon response that are differen-

tially expressed between Mc1r+/+ and Mc1r e/e animals and that were

not detected in previous microarray analyses. Additional studies

will be required to investigate the potential mechanisms and con-

sequences of differences in innate immunity between Mc1r+/+ and

Mc1r e/e animals, but we speculate that differences in the chemistry

of eumelanin and pheomelanin may have secondary effects on the

ability of the innate immune system to respond to environmental

pathogens or stress. For example, pheomelanin is associated with

very different antioxidant levels from eumelanin (Chedekel et al.

1978; Samokhvalov et al. 2005), and it is interesting to note that

melanin plays an important and established role in innate im-

munity in insects (Eleftherianos and Revenis 2011).

Compared with RNA-seq, EDGE provides little information

about transcript structure; however, the ability of EDGE to detect

differential gene expression is not influenced by transcript length

or potential size amplification bias during PCR amplification.

Hence, EDGE is particularly attractive for experiments that require

sensitive and robust measurements of relative transcript levels

across the genome. Furthermore, EDGE achieves near saturation in

gene detection with 6–8 million sequence reads, making it possible

to assay for gene expression differences in multiple biological rep-

licates by using a molecular barcoding strategy, thus substantially

decreasing the cost of using EDGE while still providing significant

advantages over microarrays.

In a pilot study to investigate the effectiveness of EDGE in

a non-model organism, we compared tag counts in skin of the

cheetah taken from adjacent areas of different color. By taking

advantage of the reduced complexity of sequence tags in EDGE

relative to RNA-seq (and using a partially annotated, low-coverage

genome and an independently generated transcriptome assembly

from the domestic cat), we assigned ;70% of cheetah EDGE tags

to about 14,000 unique genes, which is comparable to a 78% tag-

to-gene assignment rate in a parallel comparison to mouse EDGE

libraries. Our results suggest that black spotting in cheetahs arises

via patterned control of the same melanocyte-based pathways used

in other mammals but that the mechanism of patterning does not

involve known components of pigment type-switching that lie

upstream of the MC1R. Studies of additional cheetah samples will

Table 4. Expression of pigmentation genes in cheetah skin as determined by EDGE

Gene
Black
spota

Yellow
backgrounda Z-scoreb

Expected
directiona Position in MC1R signaling (function)a

SILV 8.6 0.8 5.16 + Downstream (melanosomal protein)
TYR 3.7 1.0 2.78 + Downstream (melanogenic enzyme)
DCT 7.5 2.5 2.34 + Downstream (melanogenic enzyme)
TYRP1 3.8 2.4 0.95 + Downstream (melanogenic enzyme)
OCA2 2.2 2.3 �0.14 + Downstream (melanosomal protein)
SLC7A11 46.1 37.8 0.38 � Downstream (cystine transporter)
MITF 304.0 282.0 0.12 NA NA (developmental transcription factor)
ASIP 0.6 0.4 0.79 � Upstream (antagonist ligand of MC1R)
POMC 1.9 1.2 0.97 + Upstream (agonist ligand of MC1R)
CORIN 39.9 47.7 �0.43 + Upstream (Agouti modifier)
DEFB103 86.5 117.8 �0.71 + Upstream (neutral ligand of MC1R)

aExpression levels are given as tags per million reads of an EDGE library prepared from RNA of a black spot or yellow background area of cheetah skin. The
genes shown here were chosen based on their roles in pigment cell biology; six are well-established melanocyte transcriptional targets downstream from
MC1R signaling (Kobayashi et al. 1995; Lamoreux et al. 1995; Chintala et al. 2005; April and Barsh 2006; Le Pape et al. 2009); four encode secreted factors
that act upstream, either as ligands or to modify ligands of the MC1R (Barsh 2006; Enshell-Seijffers et al. 2008; Kaelin et al. 2008); and one, MITF, encodes
a transcription factor required for melanocyte development (Steingrı́msson et al. 2006). The expected direction, increase (+) or decrease (�), for expression
level change of each gene is given according to when pigment production switches from yellow pheomelanin to black eumelanin.
bChange in gene expression, log2 (black TPM/yellow background TPM), is given as a Z-score according to the distribution for 14,139 genes with non-zero
tag counts (mean = 0.02698, SD = 0.4434).

Figure 5. Expression of pigment-type switching genes in cheetah skin.
Fold difference in gene expression between black spot and background
was determined by EDGE. The relative fold difference for genes that en-
code components of pigment-type switching that lie upstream (blue) or
downstream (red) of MC1R signaling is shown, as in Table 4.
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be required to confirm this suggestion and can easily be extended

to analogous questions in other patterned mammals such as tigers,

leopards, and zebras.

Continuing advances in the cost and scale of sequencing

technology and increased sophistication of de novo assembly

algorithms are likely to provide reference genome sequences for

thousands of mammalian species in the not too distant future

(Zerbino and Birney 2008; Metzker 2009; Li et al. 2010; Robertson

et al. 2010; Grabherr et al. 2011). Like EDGE, this will further blur

the distinction between model and non-model organisms and

provide opportunities to investigate many aspects of phenotypic

variation that occur only in natural populations.

Methods

Mouse biological samples
C57BL/6J-Mc1r+/+ and Mc1r e/e animals were obtained from The
Jackson Laboratory (Bar Harbor, MA). Analysis of differential gene
expression was based on RNA samples prepared from neonatal
dermis (P3.5) and adult spleen (8 wk old). The neonatal dermis
samples were obtained by first removing whole dorsal skin and
then separating the epidermal and dermal layers using fine forceps
after a 12-h incubation with 0.25% trypsin (GIBCO) at 4°C.

For technical replicates, we created two pools of skin RNA
from three Mc1r+/+ and three Mc1r e/e animals and prepared two
EDGE libraries from each pool. For analysis of differential gene
expression, tissue samples from individual animals were used to
build independent EDGE libraries (21 libraries). Two neonate
dermis samples (one Mc1r+/+ and one Mc1r e/e) were also used to
prepare RNA-seq libraries.

Total RNA from adult skin was prepared using the RNeasy
Fibrous Tissue Midi Kit (QIAGEN). Total RNA from neonate dermis
and spleen was prepared using TRIzol reagent (Invitrogen) fol-
lowed by an additional purification using the RNeasy Mini Kit
(QIAGEN). Both RNA isolation methods include an on-column
DNase I treatment.

Cheetah biological samples

Skin biopsies from cheetahs were obtained using 4-mm biopsy
punches at the Cheetah Conservation Fund (Namibia) when ani-
mals were placed under general anesthesia during regular veteri-
nary sessions. From a single individual, a pair of skin biopsies was
obtained from a black-haired region and an adjacent yellow-haired
region and preserved in RNAlater (Ambion). Following the isolation
of total RNA using the RNeasy Fibrous Tissue Mini Kit (QIAGEN),
EDGE libraries were constructed, and each library was sequenced on
one lane of an Illumina Genome Analyzer IIx.

EDGE library preparation

Between 2 and 10 mg of total RNA was used for EDGE library
preparation. Briefly, each RNA sample was used for double-stranded
cDNA synthesis using paramagnetic oligo(dT) beads to capture
polyadenylated RNA. Next, each cDNA molecule was ‘‘anchored’’
by NlaIII restriction digest that cleaves up to the 39-most restriction
site. cDNA fragments carrying the 4-bp overhang (59-CATG-39) that
remain attached to the paramagnetic beads were ligated to an
Illumina adaptor carrying an EcoP15I recognition site (59-CAGCAG-
39). (EcoP15I is a Type III restriction endonuclease that cleaves 27 bp
away from the 39 end of its recognition site and requires two in-
versely oriented recognition sites for efficient cleavage [Meisel et al.
1992]. However, we determined optimal reaction conditions that

allow for efficient EcoP15I cleavage on linear DNA carrying a single
recognition site, obtaining an ;6.4-fold improvement in cleavage
efficiency compared with standard NEB reaction conditions
[Supplemental Fig. S7].) Next, cDNA fragments were ‘‘tagged’’ by
EcoP15I restriction digest, generating a 27-bp sequence tag with
a 2-bp overhang. After restriction digest, the supernatant was
saved for the subsequent step, and the paramagnetic beads were
removed. Another Illumina adaptor carrying the sequencing primer
was ligated to the sticky end, and the 79-bp ligation product was
obtained by gel purification. Finally, a 15-cycle PCR enrichment step
was performed to enrich for the desired library molecule, and the
PCR product was purified using the AMPure XP Kit (Beckman
Coulter). A detailed protocol is available in the Supplemental
Methods. Cluster generation and sequencing was performed on
an Illumina Genome Analyzer II at Stanford University (Stanford,
CA) or on an Illumina Genome Analyzer IIx at the HudsonAlpha
Institute for Biotechnology (Huntsville, AL).

RNA-seq library preparation

RNA-seq libraries were prepared according to the method described
by Mortazavi et al. (2008). Briefly, we started with 2 mg of total RNA
and performed a double selection of polyadenylated RNA using
oligo(dT) magnetic beads. Next, the RNA was fragmented with
RNA fragmentation buffer (200 mM Tris acetate at pH 8.1, 500 mM
potassium acetate, 150 mM magnesium acetate) and free ions were
removed with a G-50 Sepharose spin column (USA Scientific).
Fragmented mRNA was used as a template to synthesize single-
stranded cDNA with SuperScript II reverse transcriptase and ran-
dom hexamer primers in the presence of RNaseOUT (Invitrogen).
Double-stranded cDNA was synthesized in a modified buffer of 500
mM Tris-HCl (pH 7.8), 50 mM MgCl2, and 10 mM DTT (Illumina).
To prepare cDNA for sequencing, we performed end repair using
T4 DNA polymerase and Klenow DNA polymerase (NEB), addition
of an ‘‘A’’ base to the 39 ends of the cDNA using Klenow fragment
(NEB), followed by ligation of adaptors designed for the Illumina
sequencing platform. The ligation product was purified by gel
electrophoresis and purification of the 175–225-bp region on
a 1.5% NuSieve GTG agarose gel (Lonza) using the QIAquick Gel
Extraction Kit (QIAGEN). Finally, we enriched the library with 15
cycles of PCR amplification using Illumina sequencing primers.
Cluster generation and 36-bp single-end sequencing were per-
formed on an Illumina Genome Analyzer IIx at the HudsonAlpha
Institute for Biotechnology (Huntsville, AL).

Data processing and analysis: mouse

For each EDGE library, EDGE tags were obtained by selecting se-
quence reads that passed the quality filter defined by the default
Illumina pipeline and trimming off the adaptor sequence at the
end of each read. Sequence reads that were not anchored by an
NlaIII site, i.e., ‘‘CATG,’’ were also removed, resulting in EDGE tags
that were 26, 27, or 28 bp in length (26%, 67%, and 7%, respectively).

For the EDGE libraries, EDGE tags were uploaded onto
DNAnexus (http://www.dnanexus.com) and aligned to the mm9
reference genome (NCBI Build 37) using default parameters. Next,
the RNA-seq analysis tool was used to count sequence reads that
aligned to the sense strand of mouse RefSeq transcripts. An EDGE
tag is counted when its posterior probability of mapping to its
match is 0.9 or greater, and the posterior probabilities contribute to
the sum of the reads. For the RNA-seq libraries, the fastq file from
each sequencing run was uploaded onto DNAnexus and analyzed
in a similar fashion to the EDGE data. Since our RNA-seq protocol
is non-directional, reads that mapped to either orientation of the
transcript were counted.
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Data processing and analysis: cheetah

Cheetah EDGE libraries were processed (as described above) to
obtain EDGE tags. We removed poorly expressed tags, i.e., less than
five tags in both libraries, and assigned cheetah EDGE tags to genes
using two complementary strategies. The first strategy involved
aligning EDGE tags, using ELAND (Illumina), and allowing up to
two mismatches, to an Ensembl-annotated, 23-coverage domestic
cat genome assembly (felCat3, UCSC). EDGE tags were assigned to
genes if they aligned uniquely to an Ensembl transcript. However,
a substantial proportion of EDGE tags aligned to the region im-
mediately downstream from many cat Ensembl genes because the
majority of cat Ensembl genes are poorly annotated beyond its
coding sequence. To increase our ability to align tags, we created
‘‘virtual 39 UTRs’’ by extending each Ensembl transcript in the
39 direction by 1.8 kb (Supplemental Fig. S8). This ‘‘virtual 39 UTR’’
region contained an ;34-fold over-representation of EDGE tags
compared with the background tag frequency observed in unanno-
tated regions of the genome and corresponds to a 1% false discovery
rate. The second strategy relied on a de novo assembled transcrip-
tome from domestic cat that was generated by the Genome Center
at Washington University (WC Warren, RK Wilson, unpubl.). In
brief, oligo(dT) primed cDNA libraries were obtained from 10
different cat tissues—cerebrum, hypothalamus, thalamus, retina,
kidney, ovary, cochlea, vallate tongue, fetal body, and fetal head—
and each library was sequenced on a full single-end run on the GS
FLX system (Roche). Raw sequence reads from each tissue were then
assembled into contigs using Newbler (Roche), resulting in 10
partially assembled cat transcriptomes. EDGE tags were aligned
to the cat transcriptome, using ELAND and allowing up to two
mismatches, and partial transcripts within the best stratum, i.e.,
least number of mismatches, were used as a query to identify the
most probable human ortholog within RefSeq (release 41) using
discontiguous megablast. The hits returned by BLAST were fil-
tered for matches with significant e-values smaller than 10310�20.
Using this conservative threshold, EDGE tags were assigned to
a RefSeq gene associated with the best BLAST match (i.e., lowest
e-value) to a partial cat transcript.

To integrate the tag to gene assignments from the two in-
formatic approaches, we selected gene assignments based on the
number of mismatches for each EDGE tag when it was aligned to
the cat genome or transcriptome. Therefore, if a tag can be assigned
with either approach, we selected the assignment with the lower
number of mismatches. Also, if the number of mismatches was
equal, the assignment to an Ensembl gene was chosen as the
default.

Identification of differentially expressed genes

To analyze the gene expression profile in mouse tissues, we con-
verted raw gene counts from each EDGE library to TPM and re-
moved genes within each tissue type where the most highly ex-
pressed library did not exceed 2 TPM. We applied a Poisson log-linear
model described in Witten et al. (2010) to identify genes that were
differentially expressed between mutant and wild-type mouse
samples.

Quantitative RT-PCR

Quantitative RT-PCR was performed on the same mouse neonate
dermis RNA samples used to prepare EDGE libraries. Two micro-
grams of total RNA was first treated with DNase I (Invitrogen) be-
fore reverse transcription with Superscript III (Invitrogen). cDNA
samples were diluted fivefold and used for real-time PCR using the
Lightcycler Faststart DNA Master Plus SYBR Green I Kit (Roche).

Primer sequences used for quantitative PCR were designed to
span exon–intron boundaries and are available upon request. The
P-values for differences in transcript levels were calculated using
the Student’s t-test.

Data access
The data from this study have been submitted to the NCBI Se-
quence Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/
sra.cgi) under accession number SRA027301.
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