
Resource

Genome-scale phylogenetic function annotation
of large and diverse protein families
Barbara E. Engelhardt,1,4,6 Michael I. Jordan,1,2 John R. Srouji,3,5 and Steven E. Brenner3

1Electrical Engineering and Computer Science Department, University of California, Berkeley, California 94720, USA; 2Statistics

Department, University of California, Berkeley, California 94720, USA; 3Plant & Microbial Biology Department, University of California,

Berkeley, California 94720, USA

The Statistical Inference of Function Through Evolutionary Relationships (SIFTER) framework uses a statistical graphical
model that applies phylogenetic principles to automate precise protein function prediction. Here we present a revised
approach (SIFTER version 2.0) that enables annotations on a genomic scale. SIFTER 2.0 produces equivalently precise
predictions compared to the earlier version on a carefully studied family and on a collection of 100 protein families. We
have added an approximation method to SIFTER 2.0 and show a 500-fold improvement in speed with minimal impact on
prediction results in the functionally diverse sulfotransferase protein family. On the Nudix protein family, previously
inaccessible to the SIFTER framework because of the 66 possible molecular functions, SIFTER achieved 47.4% accuracy on
experimental data (where BLAST achieved 34.0%). Finally, we used SIFTER to annotate all of the Schizosaccharomyces pombe
proteins with experimental functional characterizations, based on annotations from proteins in 46 fungal genomes. SIFTER
precisely predicted molecular function for 45.5% of the characterized proteins in this genome, as compared with four
current function prediction methods that precisely predicted function for 62.6%, 30.6%, 6.0%, and 5.7% of these
proteins. We use both precision-recall curves and ROC analyses to compare these genome-scale predictions across the
different methods and to assess performance on different types of applications. SIFTER 2.0 is capable of predicting protein
molecular function for large and functionally diverse protein families using an approximate statistical model, enabling
phylogenetics-based protein function prediction for genome-wide analyses. The code for SIFTER and protein family data
are available at http://sifter.berkeley.edu.

[Supplemental material is available for this article.]

Automated protein function prediction is an important challenge

for computational biology because protein function is difficult to

describe and represent, protein databases are littered with anno-

tation errors, and our understanding of how molecular functions

arise and mutate over evolutionary time is far from complete. Be-

cause biologists depend on protein function annotations for in-

sight and analysis, automated methods have been used extensively

to compensate for the relative dearth of experimental character-

izations. Although there are 107 protein sequences in the com-

prehensive UniProt database (The UniProt Consortium 2010), <5%

have annotations from the Gene Ontology Annotation (GOA)

database (Barrell et al. 2009). Far fewer (0.2%) have been manually

annotated, and only 0.25% of those manual annotations are from

the molecular function ontology in Gene Ontology (GO) (The Gene

Ontology Consortium 2010) and are based on experimental evi-

dence. Because of the need for so many annotations, function pre-

diction methods are often assessed based on annotation quantity

rather than quality, increasing the number of false positive function

annotations and polluting databases (Galperin and Koonin 1998;

Brenner 1999; Schnoes et al. 2009). These errors propagate in da-

tabases: A query protein may have the same function as that of the

matched database protein in vivo, but the protein in the database

is incorrectly described. This problem could be managed in part by

having every protein annotation supported by traceable evidence,

such as in the GOA database. Moreover, function prediction methods

that incorporate evidence codes and provide reliability measures

would seem less prone to error propagation.

Phylogenetics has been proposed as a powerful approach to

meet the challenges of protein function prediction, in an ap-

proach sometimes termed ‘‘phylogenomics’’ (Eisen 1998). Phy-

logenetics-based protein function prediction uses a reconciled

phylogeny for a protein family to make predictions, rather than

transferring annotations based on pairwise sequence compari-

sons. Phylogeny-based methods rely on two assumptions: that

function evolves parsimoniously within a phylogeny, so the

branching structure of a phylogeny is more indicative of func-

tional similarity than path length within the phylogeny; and that

functional divergence tends to follow a gene duplication event,

because protein redundancy may allow mutation events that

otherwise would be selected against. We have found that the

former assumption improves functional prediction by enabling

a systematic methodology by which different annotations for

proteins in a tree can be integrated to make predictions. However,

the assumption that gene duplication events promote functional

mutations is less helpful for prediction, in particular because the

process of reconciling gene and species trees produces many spu-

rious duplication events, often obscuring the signal. The role of

gene duplication in phylogeny-based function prediction may be

overemphasized relative to the evolutionary history of actual func-

tion mutations, particularly as early studies focused on families

with an atypically low degree of gene duplication (Eisen and

Hanawalt 1999).
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The phylogenetics-based approach to protein function pre-

diction has many advantages. Lineage-specific rate variation is

a complex phenomenon prevalent across a wide range of families

(e.g., Thomas et al. 2006) that can create a situation in which the

most similar sequences according to BLAST (i.e., those with the

shortest path length in the tree) may not be the sequences most

recently diverged from the query sequence. In one example of

lineage-specific rate variation (Fig. 1), the path length between the

query protein (labeled ‘‘?’’) ranks the remaining proteins differ-

ently than the branching order would rank the proteins in terms of

assumed functional similarity. Additional proteins that are siblings

of the (functionally different) protein with the shortest branch

length (B1 in the figure) with similarly short branch lengths will

provide increasingly strong support for the incorrect function.

Thus, the approach of using the most significant hits according to

BLAST is systematically flawed and may yield erroneous results

even as the number of known protein sequences increases. Use of

a phylogeny specifically incorporates the evolutionary history,

minimizing problems due to rate variation, and suggests an evo-

lutionarily principled means of merging functional evidence from

homologous proteins. In particular, phylogenetic distance can be

thought of as a measure of the accuracy of annotating a query

protein with a neighboring protein’s known function. Instead of

pairwise comparisons, a tree is the natural structure to specify and

explore how molecular function evolved within protein families.

While originally applied manually, phylogenetics-based pro-

tein function prediction has been deployed in automated methods.

One such method, Orthostrapper (Storm and Sonnhammer 2002),

uses bootstrapping to identify orthologous clusters of proteins and

transfers function annotations within each of these clusters. Be-

cause these clusters have variable sizes, Orthostrapper tends to

transfer either multiple or zero annotations to unannotated pro-

teins. Our framework, SIFTER (Statistical Inference of Function

Through Evolutionary Relationships) (Engelhardt et al. 2005, 2006),

uses a statistical model of function evolution to incorporate an-

notations throughout an evolutionary tree, making predictions

supported by posterior probabilities for every protein. We fix the

tree structure to the phylogeny reconstructed from sequence data

and use a conditional probability model that describes how mo-

lecular function evolves within the tree. This statistical model en-

ables access to a broad set of statistical tools for parameter estimation

and computation of posterior probabilities of the molecular func-

tions. We chose this statistical approach because it yields pre-

dictions that are relatively robust to noise by merging evidence

across a tree. Robustness is essential in this problem, given that

each protein family contains few functional annotations, and there

is noise in both the annotations and the reconstructed phylogeny.

The major drawback to phylogenetics-based methods is speed.

The SIFTER model nominally has exponential computational com-

plexity in the number of candidate functions within a protein

family. In Pfam release 24.0, there were 753 families with nine or

more molecular functions with experimental evidence from the

GOA database within the family’s proteins, and these families were

7.5 times larger on average than families with fewer than six can-

didate functions. Based on Pfam-A, it is possible that >33.5% of

proteins from a single species could be contained within these

large families, which are currently inaccessible to SIFTER and re-

lated methods. Motivated by these families, in this new version of

SIFTER we have implemented a straightforward and effective ap-

proximation that enables tractable computation of function pre-

dictions in large, functionally diverse families, and opens the door

to whole-genome annotation. Exact computation of posterior

probabilities is exponential in the number of candidate functions

to account for the possibility, however small, that a protein has the

ability to perform any combination of the M candidate functions

for that family, where there are 2M possible combinations. Our

approximation truncates the number of molecular function com-

binations that are considered; for example, when we truncate at

level 2, we only allow for the possibility that each protein has 0, 1,

or 2 of the M candidate functions, but no more. This approach is

effective because the probability of a protein having more than a

few functions is small, both in our model and in vivo.

In this new version of SIFTER, we also wanted the model of

molecular function evolution to be flexible enough to enable the

encoding of prior biological knowledge and to allow us to con-

struct the transition rate matrix in a semantically meaningful way

from a smaller set of parameters that in principle can be estimated

from the data. The fundamental change to SIFTER that meets these

requirements is a general model of evolution based on a continuous-

time Markov chain. This also simplifies the machinery required

to compute posterior probabilities and to estimate the model

parameters.

When exact computation is feasible, we show that SIFTER 2.0

produces almost identical results to SIFTER 1.1. We demonstrate

that the posteriors computed using truncation provide a good

approximation to the exact posteriors at all levels of truncation.

We apply SIFTER with approximate computation to the Nudix

family, which is computationally infeasible for SIFTER 1.1 due to

the number of candidate functions. We illustrate that SIFTER is

now suitable for genome-wide analysis by applying it to a genome-

scale prediction task for Schizosaccharomyces pombe proteins, and

compare its performance with four other methods.

Results
Throughout this section, we ran BLAST, PFP (Hawkins et al. 2006),

ConFunc (Wass and Sternberg 2008), and FFPred (Lobley et al. 2008)

for function prediction to compare against SIFTER results, when-

ever it was viable to run those methods. We ran BLAST in two

different ways (see Methods) in order to include both a method

that uses textual annotations (BLAST) and GOA database annota-

tions (BLAST-GO). We define ‘‘accuracy’’ as the percentage of

proteins for which the functional term with the highest rank is an

exact match to one of the experimental annotations for that pro-

Figure 1. Sequence similarity does not directly reflect phylogeny. The
proteins in this tree have either molecular function A or B. There is a du-
plication event indicated by a red square and the query protein is denoted
by ‘‘?’’. The most significant BLAST hit for the query protein will be B1

because the path length in the phylogeny from the query protein to B1 is
the shortest. Thus, BLAST-based prediction methods will transfer B to the
query protein. However, it is more likely that the tree has only one func-
tional mutation, in which ancestral function B mutated to function A on
the left-hand side of the bifurcation after the duplication event. So A is
a better annotation for the query protein. A phylogenetics-based ap-
proach reaches this conclusion naturally. Example adapted from Eisen
(1998).
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tein, with rank ties broken in favor of the correct prediction. Our

ROC-like analysis shows the relative increase of the true positive

rate (exact matches of predicted to characterized functions) versus

the false positive rate as the cutoff threshold is made more per-

missive (see Methods).

The accuracy measure provides a single overall assessment,

but the accuracy measure and our ROC-like analysis ignore the GO

hierarchy, so predictions that are less precise than (but consistent

with) the true term are considered incorrect. Therefore, we also

computed the F-score and an extended F-score (FX-score) of the

prediction results. These scores compare the sets of annotated and

predicted terms by including in each set all terms that are ancestral

to each specific term in the GO hierarchy (see Methods). The FX-

score assumes that predictions that are more specific than the

annotated terms are correct so that methods are not penalized

because of overly general annotations from the GOA database.

Prediction results are summarized in Table 1. Our precision-recall

curves show the relative precision and recall when ancestral terms

are included in the set of predictions and in the annotations, as for

the F-scores (see Methods). All methods were run, and their pre-

dictions extracted, as described in Methods.

SIFTER 2.0 produces equivalent results to SIFTER 1.1

SIFTER 2.0 is based on approximate posterior probabilities ob-

tained from a truncation as well as a new evolutionary model based

on a continuous Markov chain model of functional evolution. We

first assess the impact of these changes on prediction in the small

families previously used to benchmark SIFTER 1.1. We compare the

results from SIFTER 2.0 to those from SIFTER 1.1 on a gold-standard

protein family considered in previous work (Engelhardt et al. 2006).

On the AMP/adenosine deaminase Pfam family, we found that

SIFTER 1.1 produced identical predictions and near-identical ROC-

like curves to the results using exact computation from SIFTER 2.0.

SIFTER (both 1.1 and 2.0) and BLAST-GO both achieved 93.9%

accuracy, missing predictions for two of the 33 characterized pro-

teins, whereas ConFunc achieved 81.8% accuracy, PFP achieved

78.8% accuracy, BLAST achieved 66.7% accuracy, and FFPred

achieved 3% accuracy. (Complete results are in the Supplemen-

tal Material.)

To compare SIFTER 2.0 with SIFTER 1.1 more thoroughly, we

selected 100 protein families from Pfam with GOA database an-

notations and ran leave-one-out cross-validation for both versions

of SIFTER on these families. Both versions made predictions for the

1632 proteins with experimental annotations across the 100

families, and SIFTER 2.0 achieved 72.5% accuracy, whereas SIFTER

1.1 achieved 70.0% accuracy. The two versions agreed on 95.3% of

the predictions. We found that SIFTER 2.0 using exact computa-

tion took approximately twice as long as SIFTER 1.1, where the

bulk of the difference was spent on the most functionally diverse

families; if we limit the families to have six or fewer candidate

functions rather than 11, SIFTER 2.0 takes only 2% longer than

SIFTER 1.1. (Complete experiment details are in the Supplemental

Material.) These results illustrate that the new model for SIFTER

produces equivalent predictions based on exact computation as

compared to the specialized model in SIFTER 1.1. However, these

analyses ignore a large percentage of proteins, as large and func-

tionally diverse families were excluded from these 100 families

because SIFTER 1.1 could not be applied to them.

Sulfotransferase family

We applied SIFTER 2.0 to the sulfotransferase family (PF00685)

from Pfam 20.0. We reconstructed a phylogeny with 539 proteins,

48 of which have experimental annotations in the GOA database.

There are nine SIFTER candidate functions, eight of which are

sulfotransferases acting on a specific compound, and one of which

is ‘‘nucleotide binding.’’ These enzymes are responsible for the

transfer of sulfate groups to specific compounds. Researchers have

shown their critical role in mediation of intercellular communi-

cation (Bowman and Bertozzi 1999). Human sulfotransferases are

extensively studied because of their role in metabolizing steroids,

hormones, and environmental toxins (Allai-Hassani et al. 2007),

and because they are biologically linked to neuronal development

and maintenance (Gibbs et al. 2006). Plasmodium falciparum, the

causative agent of malaria, makes use of its own sulfotransferase

proteins as cell-surface receptors to enter into the host and thus these

proteins are a target for malaria prevention drugs (Chai et al. 2002).

The phylogeny for this family including 48 proteins with

experimental functional annotations from the GOA database (Fig.

2) shows that 18 of these 48 proteins have only ‘‘sulfotransferase’’

annotations. We excluded these from the accuracy measures and

ROC-like analyses because they are not sufficiently precise de-

scriptions of molecular function; we left them in to compute the

precision-recall curves and F-scores because they are consistent

with the true function. Thirty proteins remained in the experi-

mentally annotated data set, 28 of which have one of eight specific

sulfotransferase annotations. Five of these sulfotransferase functions

Table 1. Summary of results

Method Deaminase Sulfotransferase Nudix S. pombe

Proteins 33 30 97 398
SIFTER AN 33 30 97 398

TP 31 21 46 181
FP 48 187 — 2233
F-score 0.93 0.91 — 0.74
FX-score 0.93 0.94 — 0.77

BLAST AN 33 30 97 —
TP 22 15 33 —

BLAST-GO AN 33 30 — 391
TP 31 25 — 117
FP 49 157 — 7405
F-score 0.91 0.95 — 0.82
FX-score 0.91 0.96 — 0.83

PFP AN 33 30 — 398
TP 26 23 — 22
FP 2404 1569 — 27,867
F-score 0.65 0.89 — 0.50
FX-score 0.65 0.89 — 0.50

ConFunc AN 33 29 — 389
TP 27 19 — 119
FP 187 151 — 15,568
F-score 0.79 0.90 — 0.67
FX-score 0.79 0.93 — 0.68

FFPred AN 33 30 — 397
TP 1 0 — 24
FP 121 0 — 2200
F-score 0.52 0.66 — 0.55
FX-score 0.52 0.66 — 0.55

Summary table for the results on protein families across the methods.
(Proteins) The total number of proteins with at least one experimental
annotation in the family. (AN) The number of proteins with an experi-
mental annotation in the family for which the method predicted a mo-
lecular function. (TP) The number of correct predictions made by the
method. (FP) The number of false positive predictions by the method.
F-scores and FX-scores are described in Methods. Predictions for multi-
function proteins are considered correct if at least one of the functions is
correctly predicted.
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appear only once in the tree. The five proteins with singleton an-

notations will necessarily have incorrect predictions in SIFTER’s leave-

one-out cross-validation, as no correct annotation is available within

the tree, and the model parameters do not facilitate mutations to

unobserved molecular functions. We used a more recent version of

the GOA database for BLAST-GO than for SIFTER and other methods,

which positively affects its performance (e.g., ‘‘estrone sulfotransferase

activity’’ is an experimental annotation for one protein for SIFTER,

thus impossible to predict, but is an experimental annotation for

six proteins for BLAST-GO). The PFP database contained 27 of the

30 experimental annotations (all but the annotations for rat se-

quences), and we could not exclude self-annotations.

Evaluating SIFTER using leave-one-out cross-validation with

exact computation yields 70.0% accuracy. For comparison, BLAST-

GO achieves 83.3% accuracy, PFP achieves 76.7%, FFPred achieves

0% accuracy, ConFunc achieves 63.3% accuracy, and BLASTachieves

50% accuracy. The ROC-like analysis (Fig. 3A) shows that SIFTER

performs better than all methods across all false positive rates,

except for a small region where PFP performs slightly better. SIFTER

has 187 false positive annotations at the most permissive cutoff,

whereas PFP has 1569.

The precision-recall analysis (Fig. 3B) shows SIFTER per-

forming better than the other methods at high levels of recall,

offering the option of particularly high precision, with ConFunc

performing almost as well. PFP performs well at the lowest and

highest levels of recall, but we cannot

assume that this performance general-

izes to unannotated proteins (we did not

remove self-annotations in PFP). BLAST-

GO shows good performance below 0.6

recall, where precision goes down fairly

dramatically. Although PFP has more

accurate predictions than SIFTER, the

F-score is lower, indicating that there were

more false positive predictions with PFP.

ConFunc used both experimental and

non-experimental GOA annotations and

does well at high levels of recall. The

difference between the F-score and the

FX-score for ConFunc was relatively

large, indicating that the predictions for

some of the proteins with a general

sulfotransferase annotation were more

specific (as with SIFTER). FFPred did

poorly because it had trained parameters

for only one of the candidate functions

for this family; this is also reflected in its

low F-score. BLAST made correct pre-

dictions for six proteins that were missed

by SIFTER, including four with unique

function annotations. This illustrates a

possible benefit of using multiple sources

of protein annotations within SIFTER

rather than relying strictly on annotations

from the GOA database.

Results from each of the methods

discussed here, including SIFTER, neces-

sarily depend on which version of each

database was used (e.g., UniProt, Pfam,

and GOA). PFP, FFPred, and ConFunc all

use as input manually built databases that

are drawn from various versions of pub-

licly available databases, and so the input data are effectively un-

touchable. For SIFTER, we can compare different versions of data-

bases for the same family, but it is difficult to generalize conclusions

because the changes appear to be version- and family-specific (for

further discussion, see the Supplemental Material). Our results

here reflect practical application of these methods but yield only

limited insight into the impact of database version on results.

To assess the accuracy of the truncation approximation, we

compared the performance of exact leave-one-out cross-validation

with each of the eight possible truncations in the sulfotransferases.

The ROC-like analysis (Supplemental Fig. 6) shows that the impact

of the truncation is small at all levels. Truncation levels 8 through 3

achieved the same level of accuracy as the exact algorithm (70.0%),

missing the same proteins, and levels 2 and 1 achieved 66.7% ac-

curacy. At level 1, SIFTER made an incorrect prediction for the

protein OST5_HUMAN; at level 2, SIFTER made incorrect predic-

tions for ST1B1_MOUSE and ST1C1_MOUSE. The approximation

improved the run time by a significant margin—500-fold in the

case of T = 2—with minimal reduction in the quality of the results

(Supplemental Fig. 7).

Nudix family

The Nudix hydrolase family (PF00293) includes 3703 proteins in

Pfam release 20.0. Nudix proteins are characterized by the highly

Figure 2. Phylogeny of experimentally characterized proteins in the sulfotransferase family (PF00685).
The colors indicate the experimentally characterized protein functions, as specified in the key.
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conserved 23-amino-acid motif GX5EX7REUXEEGU (where U is

a hydrophobic residue and X is any amino acid). Initially, they

were discovered to have activity on nucleoside diphosphates, but

a number of non-nucleoside substrates have since been identified

(Koonin 1993; Bessman et al. 1996). The functions suggest roles in

nucleotide pool sanitation, the removal of toxic metabolic inter-

mediates, mRNA stability, and signaling (McLennan 2006). While

the Nudix motif forms a loop–a-helix–loop structure, providing

a scaffold for coordinating cation binding and catalysis, residues

that govern substrate specificity lie outside of the motif (Koonin

1993; Mildvan et al. 2005).

Function prediction in the Nudix family is difficult because

sequence diversity reduces the alignment quality of these proteins,

which, in turn, reduces the quality of the phylogeny. A bootstrap

analysis of the alignment for the experimentally characterized

proteins had an average node bootstrap support of 38%, and there

are only five small clades with >95% bootstrap support (Fig. 4).

Attempts have been made to use structural alignments as a scaf-

fold, but these too suffer from the family’s diversity (Ranatunga

et al. 2004). The impact on SIFTER is noise in the tree recon-

struction, but SIFTER’s statistical model was chosen for robustness

to this noise. Furthermore, the tree shows numerous examples of

possible parallel functional evolution, and many of these proteins

have multiple functions.

Our own manual literature search revealed 97 proteins with

experimentally characterized functions. Comparing the 37 Nudix

proteins with experimental annotation in the GOA database

against our literature search identified mistakes in the GOA data-

base, so we used only the annotations from our literature search.

We also found the set of GO terms for this family incomplete and

inconsistent, so we augmented the ontology with 98 additional

molecular function terms and rearranged the hierarchy for bio-

chemical accuracy. (See the Supplemental Material; complete de-

tails will be published elsewhere.) The Nudix family then had 66

candidate functions, which is a prohibitively large number of

candidate functions for SIFTER with no truncation. Even truncat-

ing at two, the 4356 3 4356 parameter matrix made computation

intractable. Thus, we computed posterior probabilities at trunca-

tion level 1.

On the Nudix family, SIFTER achieved 47.4% accuracy, whereas

BLAST achieved 34.0% accuracy. In the ROC-like analysis (Fig. 5),

we see that SIFTER outperforms BLASTat all levels of false positives.

Approximately 2.4% of annotations are correct in BLAST at 99%

specificity, whereas for SIFTER, 24.4% of the annotations are cor-

rect at 99% specificity. The SIFTER curve shows that, although

functional diversity limits prediction quality within this family,

SIFTER still performs comparatively well, especially at low levels of

false positives. While overall accuracy is relatively high for BLAST,

the ROC-like analysis shows a general weakness of the BLAST re-

sults. Including all predicted terms at any E-value #0.01, only

23.3% of the correct Nudix annotations show up at all. This per-

centage is lower than the total number of correctly annotated

proteins because 48 of the proteins have multiple functions. This

study focuses on SIFTER’s ability to handle extremely large num-

bers of candidate functions and on the limitations of the Gene

Ontology. As such, we do not have a precision-recall analysis be-

cause we rebuilt the Gene Ontology for this family and because the

BLAST keyword script did not include all ancestral terms of the

candidate functions, which is prohibitively time-consuming to

build.

We used this family’s functional diversity to examine the trade-

off between sensitivity and functional term precision. We manu-

ally substituted general ancestral terms for candidate functions and

saw the accuracy of both methods improve considerably: SIFTER

achieved 78.4% accuracy, and BLAST achieved 42.0% accuracy.

The ROC-like analysis also shows improvements (Fig. 5): SIFTER

predicts 43.6% of the annotations correctly at 99% specificity, and

BLAST predicts 1.7% of the annotations correctly at 99% speci-

ficity. The reason that generalized BLAST performs poorly relative

to the non-generalized BLAST at high specificity is that a large

number of general but incorrect hydrolase predictions are made

with low corresponding E-values; although these terms were ig-

nored when the candidate functions were specific, they were con-

sidered incorrect when the candidate functions were generalized.

These experiments (see the Supplemental Material) tell us that

biologists needing general function predictions for a set of proteins

may sacrifice term precision in return for more accurate pre-

dictions. However, based on our GO analysis, it remains to be seen

whether the GO hierarchy can be reliably used to generalize pro-

tein function.

Proteins from S. pombe

We tested whether SIFTER 2.0 could be applied to whole-genome

functional annotation. Using the complete genome sequences of

46 fungal species (Supplemental Fig. 10), we built 241 Pfam protein

families that contained experimental annotations from S. pombe

and at least one other fungal organism, with a total of 398 S. pombe

Figure 3. Sulfotransferase family prediction comparison. (A) The ROC-like analysis of SIFTER with BLAST, BLAST-GO, PFP, and ConFunc for the sulfo-
transferase family of proteins. We did not include FFPred because there were not sufficient numbers of true positive predictions to show up on this plot.
Note that the x-axis is on a log scale. (B) The precision-recall analysis of SIFTER with BLAST, BLAST-GO, PFP, ConFunc, and FFPred.
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proteins (see Methods). There are 15 families with nine or more

candidate functions; analysis with SIFTER 1.1 is not possible on

these families. Results are summarized in Table 2.

SIFTER achieved 45.5% accuracy (181 of the 398 S. pombe

proteins). We define a prediction as ‘‘consistent’’ when the predicted

term is a descendant of the protein’s functional annotation in the

GO hierarchy. Consistent predictions are not necessarily incorrect,

but simply more specific in the GO hierarchy than the annotated

term. SIFTER achieved 64.1% consistency (255 consistent pre-

dictions for 398 proteins). For comparison, BLAST-GO achieved

62.6% accuracy and 70.1% consistency. PFP achieved 5.7% accu-

racy and 5.7% consistency. FFPred achieved 6.1% accuracy (24 of

393 proteins for which it made predictions) and 6.1% consistency.

ConFunc achieved 30.6% accuracy (119 of 389 proteins for which

Figure 4. A reconciled phylogeny of the experimentally characterized hydrolase proteins found in the Nudix family. The colored numbers in brackets
after the protein name represent a clustering of the proteins into their biological functions, determined from our own literature search and described in
more detail in future work. The purple dots represent clades that have >95% bootstrap support.

Engelhardt et al.
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it made predictions) and 51.9% consistency. The PFP database did

not contain annotations from S. pombe, so the results do not in-

clude self-annotations. For BLAST-GO, 93 of the 249 correct pre-

dictions required breaking ties in favor of the correct annotation.

For ConFunc, 69 correct predictions and 110 consistent predic-

tions required breaking ties in favor of the correct or consistent

annotation. The FX-score considers a predicted term that is more

specific than the annotation term to be correct, so we see that

SIFTER has a large improvement between F-score and FX-score

based on this characteristic. For these metrics, BLAST-GO performs

better than SIFTER on these data, and both perform better than the

other methods. As with the sulfotransferase family, one reason

BLAST-GO may be performing better with these metrics is because

a different version of the GOA database is used.

A ROC-like analysis (Fig. 6A) illustrates the benefit of SIFTER

at low levels of false positives. There were 27,867 false positives in

the PFP predictions (Table 2), as compared with SIFTER’s 2233 false

positives. The ROC-like analysis shows that, across low levels of

false positives, SIFTER provides a large number of precise and

correct predictions for the S. pombe proteins relative to the other

four methods. BLAST-GO, PFP, and ConFunc value quantity of an-

notations over quality. The true positive rate for SIFTER does not

reach 100% for two reasons. First, SIFTER only makes predictions at

the most specific level of annotation, so more general experi-

mental annotations for a protein, which make up approximately

half of all annotations, are counted as a false negative regardless of

whether the annotation is consistent with the prediction. Second,

the held-out S. pombe experimental annotations were not always

contained within the candidate functions. The average number of

SIFTER candidate functions including the S. pombe protein anno-

tations is 4.2; holding out the S. pombe annotations, there are an

average of 3.6 candidate functions. Thus, the experimental anno-

tations for the S. pombe proteins account for ;15% of the func-

tional diversity in these families, and the absences of these pre-

dictions are counted as false negatives.

In the precision-recall curve (Fig. 6B), FFPred shows high

precision at low levels of recall relative to the other methods; this

is because the support vector machine used in FFPred was only

trained on a few general molecular function terms, and those terms

are often correctly predicted. However, the set of predicted terms

and their ancestors only includes ;60% of the set of true terms, so

recall suffers. Between 0.5 and 0.9 recall, SIFTER precision domi-

nates the other methods for most of the plot, with PFP performing

better above 0.9 recall. This illustrates that PFP predicts almost the

complete set of annotations; however, the correct predictions are

only a small proportion of the total predictions.

The performance of these methods can be understood by

examining their predictions. PFP tends to annotate proteins with

general predictions, so many predictions are consistent with the

experimental annotations, but few are as precise. For example, the

protein HMCS_SCHPO, annotated in the GOA database with

‘‘hydroxymethylglutaryl-CoA synthase activity,’’ was predicted to

have the general ‘‘transferase activity’’ by PFP. The precise term

‘‘hydroxymethylglutaryl-CoA synthase activity’’ appeared in the

list of predictions with a much lower score. BLAST-GO annotates

HMCS_SCHPO with the precise term by transferring this experi-

mental annotation from the very similar HMCS_YEAST sequence.

FFPred uses a support vector machine that is built to make pre-

dictions for only a subset of the GO function terms. Thus, FFPred

predictions tend to be more general than the experimental anno-

tation. For example, the same HMCS_SCHPO protein had a single

prediction for the general term ‘‘transferase activity.’’ ConFunc

tends to predict more general terms, but it had better accuracy

because often both general and specific terms had the same max-

imal score. For example, the same HMCS_SCHPO protein had two

annotations with the same high score: the precise term and a more

general term. This explains why more than half of the precise pre-

dictions were tie-breakers with an average of 10 highest-scoring terms.

Despite the harsh restriction of experimental evidence that

we required for the S. pombe proteins included in this experiment,

which limited the number of proteins, we are optimistic regarding

SIFTER’s potential for whole-genome annotation. In our fungal data

set, S. pombe had 5004 proteins, so we produce predictions for ;8%

of the proteins in the genome. Seeding SIFTER with proteins from

species outside of fungi may improve accuracy by increasing the

number of available experimental annotations. As of Pfam 24.0,

88.5% of S. pombe proteins have at least one Pfam domain assign-

ment, which comes with a precomputed phylogeny, eliminating

the bulk of the computational effort of phylogeny-based function

prediction. Extrapolating from our experiments, we expect SIFTER

2.0 runs to take on the order of 12 h for the full set of families with S.

pombe proteins.

Figure 5. A comparison of BLAST and SIFTER for the Nudix family of
proteins. SIFTER consistently dominates BLAST annotations under this
criterion. The SIFTER-C and the BLAST-C lines are the evaluation of SIFTER
and BLAST using the generalized Nudix hydrolase terms as experimental
annotations. It is interesting that, at >99% specificity, both BLAST and
SIFTER performed as well or better on the original data sets than the
generalized data sets. Note that the x-axis is on a log scale.

Table 2. Summary of S. pombe results

Precise Consistent

Method Predicted Count Percent Count Percent FP

SIFTER 398 181 45.5% 255 64.1% 2233
BLAST-GO 398 249 62.6% 279 70.1% 7405
PFP 398 22 5.5% 220 55.3% 27,867
ConFunc 389 129 32.4% 203 51.9% 15,568
FFPred 397 24 6.1% 203 51.6% 2200

Summary of results for characterized proteins in the S. pombe genome
across all methods. (Method) The name of the method used; (Predicted)
the number of proteins for which the method made at least one pre-
diction; (Precise count) the number of proteins for which a top-scoring
prediction exactly matched the characterized function; (Precise percent)
the precision percentage; (Consistent count) the number of proteins for
which a top-scoring prediction was either ancestral to or descendent from
one of the actual predictions; (Consistent percent) the percentage of
consistent predictions; (FP) the number of false positives when the cutoff is
permissive enough to accept all of the TP annotations.
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Discussion
This study addressed molecular function prediction in large and

functionally diverse protein families. Taking as our point of de-

parture the statistical approach to phylogenetics-based functional

prediction embodied in SIFTER, we developed a novel transition

model based on a continuous-time Markov chain to improve the

extensibility of the method, making the evolutionary model com-

pletely general and enabling straightforward extensions to SIFTER to

include additional types of biological data. Furthermore, we reduced

the exponential time complexity of SIFTER via a simple but effective

approximation that truncates possible function combinations with-

in each protein. We found that the accuracy of SIFTER 2.0 is com-

parable to SIFTER 1.1. We showed in the sulfotransferases that the

truncation approximation has excellent performance at all levels of

truncation. We saw that SIFTER with approximate computation per-

formed far better than BLAST on the Nudix family, which was be-

yond the scope of SIFTER 1.1. We showed that SIFTER can be applied

in an automated way to annotate whole genomes using a gold-

standard S. pombe data set containing proteins from fungal ge-

nomes. SIFTER excels in producing precise predictions in this domain

relative to other popular methods for full-genome annotation.

There are several directions to pursue in envisaging further

improvements to SIFTER and to protein function prediction gen-

erally. Many of these directions exploit the flexibility of SIFTER and

are readily accessible in its current version; in particular, SIFTER

does not use any precompiled databases or parameters estimated

from training data, but takes as input a phylogeny of protein se-

quences and annotations for those protein sequences (and how

those annotations are related to each other). As such, one can imagine

using many different resources for the annotations (e.g., EC numbers,

GO biological process and cellular component ontologies, or text

annotations from the nr database) or protein families (e.g., signif-

icant hits in BLAST for seed proteins, phylogenies from the PANDIT

database) (Whelan et al. 2006). While some of these alternative data

types require further research, such as whether cellular components

conform to the assumptions of a phylogenetic analysis, most are

immediately implementable.

Another extension to SIFTER would be to use the GO hierar-

chy to produce more general predictions with higher confidence.

In particular, one may propagate the posterior probabilities of the

candidate terms to the root of the GO hierarchy to find posterior

probabilities for the more general terms in the GO DAG. This pro-

cess would use the same model of the GO DAG for incorporating

evidence from the GOA database to the set of candidate terms. This

would improve coverage but reduce precision of the predictions,

particularly in the S. pombe data set. This extension would allow

SIFTER to produce general functional terms as the highest-ranked

predictions, analogous to some of the methods compared here.

SIFTER currently does not make use of additional information

to help with prediction, such as sequence motifs, binding sites, ex-

pression data, or protein structure. One benefit of phylogenetic trees

and graphical models generally is that they combine different sources

of information in an evolutionarily principled way, so SIFTER may

be extended to act as a meta-predictor that integrates other protein

data. This could be implemented by augmenting the probabilistic

model underlying SIFTER, letting the parameters depend on auxil-

iary information such as motifs or structure. The new SIFTER model

was designed to enable extensions to different data types for appli-

cation to many problems in protein science. While we have shown

that SIFTER makes high-quality functional predictions and ad-

dresses some open issues in the field of protein function prediction,

it also serves as a general platform for future enhancements.

Methods

SIFTER 2.0
We briefly describe SIFTER’s data integration, then focus on the
Markov chain model and the approximate computation of poste-
rior probabilities (Fig. 7; for further details, see the Supplemental
Material).

From database data to a model

We extracted the protein families studied here from the Pfam da-
tabase (Finn et al. 2010), and we used the manually curated align-
ments found in Pfam for phylogeny reconstruction. All trees were
reconciled using the Forester v.1.92 program (Zmasek and Eddy
2001); the reference species tree is from the Pfam database. When
we used GOA annotations (Barrell et al. 2009), we used the anno-
tations with experimental evidence codes IDA, IMP, and TAS. Where
we independently found experimental characterizations in the lit-
erature, we labeled that annotation as TAS.

In the SIFTER model, each protein i is associated with a ran-
dom vector Xi, where each Boolean component represents one
candidate function that takes value 1 when protein i has that
function and 0 if the function is not associated with protein i. We
choose the ‘‘candidate functions’’ for a particular family by using
the GO directed acyclic graph (DAG) structure to find the most
specific annotation terms associated with member proteins that

Figure 6. S. pombe function prediction comparison. (A) The ROC-like analysis of SIFTER with BLAST-GO, PFP, ConFunc, and FFPred. Note that the x-axis
is on a log scale. (B) The precision-recall analysis of SIFTER with BLAST-GO, PFP, ConFunc, and FFPred.
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are neither ancestors nor descendants of each other. For any pro-
tein, we can compute the probability of all of the candidate terms
by putting a generic probabilistic model on the GO DAG (see the
Supplemental Material). After selecting the set of candidate terms,
we compute the probability of the candidate terms for each protein
(whether or not it has experimental evidence).

Markov chain model

The structure of the evolutionary model underlying SIFTER is
given by the phylogeny; we must specify the conditional proba-
bilities at each node in the tree. SIFTER 2.0 uses a first-order Markov
chain, which makes the Markovian assumption that future states
are independent of past states given complete information about
the present state. Similar assumptions have long been used to
model the evolution of molecular sequences (Dayhoff et al. 1978;
Henikoff and Henikoff 1992).

Let M be the number of candidate functions in the model, and
let N be the number of leaf proteins. Our Markov chain has three
sets of parameters. The parameters sspe and sdup describe the scaling
of time after speciation and duplication events, respectively. The
vector parameter a = {a1, . . ., aM} describes the rate of function i
spontaneously arising when none of the candidate functions are
observed in the ancestor protein. The matrix parameter F = {f11,
f12, . . ., fMM} represents rates of mutation and loss: The off-diagonal
elements fij, i 6¼ j, describe the rate for a protein with function i
mutating to perform function j (while retaining function i), and
the diagonal elements fii describe the rate at which function i is lost.

Using parameters F and a, we can build the transition rate
matrix Q for a Markov chain that describes the instantaneous rate
of change in functional activity from an ancestor to its descendant.
For example, the matrix Q for two candidate functions has on its
rows (parent states) and columns (child states) all possible com-
binations of two functions for the parent and child proteins,
namely, {00, 01, 10, 11}. In this terminology, ‘‘01’’ (for example)
means that the first candidate function is not present (0) and the
second candidate function is present (1) in a protein’s state. A
transition rate matrix Q , defined by variables F and a, is shown in
Table 3 for M = 2, and is constructed analogously for M > 2 candi-
date functions.

We constrain the rows of the matrix F to positive values that
sum to at most M. Similarly, we constrain the a parameters to the M

simplex. Furthermore, we constrain these parameters away from
zero so as to avoid creating sink states or unreachable states in the
Markov chain when estimating parameters (specifically, all pa-
rameters are constrained to be >0.01). Because F and a are used to
construct the transition rate matrix Q , each non-zero, off-diagonal
entry in matrix Q implicitly has a finite upper bound and positive
lower bound. For additional intuition, see the Supplemental Material.

The conditional probability of a child configuration given a
parent configuration is as follows, from the definition of a con-
tinuous-time Markov chain:

p Xi = sjjXpi
= sk; ti;F;a;s

� �
= fexp tisQð Þgk;j:

In this equation, Xi is the random vector associated with protein i,
Xpi

is the random vector associated with protein i’s immediate
ancestor, ti is the length of the branch between Xi and Xpi

, j and k
index the power set S, sj and sk 2 S, and exp is the matrix expo-
nential function, such that

exp tsQð Þ= +
k = 0

‘
tsQð Þk

k! :

Element (k, j) of the transition probability matrix exp(tisQ) is the
probability that an ancestor protein in state k mutates to state j in
the descendant protein during time ti (here, the phylogenetic
branch length, which must be non-negative). The joint probability
of the tree is:

p XjF;a;sð Þ = p Xrootð Þ
Y

i2tree

p XijXpi
; ti;F;a;sð Þ:

The parameters of this model can be estimated using generalized
expectation maximization (GEM) (Gelman et al. 2003), which is
not currently applied to any data set other than the AMP/adeno-
sine deaminase family because of the large number of parameters
relative to the number of available annotations. For a complete
description, see the Supplemental Material.

SIFTER’s approximate computation

The time complexity to compute posterior probabilities for the
SIFTER model is linear in the number of proteins, but exponential
in the number of candidate functions due to the 2M possible com-
binations of candidate functions for each protein in the transition
rate matrix, which has (2M)2 entries. Computing matrix exponen-
tials explicitly for each branch in the tree has a computational
complexity of O(N((2M)2�3)). When M is large, the time to compute
posterior probabilities is dominated by the exponential complexity
in the number of candidate functions. Our approximation allows
at most T candidate functions with value 1 in the transition rate

Figure 7. Overview of SIFTER method. (1) A reconciled protein phy-
logeny and a file containing some of the family’s proteins with annota-
tions (blue and red functions) are input into SIFTER. SIFTER incorporates
the observations from the annotation file into the phylogeny. (2) Message
passing propagates the observations from the leaf nodes to the root of the
tree. (3) Message passing then propagates information from the com-
plete set of observations back down to the leaves of the tree, enabling
extraction of posterior probabilities at every node in the tree. Intuitively,
posterior probabilities at a node take into account every observation
scaled by the tree distance. (4) Predictions can be extracted from the tree
using, in our case, the function with the maximum posterior probability for
each protein.

Table 3. Rate transition matrix

00 10 01 11

00 — a1 a2 0
10 f11 — 0 f12 + a2

01 f22 0 — f21 + a1

11 0 f22 f11 —

The instantaneous transition rate matrix used in SIFTER for M = 2. The rows
represent the set of functions for the parent protein; the columns are child
functions. Recall that ai is the rate of a function i arising, fij is the rate of
a protein with function i mutating to also have function j, and fii is the rate
of function i disappearing. The diagonal elements in this table are set such
that the rows sum to zero.

Phylogenetic function annotation

Genome Research 1977
www.genome.org



matrix power set. This shrinks the number of elements under con-
sideration to

+
i = 1

T M
i

� �
:

In the Nudix family, setting T = 1, the set of candidates has 67
elements (each candidate term and the empty set), which means
that there are 4489 elements in the transition rate matrix Q.
Without truncation, the power set has ;7.38 3 1019 elements, and
the Q matrix has ;5.44 3 1039 elements. Computation time is
reduced from infeasibly long to seconds.

Application of SIFTER

We ran SIFTER 2.0 as follows. We set default parameter values to
fii = 0.5, fij = 1.0 for i 6¼ j, sspe = 0.03, sdup = 0.05, and ai = 1.0.
We estimated parameters only for the AMP/adenosine deami-
nase family (see the Supplemental Material); for the remaining
families, the number of parameters is larger than the number of
available observations, making estimation unproductive. We ran
leave-one-out cross-validation on the protein families by removing
evidence associated with a single protein and computing the
posterior probabilities. All experiments where timing results were
reported were run on Dell Precision 390 Workstation computers
with Intel Core2Duo 2.6 GHz processors and 2 Gb RAM.

Methods for comparison

The BLAST assessment was performed on the non-redundant (nr)
set of proteins downloaded from the NCBI website on December
11, 2006. We ran BLASTP (version 2.2.4) (Altschul et al. 1990) with
an E-value cutoff of 0.01. For each query protein we removed any
exact matches from the same species to ensure that the query
protein did not receive its own database annotation (emulating
a leave-one-out experiment). We transferred the functional term(s)
associated with the most significant BLAST hit that had an anno-
tation with keywords within the candidate functions for that
protein family; for more details, see the Supplemental Material. If
multiple proteins shared an E-value, we transferred all of the an-
notations and broke ties in favor of the correct prediction. His-
torically, when researchers use BLAST for large-scale molecular
function annotation, the function of either the most significant
non-identity hit or the most significant non-identity annotated
hit is transferred to the query protein, often leading to no pre-
diction or an incorrect (or overly general) prediction. We found
that restricting BLAST annotations to the candidate functions
increases the overall accuracy of the BLAST predictions. We did not
compute F-scores, FX-scores, or precision-recall curves for this
comparison method because the keyword script did not include all
ancestral nodes in the GO hierarchy. The metrics for the results
were computed by determining true positive and false positive
annotations for E-value cutoffs between 0 and 0.01.

The BLAST-GO assessment was performed on the SWISS-PROT/
TrEMBL proteins downloaded from the UniProt website on June
21, 2010, so its annotations were more recent than those used by
other methods. We ran BLASTP (version 2.2.23) (Altschul et al.
1990) with an E-value cutoff of 0.01. For each query protein, we
first removed any exact matches (by name) to ensure that the
query protein did not receive its own annotation. Given a ranked
list of proteins by E-value, we found the highest ranking protein
with at least one experimentally validated molecular function term
from the GOA UniProt 80.0 database that was also in the set of
candidate functions for that protein family and transferred those
functional terms. (For the S. pombe experiment, we did not limit

the transferred terms to candidate functional terms because the
correct term was not necessarily in the set of candidate functions
for the protein family.) If multiple proteins shared an E-value, we
transferred all available annotations and broke ties in favor of the
correct prediction. The metrics for the results were computed by
determining true positive and false positive annotations for E-value
cutoffs between 0 and 0.01.

We ran Protein Function Prediction (PFP) downloaded in
August 2009 (Hawkins et al. 2006) from the executable provided by
the authors, with the default settings. We computed the metrics for
the results based on the PFP scores. We could not remove anno-
tations from the PFP database that were for the proteins that we
were querying, so cross-validation was not possible.

We ran FFPred (Lobley et al. 2008) from the executable pro-
vided by the authors, with the default settings. FFPred uses a large
amount of third-party software, all of which was downloaded in
August 2009. We computed all of the metrics for the results using
the scores. We did not find any of the annotations in our test sets
also present in the FFPred training data.

The authors of ConFunc (Wass and Sternberg 2008) applied
their method (August 2009) to our sequence data in the cross-
validation setting, guaranteeing that none of the sequences were
self-annotated from their database. The UniProt and associated GOA
database were both downloaded in January 2009. Per the authors’
suggestions, we used the ratio of the GO term’s associated protein’s
PSI-BLAST E-value, or C-value, compared to the lowest GO term
C-value for that sequence to compute metrics for the results. We em-
pirically confirmed this to be the most accurate scoring mechanism.

Metrics for evaluation

To compute accuracy for a given data set, we counted the number
of proteins for which the top-ranked prediction exactly matched
the experimental annotation, and divided by the total number of
proteins. In the case of multiple experimental annotations or top-
ranked predictions, we counted the protein as having an accurate
prediction when the intersection of the two sets was not empty. For
the deaminase, sulfotransferase, and Nudix families, we filtered the
experimental annotations and the prediction terms to include
only SIFTER’s candidate functions for the family.

To compute the F-score and extended F-scores, we included each
annotation and predicted term (i.e., the terms with the maximum
score for SIFTER, PFP, and FFPred, or minimum score for BLAST-GO
and ConFunc), and all ancestral terms of these terms including the
root of the GO hierarchy in the set of predicted terms P and the set
of experimental annotations T (each term in each set was present
only once). The intersection of these two sets is the number of
correct predictions C. Using | � | for the cardinality of a set, we can
define precision as |C|/|P| and recall as |C|/|T|. Then the F-score is
the harmonic mean of precision and recall, or F = 2|C|/(|P| + |T|).
The FX-score considers predicted terms that are more specific than
the most specific annotation to be correct (i.e., in the set T). To
compute the FX-score, when the predicted term was more specific
than the most specific annotation (and this annotation was an-
cestral to the predicted term), we added the count of more specific
predicted terms to both the set of correct terms C and the set of true
terms T, and then we computed the F-score of these modified sets.

Our ROC-like analysis evaluates the fraction of true positives
as compared with the fraction of false positives across all cutoff
values, where a positive prediction is one that has a posterior
probability above the cutoff. This is not a standard ROC analysis:
Instead of one correct and one incorrect classification, there are
(e.g., in the case of the sulfotransferase family) one correct and
eight incorrect classifications for every protein. We only consider
exact term matches, so predictions that are consistent with, but
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not equal to, the correct annotation are treated as false positives.
Some of the methods will not have ROC-like curves that start or
end at the standard position; at the left end of the y-axis this is
because identical scores on both false positive and true positive
annotations force the curves to start higher on the x- and y-axes,
and near the right end of the y-axis this is because there are not
always scores for the total number of incorrect annotations for
each protein. In the case of SIFTER, we built the ROC-like curve
based on the leave-one-out runs, where, for each protein, using
a cutoff from 1.0 to 0.0, we compute the number of false positives
(FPs) divided by the total number of FPs plus true negatives (TNs),
and plot this against the number of true positives (TPs) divided by
the total number of TPs plus false negatives (FNs). Because the
number of false positives varied so widely between methods, we
divided the x-axis fraction by the maximum of FP + TN over all of
the methods (and we include the number of false positives for each
method in Tables 1 and 2).

We also present precision-recall curves for results from the
different methods as a metric that does not penalize predictions
that are consistent with, but more general than, the annotation. In
particular, we compute the set of true function terms T as for the
F-scores, and compute the set of predicted terms P including only
the predicted terms (and their ancestral terms) with a score above
a cutoff (or below for BLAST-GO and ConFunc); the set of correct
terms C is then the intersection of these two sets. Then, as for the
ROC-like analysis, we compute T, P, and C for all possible values of
the cutoff (although the set T does not vary across cutoffs). We can
plot recall, |S|/|T|, versus precision, |S|/|P|, across all values of the
cutoff. These curves are not monotone because the precision may
not increase in a monotone way as the sets C and P increase in size
at different relative rates, so their ratio does not always increase.

Here we have adapted two standard evaluation metrics (ROC-
like and precision-recall) to compare GO functional predictions,
each with different measures of correctness. The ROC-like metric
applied here highlights the quality of the precise predictions from
each method, whereas the precision-recall metric applied here
highlights prediction consistency and completeness. Both metrics
have shortcomings: ROC-like analysis considers predictions that
are more general than the true, precise molecular function to be
incorrect, whereas the precision-recall metric assumes that the
structure of GO is correct and rewards imprecise predictions. SIFTER
was designed to make accurate and precise functional predictions,
which are critical for important biological applications including
experimental characterization of protein activity. The ROC-like
analysis and associated accuracy measure used here are helpful to
evaluate predictions based on these design criteria. Other appli-
cations, including some types of whole-genome annotation, may
benefit from more general function annotations while minimizing
the number of predictions inconsistent with the true molecular
function; the F-scores and the precision-recall metric may be more
appropriate to assess the different methods in this regime.

Data set preparation

Sulfotransferase family

The GOA UniProt 37.0 contained experimental GO molecular
function annotations for 48 proteins. These 18 proteins were in-
cluded to compute the F-scores and FX-scores for every method.
The alignment for the full phylogeny was from Pfam 20.0. The
subset of sequences with experimental annotations was aligned
using hmmalign (Eddy 1998) with the sulfotransferase HMM
profile from Pfam release 20.0. The phylogenies were recon-
structed using PAUP* version 4.0b10 maximum parsimony with
the BLOSUM50 matrix.

Nudix family

The Nudix family alignment was taken from Pfam 20.0, and we
reconstructed the phylogeny from the neighbor-joining algorithm
in PAUP* version 4.0b10 (Swofford 2001) because of the large size
of the family. The subset of sequences with experimental annota-
tions was aligned using hmmalign (Eddy 1998) with the Nudix
HMM profile from Pfam release 20.0. This smaller phylogeny was
built using PAUP* version 4.0b10 maximum parsimony with the
BLOSUM50 matrix. The bootstrap analysis of the smaller tree using
neighbor joining was performed using PHYLIP (Felsenstein 1989)
downloaded October 2006 with 100 replicates. Function annota-
tions were assigned to proteins from the literature by contrasting
different levels of experimental evidence for a given hydrolase to
prune the less specific substrates from a larger list of assayed com-
pounds. We set the truncation level to T = 1 for all of the SIFTER
Nudix experiments. We ran BLASTon this family because we could
manually build the text parser to include all of the candidate func-
tions from our modified ontology. We did not run BLAST-GO, PFP,
FFPred, or ConFunc here because the reorganized GO hierarchy
would not enable a comparison between SIFTER or BLAST results
and results from these GO-based methods.

Fungal genomes data

The genomes from 46 different fungal species had been sequenced
as of June 2006. Gene finding was performed in each genome using
several different methods; for details, see Stajich (2006). We searched
each resulting protein for Pfam domains using hmmsearch (Eddy
1998) for the Pfam-A domains available in Pfam version 20.0. We
aligned each set of homologous fungal proteins to each other using
hmmalign based on the Pfam-A HMM profile for that family do-
main (Eddy 1998). We reconstructed phylogenies for each domain
with PAUP* version 4.0b10, using maximum parsimony with a
BLOSUM50 matrix when the size of the alignment file was <10,000
kB, and neighbor joining with default parameters when the size of
the file exceeded that. We reconciled the trees against a species tree
(Supplemental Fig. 10) using Forester version 1.92 (Zmasek and Eddy
2001). Pfam domains with fewer than four protein sequences from
the 46 fungal genomes were eliminated.

We gathered molecular function annotations for each fungal
protein in a Pfam-A domain from the GOA database by running
BLAST version 2.2.4 (Altschul et al. 1990) for each protein against
the UNI-PROT fasta database, downloaded September 23, 2006 (The
UniProt Consortium 2010), with an E-value cutoff of 1 3 10�100. We
found exact hits with identical species to map the UNI-PROT iden-
tifiers to the proteins in the fungal genomes. We extracted molecular
function annotations from the GOA UniProt database 42.0.

For each family with experimental annotations from multiple
species including S. pombe, we removed the experimental anno-
tations for S. pombe proteins in order to predict those annotations
using the available experimental annotations. We computed pos-
terior probabilities once for each family, using SIFTER default pa-
rameters. SIFTER runs were performed exactly for families with
fewer than nine candidate functions; otherwise, we truncated at
two for nine to 19 candidate functions and at one for 20 or more
candidate functions. As elsewhere, if there were multiple predic-
tions for a single protein (because it was in multiple Pfam-A fam-
ilies), we used the correct one to compute accuracy. We did not run
BLAST because it is prohibitively time-consuming to build a key-
word parser for all of these molecular functions.
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