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The incompleteness of proteome structure and function annotation is a critical problem for biologists and, in particular,
severely limits interpretation of high-throughput and next-generation experiments. We have developed a proteome an-
notation pipeline based on structure prediction, where function and structure annotations are generated using an in-
tegration of sequence comparison, fold recognition, and grid-computing-enabled de novo structure prediction. We
predict protein domain boundaries and three-dimensional (3D) structures for protein domains from 94 genomes (in-
cluding human, Arabidopsis, rice, mouse, fly, yeast, Escherichia coli, and worm). De novo structure predictions were dis-
tributed on a grid of more than 1.5 million CPUs worldwide (World Community Grid). We generated significant numbers
of new confident fold annotations (9% of domains that are otherwise unannotated in these genomes). We demonstrate that
predicted structures can be combined with annotations from the Gene Ontology database to predict new and more
specific molecular functions.

[Supplemental material is available for this article.]

Annotation of protein structure and function is a fundamental

challenge in biology. Accurate structure annotations give re-

searchers a three-dimensional (3D) view of protein function at the

molecular level that enables specific point-mutation analysis or

the design of custom inhibitors to disrupt function. Accurate func-

tion annotations give researchers specific testable hypotheses about

the role a protein plays in the cell and also allow biologists to better

interpret the role of uncharacterized genes from high-throughput

experiments (e.g., mass spectrometry co-IP, yeast two-hybrid

screens, microarray, RNAi screens, or forward-genetic screens).

Unfortunately, experimental annotation efforts fail to cover large

portions of all proteomes and are often focused on model organ-

isms. Current computational function prediction methods can ex-

tend coverage to any sequenced genome (i.e., non-model organ-

isms) but can only annotate proteins that have high sequence

similarity to well-characterized proteins. Motivated by the obser-

vation that structure is more conserved than sequence (Chothia and

Lesk 1986), our method extends function annotation coverage to

many unannotated protein domains by comparing computation-

ally predicted structures to well-characterized proteins with known

structures.

Current computational protein annotation methods can be

broadly grouped into four categories: (1) Primary sequence-feature

annotation methods predict general features of a protein such as

disorder content (DISOPRED) ( Jones and Ward 2003), secondary

structure (PSIPRED) ( Jones 1999), transmembrane helices (TMHMM)

(Krogh et al. 2001), coiled-coils (COILS) (Lupas et al. 1991), or signal

peptides (SignalP) (Bendtsen et al. 2004) and can be efficiently

applied to full proteomes but have limited ability to describe the

specific function of individual proteins in a cellular context. (2)

Sequence comparison methods (e.g., BLAST) (Altschul et al. 1997)

including methods and databases that organize proteins into

families (CATH [Orengo et al. 1997], SCOP [Murzin et al. 1995],

Pfam [Finn et al. 2008]) and fold recognition methods (FFAS)

( Jaroszewski et al. 2005), can generate putative function annota-

tions (for a complete review, see Lee et al. 2007) but are limited in

their application to the set of proteins with sequence detectable

homologs or significant sequence matches. (3) Several groups have

used machine learning techniques to integrate high-throughput

experimental data, such as gene expression and protein–protein

interactions, to predict protein function (Marcotte et al. 1999;

Bader and Hogue 2002; Hazbun et al. 2003; Troyanskaya et al.

2003; Lee et al. 2004; Pena-Castillo et al. 2008), but these data sets

are not generally available for all organisms and therefore limit

these methods’ coverage. (4) Several studies have shown that

protein structures derived from either large-scale protein experi-

mental determination (Matthews 2007; Dessailly et al. 2009) or

large-scale protein prediction (homology modeling, fold recogni-

tion, and de novo) significantly increased the annotation coverage
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of proteomes and often provided site-specific information such as

probable functional sites and surfaces (Bonneau et al. 2004; Ginalski

et al. 2004; Malmström et al. 2007; Pieper et al. 2009; Zhang et al.

2009). Homology modeling is increasingly productive as more

structures are solved, however, many proteins and protein domains

lack detectable homologous proteins in the Protein Data Bank (PDB)

(Marsden et al. 2007). De novo structure prediction methods do not

require sequence homology with known structures and can, in

principle, provide annotation coverage to proteins unreachable by

homology modeling. Unfortunately, de novo prediction methods

require vast computational resources, and because of this, published

pipelines that include de novo structure prediction are incapable of

keeping pace with incoming genomic data.

This study focuses on this fourth type of annotation method

via structure prediction. Here we describe the proteome folding

pipeline (PFP), a protein-domain-level fold and function annota-

tion method that combines de novo (Rosetta) (Rohl et al. 2004), fold

recognition, and sequence-based structure assignment methods

into a single pipeline that significantly extends functional and

structural proteome annotation coverage for 94 complete genomes

(as well as several new protein families from recent metagenomics

studies). The computational cost of performing de novo structure

prediction was distributed on a grid of more than 1.5 million CPUs

worldwide (World Community Grid; http://www.wcgrid.org). De

novo structures and sequence-based comparisons were used to

assign predicted protein domains into the Structural Classification

of Proteins (SCOP), a hierarchical classification of protein 3D

structure (Murzin et al. 1995). We demonstrate our ability to in-

tegrate these predicted SCOP classifications with information from

the Gene Ontology (GO) database (Ashburner et al. 2000) to pre-

dict molecular functions, which increases the completeness, ac-

curacy, and specificity of protein domain annotations. We de-

veloped confidence levels and error models for de novo and SCOP

classification methods based on a double-blind benchmark of our

own construction containing 875 recently solved proteins and

characterized the error and yield associated with each product of

our pipeline (domains, structure, and function). We provide three

interfaces to our database: a Cytoscape (Shannon et al. 2003) net-

work interface that highlights novel structure and function pre-

dictions in the context of protein interaction networks (Avila-

Campillo et al. 2007); a web interface that allows users to search for

specific genes of interest, http://www.yeastrc.org/pdr/ (Riffle et al.

2005); and a BLAST interface that allows searches using individual

sequences (http://pfp.bio.nyu.edu/blast/index).

Results

Proteome folding pipeline applied to 94 genomes

We have applied our pipeline to more than 389,000 proteins from 94

genomes (Fig. 1 describes the full pipeline using a hypothetical

protein from Lactobacillus prophage; Supplemental Table S1 details

the full set of genomes analyzed). First, the domain prediction pro-

tocol Ginzu (Chivian et al. 2003, 2005) uses primary sequence-based

annotation methods to predict secondary structure (PSIPRED) ( Jones

1999), disordered regions (DISOPRED) ( Jones and Ward 2003), signal

sequences (SignalP) (Bendtsen et al. 2004), coiled-coils (COILS)

(Lupas et al. 1991), and transmembrane regions (TMHMM) (Krogh

et al. 2001). PSI-BLAST (Altschul et al. 1997) is then used to identify

structures in the PDB with high sequence similarity to regions of the

query protein, referred to as ‘‘PDB-BLAST hits.’’ At this stage, more

than 314,000 domains from the set of input proteins were identified.

Next, we use the fold recognition algorithm FFAS03

( Jaroszewski et al. 2005) to match more evolutionarily distant se-

quences in the PDB, producing an additional 58,000 domains with

significant matches to domains in the PDB. We then use additional

methods, including identifying Pfam domains (Finn et al. 2008), an

algorithm for predicting domains from multiple sequence align-

ments (MSA), and a heuristic-based algorithm for delineating do-

main boundaries to identify additional putative domains (Chivian

et al. 2003, 2005). These methods combined to identify an additional

325,000 domains. In total, our domain prediction produced nearly

700,000 domains for the 389,000 query proteins, which serve as the

basis for our domain centric annotation of these proteins. We then

used the Rosetta de novo protocol (Rohl et al. 2004) to predict the 3D

structure of those domains lacking structure annotation (i.e., Pfam,

MSA, and heuristic domains) and that are less than 150 residues in

length. We predicted de novo folds for 57,000 domains on IBM’s

World Community Grid (requiring more than 100,000 yr of CPU

time, resulting in one of the largest repository of protein structure

predictions publicly available). The final step in the pipeline classifies

predicted protein domains into structural superfamilies (SCOP).

PDB-BLAST and FFAS03 domains are assigned the superfamily of the

PDB structure to which they matched, while a logistic regression

model is used to classify de novo structures into SCOP superfamilies

based on the Rosetta predictions and estimated error associated with

these structure predictions (Malmström et al. 2007). In all, our

pipeline classified more than 250,000 domains into SCOP super-

families of which nearly 43,000 are considered both confident (based

on our benchmarks) and novel (FFAS03 and de novo).

Domain prediction

As described above, we first produced protein domain predictions

for each protein in the 94 genomes processed. The domain pre-

diction program Ginzu allows us to hierarchically organize all

structure prediction methods, ensuring that each domain has

a structure annotation or prediction derived from the most accurate

and most computationally efficient method possible. Supplemental

Figure S1 shows the domain types assigned by our pipeline for

several representative organisms. PDB-BLAST and FFAS03 annotate

an average of 47% and 9%, respectively, of all proteomes (Supple-

mental Fig. S1) and together assign a structure to 51% of eukaryotic

domain sequences, agreeing very closely with previous efforts

(Marsden et al. 2007). Our predictions for the human proteome

have a slightly higher coverage of domain sequences, by these two

methods (62%), while many pathogenic eukaryotic organisms are

sparsely annotated and are observed to have lower PDB-BLAST and

FFAS03 coverage, for example, Trypanosoma cruzi (41%) and Plas-

modium vivax (37%). Domain coverage across all 94 genomes

(Supplemental Fig. S1; Supplemental Table S1) confirms that our

analysis provides broad coverage of structure annotations even be-

fore de novo methods are applied and that our strategy for pre-

dicting domain boundaries is extensible to a wide variety of or-

ganisms. Additionally, our pipeline produced 29,000 Pfam, 105,000

MSA, and 190,000 heuristic domains totaling 324,000 predicted

protein domains annotated by these three methods (which do not

assign structures to domains). It is important to note that in our

pipeline, Pfam annotates a smaller-than-expected number of do-

mains because a large number of domains are removed from con-

sideration by PDB-BLAST and FFAS before Pfam is applied. This is

consistent with our effort throughout the pipeline to first assign

a high-confident structure to individual domains before proceeding

to lower-confidence structure methods (i.e., de novo).
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De novo structure prediction and SCOP superfamily
classification of structure predictions

We used the Rosetta de novo protocol to predict 3D models for

domains not annotated by PDB-BLAST and FFAS. Resulting struc-

ture predictions were then used to predict SCOP superfamilies for

each domain. Rosetta is a de novo protein structure prediction

algorithm that uses fragments of proteins from the PDB to generate

local structure during a Monte Carlo optimization that then

produces ensembles of low-energy protein conformations. The

Rosetta de novo protocol does not require homology with a solved

structure in the PDB and is thus theoretically applicable to all

protein domains. In practice, however, the algorithm does not

scale to protein domains larger than 150 residues (roughly half of

protein domains are too large for Rosetta). Rosetta de novo has

been very successful in CASP competitions and often predicts

structures for protein domains lacking detectable homology with

known structures to within 5 Å RMSD of the native structure or

better (Bradley et al. 2005). Structure fragment libraries are pro-

duced by comparing the sequence and secondary structure (pre-

dicted using PSIPRED) of three- and nine-amino-acid windows of

query sequences to a non-redundant set of PDB entries. Because of

Figure 1. Flow diagram of the proteome folding pipeline using Lactobacillus prophage hypothetical protein Ljo_0324 as an example. (A) The Ljo_0324
sequence is first annotated with primary and secondary structure (PSIPRED, DISOPRED, and [not shown] TMHMM, COILS, and SignalP). (B) PDB-BLAST
(PSI-BLAST) and fold recognition (FFAS03) are then used to compare the input sequence to the PDB database to identify a similar sequence/structure. (C )
Regions of the protein sequence still unannotated are processed by Pfam, multiple sequence alignments (MSA), and a heuristic method for domain
identification. (D) Domains <150 amino acids are then sent to the computational grid, where the three-dimensional structure is predicted by Rosetta. (E )
Finally, domains with structural annotations (de novo, BLAST, or fold recognition) are classified into SCOP superfamilies. Regions annotated in each level of
the figure are outlined in black, and regions annotated in previous levels are outlined in dotted lines. This example can be found online at http://
www.yeastrc.org/pdr/viewProtein.do?id=2155068.
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the computational cost of running Rosetta on the genome-wide

scale, we initiated the Human Proteome Folding Project in collabo-

ration with IBM’s World Community Grid (WCGrid). WCGrid makes

use of idle CPU time on volunteered personal computers around the

world to form a very large virtual supercomputer. As of September 25,

2010, there are more than a half million volunteers and nearly 1.6

million devices capable of running Rosetta on WCGrid. Fragment

libraries and query sequences were submitted to WCGrid where the

Rosetta de novo protocol was executed resulting in structure pre-

dictions for 57,000 domains between 40 and 150 residues in length

(see Methods). The resulting ensemble of structures predicted for

each domain was clustered using root mean squared distance (RMSD),

and five of the top de novo predictions (cluster centers) are publicly

provided through our web interface, where they can be viewed di-

rectly in a web browser or downloaded for further analysis.

We have used our de novo structure predictions to predict the

SCOP superfamily for each predicted domain generated as de-

scribed above. The SCOP database describes structural and evolu-

tionary relationships of proteins with known structure (the CATH

database would also have functioned as an appropriate fold on-

tology for this study). SCOP organizes protein structure by a set of

hierarchical classes, folds, superfamilies, and families. We make

predictions at the SCOP superfamily level (e.g., a.4.5, ‘‘winged

helix’’ DNA-binding domain) because proteins within the same

superfamily have high structural similarity and often share func-

tional features.

For each protein domain, top-ranked Rosetta predictions

were compared to a representative set of known structures, which

are classified in SCOP. Structure comparisons were made with

MAMMOTH (Ortiz et al. 2002), which returns the statistical signif-

icance (Z-score) of the best gapped alignment between two pro-

tein structures. A logistic regression model was then used to

estimate the probability (MAMMOTH confidence metric, MCM

score) (Malmström et al. 2007) of each protein domain belong-

ing to a SCOP superfamily. The regression model’s parameters

consist of MAMMOTH Z-score, Rosetta convergence score, contact

order of the predicted structure, and a sequence length ratio between

the SCOP superfamily representative and the protein domain se-

quence. We demonstrate, below and in previous work (Malmström

et al. 2007), that our MCM score separates true predictions from in-

correct conformations and allows us to classify proteins for which no

valid predictions were generated by other methods.

Table 1 shows the number of SCOP classifications that were

made for all protein domains processed by our pipeline. More than

57,000 domains were de novo folded and classified into a SCOP

superfamily, of which 12,500 (21.8%) are considered medium

confident (MCM score $ 0.8, about two out of three correct; see the

next section) and 4500 (7.9%) are considered high confidence

(MCM score $ 0.9, about four out of five correct; see the next

section). In addition, we also assigned SCOP superfamilies based on

sequence similarity for domains identified by PDB-BLAST and

FFAS03, which were annotated using the alignment to the matching

PDB entry’s SCOP classification (if classified). Using these methods

to assign SCOP superfamilies has been shown to be successful while

introducing very few false positives (Rychlewski et al. 2000). Table 1

shows the number of PDB-BLAST and FFAS03 domains classified by

the PFP with SCOP superfamilies. Of the 314,000 PDB-BLAST do-

mains, 207,700 (66%) were annotated with a SCOP superfamily,

and of the 58,000 FFAS03 domains, 30,000 (52%) were annotated

with a SCOP superfamily. In total, our pipeline assigned or predicted

SCOP superfamilies for more than 295,000 domains out of the

nearly 700,000 predicted domains.

Validation of de novo superfamily predictions

In this section, we assess the accuracy of our SCOP superfamily

classifier using a benchmark of 875 proteins solved after our

Rosetta predictions were made (Supplemental Table S5). Previous

test sets used for determining accuracy of the MCM score func-

tion were composed of predictions made on proteins with struc-

tures already in the PDB (Malmström et al. 2007). The use of a test

set based only on the PDB is not ideal because it does not reflect

the error associated with domain prediction, can overestimate the

performance (as the PDB is used to create fragment library), and

can only account for folds currently present in the SCOP data-

base. To address these issues, we compiled a set of 875 de novo

structure predictions, from the full set of 57,000 de novo pre-

dictions, whose structures (or highly similar protein, BLAST e-

value of 10�5 or less; see Methods) were experimentally solved

after Rosetta fragment library selection; we refer to this set of 875

proteins as the ‘‘Solved after Predicted’’ (SAP) set (Supplemental

Table S5). The top 25 cluster centers for each sequence in the

SAP set were first classified into SCOP superfamilies (described

above), and then the superfamily with the highest MCM score

was compared to the true superfamily of the native structure. We

correctly classified 47% (407) of the domain structures out of the

875 in the SAP set (Table 2) with our top-ranked prediction. Figure

2 (top and middle) shows correct versus incorrect predictions

broken down by SCOP class. Figure 2 (bottom left) shows a pre-

cision/yield curve for the SAP set, where predictions are ordered

by their MCM score and plotted according to their precision. An

MCM score threshold of 0.9 yields 38% (333) of all predictions

made in the SAP set and is 78% accurate (Fig. 2, bottom left; Table

2). Our overall performance on the SAP set demonstrates our

ability to accurately classify structure predictions into superfam-

ilies. Additional analysis of the validation of this benchmark can

be found in Supplemental Material S2.2.

Table 1. Superfamily classifications for domains processed by the PFP

SCOP class
PDB-BLAST total

(%)
FFAS03 total

(%)
De novo
total (%)

De novo
MedConf (%)a

De novo
HighConf (%)b

A 45,500 (21.9%) 6148 (20.4%) 35,765 (62.3%) 8649 (24.2%) 3432 (9.6%)
B 35,117 (16.9%) 4929 (16.3%) 3117 (5.4%) 526 (16.9%) 140 (4.5%)
C 57,196 (27.5%) 3999 (13.2%) 3874 (6.8%) 590 (15.2%) 170 (4.4%)
D 38,152 (18.4%) 5433 (18.0%) 12,463 (21.7%) 2204 (17.7%) 584 (4.7%)
Other 31,721 (15.3%) 9674 (32.1%) 2147 (3.7%) 559 (26.0%) 197 (9.2%)
All 207,686 30,183 57,366 12,528 (21.8%) 4523 (7.9%)

aMCM score > 0.8.
bMCM score > 0.9.
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Quality of superfamily predictions and underlying structure predictions

In several cases, Rosetta produced relatively accurate structure

models, but we failed to assign the correct SCOP superfamily be-

cause the protein fold was not yet annotated in SCOP or was sparsely

sampled. In this section, we characterize sources of error that affect

our ability to accurately classify proteins into SCOP superfamilies. To

properly account for a correct superfamily not being classified in the

SCOP database, we ran our SAP set on an earlier version of SCOP

(v1.67), which was released prior to our de novo predictions. Our

analysis of incorrectly classified SCOP superfamilies in the SAP set

revealed three main distinct sources of error: (1) errors due to the

absence of the target fold in SCOP; (2) errors due to inaccuracy of

predicted structures; and (3) errors due to incorrect classification of

an accurate structure.

The first type of error is due to the true fold/superfamily not

being represented in our structure comparison set. There are 554

new superfamilies in the current version of SCOP (v1.75) that were

absent in the previous version (1.67). Figure 2 (bottom right) shows

a histogram of the incorrectly classified models in the SAP set.

Shaded in yellow is the portion of incorrect classifications where

the true superfamily is a new superfamily. New superfamilies are

the major source of error in our classification method and account

for ;62% of the total error in the SAP set. We believe this error type

will become less significant as the protein fold space is more

thoroughly sampled and more superfamily representatives are in-

cluded in our structure comparison set. It should be noted that this

type of error is absent from previously reported benchmarks based

solely on the PDB because the test structures are already classified

in the SCOP database.

The next source of error stems from error in the de novo pre-

dicted model. We estimate this by determining if the predicted

structure is more similar (by MAMMOTH structure alignment) to

the incorrect superfamily than the true superfamily (Fig. 2, bottom

right panel, shaded gray) (see Methods). Structures that are more

similar to the incorrect superfamily are classified incorrectly due to

insufficient quality of 3D Rosetta models, and this error is estimated

to constitute ;28% of the total error. Further developments to the

Rosetta de novo protocol and increased sampling may alleviate this

error in the future.

The final source of error stems from error in our superfamily

classifier method. This error arises when Rosetta produces an ac-

curate model but our classifier method chooses an incorrect su-

perfamily in spite of the fact that a structure with the correct su-

perfamily exists in our database (Fig. 2, bottom right panel, shaded

green) (see Methods). Error attributed to the classifier method is

minimal compared to other error types, ;10% of total error. In-

terestingly, several of the models in this error class have the true

superfamily ‘‘alpha–beta sandwich, ACT-like’’ (d.58.18). A recent

study describing the CATH hierarchy of structural classification (a

classification of 3D protein structures similar to SCOP) describes

this fold (CATH Architecture 3.30) to be in a continuous, densely

populated region of protein fold space where several independent

folds have similar features (Cuff et al. 2009). Our superfamily

classifier depends on structural differences, so distinguishing be-

tween two closely related folds is more difficult and, therefore,

requires the highest level of structural accuracy and increased

sampling of fold space. We believe that continuous regions of fold

space will be a persistent, albeit small, source of error for our

method and similar structure-based methods.

In line with our estimates of the relative importance of these

three main sources of error, we find that our fold-prediction yield

on the SAP set more than doubles when we update our fold data-

base from SCOP release 1.67 to 1.75 (Supplemental Fig. S2).

We next asked if the de novo structure models are valuable

alone, independent of SCOP superfamily classification. We used

MAMMOTH to compare each of the 875 de novo predictions in the

SAP set to their experimental structure. Supplemental Figure S3

shows that our superfamily classifier scores are well correlated with

model similarity via the MAMMOTH Z-score, which accounts for

length and RMSD of structure similarity to the true structure. This

shows that the superfamily classifier score is predictive of not only

superfamily classification accuracy but also model accuracy, allow-

ing de novo models to be used in other applications that do not

require superfamily classification such as active-site localization or

prediction of residue surface accessibility (see Supplemental Fig. S4).

Molecular function prediction

We next demonstrate that SCOP superfamily predictions can be

integrated with additional information annotated to a protein to

predict gene ontology (GO) molecular functions in an automated

way. GO is a controlled vocabulary of molecular function (GO-

MF), biological process (GO-P), and cellular component (GO-C)

terms suitable for automated transfer among proteins. We focus on

the integration of structural information with GO-P and GO-C due

to the wide availability of these predictors across many of the ge-

nomes analyzed. Many structural superfamilies exhibit a diverse

set of compatible GO-MF annotations, and additional evidence is

needed to determine a specific function for an individual protein

domain. For example, the SCOP immunoglobulin superfamily

(sccs: b.1.1) is annotated with several function terms including

protein binding (PDB ID: 3D2U), transporter activity (PDB ID:

2ZJS), and structural molecule activity (PDB ID: 1ACY), among

others. The function of an immunoglobulin protein can only be

understood in the context of its localization and interaction

partners in the cell (information that can be found in databases or

Table 2. Superfamily classifications for SAP structures

SCOP class Total (%)
Total correct

(%)
MedConf

(%)a
MedConf correct

(%)a
Yield

MedConfa
HighConf

(%)b
HighConf correct

(%)b
Yield

HighConfb

A 303 (34.6%) 122 (40.3%) 186 (61.4%) 106 (57.0%) 21.3% 138 (45.5%) 95 (68.8%) 15.8%
B 97 (11.1%) 41 (42.3%) 27 (27.8%) 12 (44.4%) 3.1% 11 (11.3%) 9 (81.8%) 1.3%
C 113 (12.9%) 35 (31.0%) 59 (52.2%) 30 (50.8%) 6.7% 33 (29.2%) 24 (72.7%) 3.8%
D 340 (38.9%) 202 (59.4%) 209 (61.5%) 170 (81.3%) 23.9% 142 (41.8%) 125 (88.0%) 16.2%
Other 22 (2.5%) 7 (31.8%) 10 (45.5%) 6 (60.0%) 1.1% 9 (40.9%) 6 (66.7%) 1.0%
All 875 407 (46.5%) 491 (56.1%) 324 (66.0%) 333 (38.1%) 259 (77.8%)

aMCM score > 0.8.
bMCM score > 0.9.
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extracted from high-throughput experiments for several organ-

isms and described by GO-P or GO-C). Conversely, structural evi-

dence may allow for the refinement of a general function anno-

tation (e.g., binding) inferred by localization or process evidence to

a more specific function annotation (e.g., miRNA binding). To this

end, we have developed a naive Bayes classifier that integrates GO-

P and GO-C annotations with predicted SCOP superfamily classi-

fications to predict GO-MF terms.

For each GO-MF term in the GO database, our method first

calculates the likelihood the MF term is true (LT) and the likelihood

the term is false (LF) for an individual predictor (i.e., GO-P, GO-C,

superfamily classifications). A ratio of LT over LF is then calculated

and the log of the ratio is taken, producing an individual log

likelihood ratio (LLR) score. The individual LLR is calculated for

each independent predictor classified to the query protein. The

individual LLR score for the structure (S) predictor is scaled to re-

flect the confidence we have in the structure assignment (e.g., de

novo LLR is scaled by MCM score). Individual likelihoods are cal-

culated using frequency counts of training sequences annotated

with GO-MF and that have GO-P annotations, GO-C annotations,

or high-quality BLAST matches to SCOP superfamily representa-

tives. Due to the conditional dependence of GO-P and GO-C terms

within their respective branches of the GO tree, a feature selection

method was implemented to restrict GO-P and GO-C to a focused

conditionally independent set. We selected one GO-P and one GO-

C (when available) with the highest mutual information with each

potential GO-MF term for the calculation of an individual LLR

score. Finally, all individual LLR scores for the GO-MF term were

summed to produce an overall LLR score. See the Methods section

for a complete description. An overall LLR score greater than zero

can be interpreted as being more likely to be true than false, and we

therefore consider an LLR >0 to be confident.

Yield of function predictions using superfamily classifications

We applied our function prediction method to 295,000 domains

with PDB-BLAST, FFAS03, and de novo superfamily classifications.

We confidently predict specific GO-MF for 44% (129,000) (Supple-

mental Table S4) of domains (LLR >0: prediction is more likely true

than false and GO-MF is annotated to <2% of proteins in our

training set). We confidently predicted novel GO-MF annotations

for 15% (22,000) of the 147,000 domains that lack any GO-MF

(Supplemental Table S4), and therefore the addition of structural

evidence derived from our predictions significantly increases the

coverage of function annotation to unannotated proteins and pro-

tein domains. In addition, our function predictions are applied di-

rectly to domains, which begins to address the need for site-specific

annotation in multidomain proteins.

The value of function predictions is seen not only for un-

annotated domains but also for ‘‘underannotated’’ domains, which

are domains that have either a general function (but not one specific

enough to fully characterize the domain) or multiple functions ( but

are currently only annotated with one). We confidently predicted

specific functions for 87,000 domains for which we either extended

a generic annotation or predicted a new function altogether. In all,

we provided confident function predictions for 109,000 under- and

unannotated domains, which makes up a significant fraction (37%)

of domains for which structure predictions were generated.

Accuracy of function prediction method

To determine the accuracy of our function prediction method, we

created a benchmark using sequences processed with our pipeline

that are currently annotated with one or more specific GO-MF

term (see Methods). We first examined the accuracy of our

function predictions made using PDB-BLAST structure evidence.

PDB-BLAST is the highest-confidence structure assignment

method and provides an upper bound on the confidence and

expected yield of function predictions. Figure 3 (upper left) shows

that integrating PDB-BLAST structural evidence with GO Process

(GO-P) and Component (GO-C) (PCS, green) improves prediction

accuracy over only using GO-P and GO-C (PC, red) for a random

sampling of 5000 GO-MF annotated eukaryotic proteins. All com-

binations of predictors involving structural evidence show im-

proved performance, and the combination of PCS performs best

with >20% recall of known molecular functions at 50% precision.

This result confirms that molecular function predictions are

more accurate using structural evidence at the level of the SCOP

superfamily.

Figure 2. Distribution of SCOP superfamily classifications. (Top and
middle) A set of 875 protein domains (SAP set) folded by Rosetta and
whose structure (or protein with strong sequence similarity) has been
solved after our prediction was used to determine the accuracy of our
method’s ability to correctly classify SCOP superfamilies. Plotted in solid
lines and dotted lines are the number of correct and incorrect classifica-
tions, respectively. Classifications are broken down by SCOP class A (a;
blue), B (b; yellow), C (b–a–b; red), and D (segregated a and b; green).
This graph demonstrates that classifications with high MCM scores are the
most accurate in classifying the SCOP superfamily. (Bottom left) The pre-
cision/yield plot shows the percentage of protein domains in the SAP set
classified using SCOP v1.75 for varying precisions. The line is colored
relative to MCM score (right axis). (Bottom right) The histogram of su-
perfamily classification error types represents the total number of in-
correctly classified models in the SAP set for different MCM score ranges
using a previous version of SCOP (v1.67). ‘‘New SF error’’ is the error due
to a new superfamily (i.e., the true superfamily was not represented in the
structure comparison set), 62% of total error. ‘‘Decoy error’’ is the error
due to insufficient de novo model quality, 28% of total error. ‘‘Classifier
error’’ is the error due to the superfamily classifier being inaccurate, 10%
of total error.
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Performance of function predictions using FFAS03 structure

evidence were also evaluated using a random sampling of 5000

eukaryotic proteins. Figure 3 (upper right) highlights the integrative

performance of FFAS03 structural evidence with other GO in-

formation. This shows that the inclusion of fold recognition struc-

tural evidence with GO-P and GO-C (green) mostly outperforms GO-

P and GO-C alone (red). The decrease in performance of fold recog-

nition evidence in comparison to PDB-BLAST (7.5% recall at 50%

precision) can be attributed to the error associated with the longer

evolutionary distance between query and matched proteins, causing

greater functional divergence and a result of incomplete annotation

of benchmark domains. The increase in accuracy when integrating

fold recognition structure evidence in comparison to GO-P and GO-

C evidence alone shows that structure evidence at multiple levels of

confidence can be used to predict molecular function.

Creating a proper benchmark to address the accuracy of

function predictions based on de novo structure evidence is gen-

erally a more difficult task than creating a benchmark to judge

structural accuracy of predictions. Because our pipeline annotates

domains with the highest confidence method first, domains with

de novo structure predictions are less likely to be annotated with

GO functions shrinking the pool of domains from which we can

draw our benchmark. Therefore, benchmarking de novo function

predictions is complicated by the limited ability to distinguish

between a false prediction and a true prediction that is not cur-

rently annotated. In this study, de novo function predictions from

a subset of the SAP set with known GO-MF annotations were used

as a blind benchmark and show that de novo structure evidence

can be used in combination with GO-P and GO-C to predict mo-

lecular function (Supplemental Fig. S7). It is important to keep in

mind, however, that the SAP set is an imperfect benchmark be-

cause of its relatively small size with respect to fold recognition-

based function predictions. Nevertheless, we are encouraged by

this result. We anticipate that as additional function and structure

annotations are deposited in GO and the PDB, respectively, we will

be able to expand our SAP set and better calibrate our error esti-

mates for de novo–based function prediction.

Structural information produces unique function predictions and increases
the specificity of function predictions derived from other methods

An examination of the molecular function predictions made by

our pipeline shows that structural evidence not only improves our

predictive accuracy (see section above) but also allows us to make

predictions for a novel set of function terms and a novel set of

proteins that are not made using the GO-P and GO-C evidence

alone. We first made predictions for a random sampling of FFAS03

Figure 3. Function prediction method with structure information outperforms method without structure information. (Upper panel) Precision versus
recall for eukaryotic function predictions separated by the type of structure evidence. The graph shows the precision of function predictions versus recall
(fraction of all true annotations) for sequences that were structurally classified by PDB-BLAST (left) and FFAS03 (right). (Red lines) The prediction method
using GO process and component (PC). (Green lines) The prediction method using GO process, component and structure (PCS). The graph shows adding
structure information from PDB-BLAST and FFAS03 improves precision for function prediction. (Lower panel) Function prediction methods using structure
information produce novel function predictions for a unique set of proteins. Functions were predicted for FFAS03 domains with SCOP classifications from
a random sampling of 5000 proteins with known molecular function. (Black lines) Functions (lower left) and proteins (lower right) predicted by both
predictor methods. (Red lines) Functions (or proteins) predicted only by PC. (Blue lines) Functions (or proteins) predicted only by PCS. The predictions
made with the integration of structure with process and localization terms annotate a unique range of molecular functions and proteins that would be
otherwise unreachable.
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annotated eukaryotic domains using two evidence sets, one with

structure information, PCS (GO-P, GO-C, and SCOP superfamily),

and one without structure information, PC (GO-P, GO-C). We then

determined all of the unique MF terms predicted by both evidence

sets and divided them into sets of functions that were predicted (1)

only by PCS, (2) only by PC, and (3) by both, which resulted in 636

unique function terms (precision > 50%) (Fig. 3, lower left). Of

these 636 function terms, the PCS evidence set (includes structure)

predicted 306 unique function terms. This is in comparison to only

29 function terms that were uniquely predicted by the PC evidence

set (the remaining 301 unique function terms were predicted by

both), which suggests that the addition of structural information

as a function predictor allows for the prediction of a greater

number of function terms.

We also asked what set of proteins required structure evidence

for confident function annotation. Figure 3 (lower right) shows that

21% (359) of the sample set of proteins are confidently annotated by

PCS compared to 10% (183) only annotated by PC (a remaining

1201 proteins were annotated by both evidence sets). These results

demonstrate that function predictions incorporating structural ev-

idence aid in annotating both an expanded set of function terms

and protein domains. This, taken with the above results, shows that

our function predictions accurately annotate substantial portions of

proteomes that are unreachable by other methods.

Example predictions

Expansion of the transglutaminse fold family in Deinococcus radiodurans
represents a key adaptation to ionizing radiation

Deinococcus radiodurans can withstand extremely large doses of

ionizing irradiation (Cox and Battista 2005). A previous study of

the D. radiodurans genome has shown enrichment of specific

protein families related to stress response

and damage control based on sequence

comparisons to other bacterial organisms

(Makarova et al. 2001). We performed fold

superfamily enrichment analysis based on

our proteome-wide predicted superfam-

ilies for D. radiodurans (4864 protein do-

mains from the PFP pipeline) (Table 3A).

Our analysis recovered many of the pre-

vious study’s enriched protein families in-

cluding PR-1-like, Subtilisin-like, Nudix

hydrolases, and DinB/YfiT-like folds. Our

work expands structure prediction coverage

and reveals several enriched protein folds

not reported in these prior comparisons; in

particular, we predict that the D. radio-

durans proteome contains 10 or more pro-

tein domains with the transglutaminase

fold. The transglutaminase fold has been

shown to participate in the nucleotide ex-

cision repair (NER) pathway (the yeast

protein RAD4 is homologous to the several

members of the transglutaminase family)

(Anantharaman et al. 2001). The unchar-

acterized D. radiodurans gene, DR1901,

predicted by this study to have a trans-

glutaminase fold, exhibits a 10-fold in-

duction in gene expression in response to

radiation (Liu et al. 2003), supporting the

hypothesis that several of the unannotated proteins we predict to

have a transglutaminase fold are directly involved in D. radio-

durans’s response to ionizing radiation, likely by participating in

the NER pathway in a manner similar to RAD4.

Novel structure predictions reveal an enrichment of several new signaling
and virulence related fold families in the P. vivax proteome

P. vivax is a human malaria parasite that has recently shown resistance

to common drug treatments (Rieckmann et al. 1989). We used our

structure predictions to uncover specific folds that are significantly

expanded in this pathogen (Table 3B). Two protein families com-

monly found in Plasmodium genomes, and already known to play

a key role in pathogenesis, were recovered: major surface antigen and

Duffy binding domain-like. Newly detected enriched folds include

FKBP12-rapamycin binding (five instances of this fold were predicted

by the Rosetta de novo protocol). Rapamycin is an immunosup-

pressant known to interact with several proteins including mTOR

and FKBP12 (Zhou et al. 2010); these domains may be involved in the

parasite’s interactions with the host immune system during initial

stages of infection. Other enriched folds include virulence factors

such as the Adhesin YadA fold and the protease cathepsin, which

make potential drug targets for further study. Our predictions repre-

sent interesting candidate members of the already complex host–

pathogen interaction network currently characterized for P. vivax.

CC_3056 (Caulobacter crescentus) is a truncated hemoglobin fold

The truncated hemoglobin family is a 2/2 a-helical fold present in

bacteria with functions including NO dioxygenation, oxidation/

reduction, and respiration (Vinogradov and Moens 2008). The

Caulobacter crescentus hypothetical protein CC_3056 was folded

using Rosetta (Fig. 4A) and confidently classified in the ‘‘Globin-

like’’ superfamily (sccs:a.1.1, MCM = 0.98); our prediction matched

Table 3. Top enriched folds of D. radiodurans and P. vivax

Rank SCOP ID
Enrichment

score
Number

of domains Superfamily name

A.
D. radiodurans
1 b.1.5 3.774 10 Transglutaminase, two C-terminal domains
2 d.110.7 3.418 7 Roadblock/LC7 domain
3 d.111.1 3.081 5 PR-1-like
4 c.41.1 1.654 6 Subtilisin-like
5 a.3.1 1.523 10 Cytochrome c
6 h.1.5 1.472 6 Tropomyosin
7 d.159.1 1.472 17 Metallo-dependent phosphatases
8 b.1.18 1.317 12 E set domains
9 d.185.1 1.271 9 LuxS/MPP-like metallohydrolase
10 c.58.1 1.220 7 Aminoacid dehydrogenase-like, N-terminal domain

B.
P. vivax
1 h.4.2 5.756 120 Clostridium neurotoxins, ‘‘coiled-coil’’ domain
2 b.6.2 5.245 8 Major surface antigen p30, SAG1
3 b.42.4 5.208 131 STI-like
4 a.264.1 5.158 22 Duffy binding domain-like
5 b.61.5 3.348 6 Dipeptidyl peptidase I (cathepsin C), exclusion domain
6 a.24.7 3.166 5 FKBP12-rapamycin-binding domain of

FKBP-rapamycin-associated protein (FRAP)
7 a.118.11 3.166 11 Cytochrome c oxidase subunit E
8 b.81.3 2.878 6 Adhesin YadA, collagen-binding domain
9 a.56.1 2.809 7 CO dehydrogenase ISP C-domain like
10 a.24.26 2.809 7 YppE-like
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a truncated hemoglobin (1DLW chain A, 1DLWa), producing

a structure-structure alignment with 4.97 Å RMSD (Fig. 4B).

CC_3056 and the truncated hemoglobin 1DLWa have only 23%

sequence identity but share a semiconserved heme binding pocket

(Fig. 4C), where 16 out of 26 ligand binding residues are similar

(Blossum62 values > 0), including nine identical residues key to the

function of 1DLWa (Lopez et al. 2007). Finally, a close homolog of

CC_3056, Campylobacter jejuni trHbP, was recently crystallized (after

our initial prediction was made, 2IG3), confirming the truncated

hemoglobin fold prediction (Nardini et al. 2006) (http://www.

yeastrc.org/pdr/viewProtein.do?id=2823436, the PDB-BLAST hit to

2IG3, is now reported in the updated database).

GOS_6366033 (a new and unannotated protein family from ocean
metagenomics) is predicted to be a chorismate mutase

The recent metagenomics Global Ocean Sampling (GOS) expedi-

tion (Yooseph et al. 2007) provided more than 1700 new protein

families with no detectable homology with known protein fami-

lies. We folded two members for each of these novel families

containing fewer than 150 residues with Rosetta (877 families).

The predicted fold of GOS_6366033 (Fig. 4D) confidently

matched a chorismate mutase structure (1ECM, sccs:a.130.1,

Chorismate mutase II, MCM = 0.93) (Fig. 4E; Lee et al. 1995).

Chorismate mutase catalyzes chorismate to prephenate in the

bacterial biosynthesis pathway of tyrosine and phenylalanine.

1ECM and GOS_6366033 share only 11% sequence identity (based

on structural alignment, as sequence-based methods detect no

alignment), but a structure–structure alignment of our model to

1ECM predicts that five GOS_6366033 residues are conserved in

the chorismate binding pocket of 1ECM (Fig. 4F). Two of the

conserved residues, Arg51 (Arg44 in GOS_6366033) and Glu52

(Glu45), are identical and participate in hydrogen bonds with the

transition-state analog of chorismate in 1ECM, which possibly

stabilize the ligand. Two other conserved residues, Leu55 (Met48)

and Ile81 (Leu74), are thought to aid binding through hydro-

phobic contacts with the ligand. A fifth conserved residue, Arg47

(Lys39), stabilizes the Glu52 side chain through electrostatic in-

teractions in the 1ECM structure, leading us to believe that the

Lys39 in GOS_6366033 protein serves a similar role.

Rumi ( Drosophila melanogaster)

Rumi is an endoplasmic reticulum protein and an important reg-

ulator of the Notch-signaling pathway, which, in turn, regulates

cell fate decisions. Our pipeline predicted Rumi to be a member of

the glycosyltransferase SCOP superfamily (sccs: c.87.1) based on

fold recognition analysis (FFAS03). Integrating this superfamily

prediction with the GO-P term ‘‘carbohydrate metabolic process’’

(GO:0005975), we predicted the GO-MF term ‘‘transferase activity,

Figure 4. C. crescentus hypothetical protein CC_3056 is a truncated hemoglobin fold, and marine metagenome hypothetical protein GOS_6366033 is
predicted to be a chorismate mutase. (A) Rosetta model of CC_3056. (B) Structural alignment of Rosetta model and 1DLWa, a truncated hemoglobin with
MAMMOTH alignment Z-score of 14.39. (C ) Rosetta model viewed with superimposed 1DLW heme ligand. (D) Rosetta model of GOS_6366033. (E )
Structure alignment of Rosetta model and 1ECMa, a chorismate mutase with structural alignment Z-score of 9.71. (F) Rosetta model viewed with 1ECM
transition state analog of chorismate. Ligand-contacting residues that are identical (blue) and similar (red) in the matched PDB structures are shown in
C and F.
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transferring glycosyl groups’’ (GO:0016757). Subsequent to this

prediction, Rumi was shown to display O-glucosyltransferase

activity by Acar et al. (2008), who observed lower amounts of

O-glucosylated peptides in Rumi knockdown samples compared

to controls, confirming our function prediction for Rumi (http://

www.yeastrc.org/pdr/viewPSPOverview.do?id=673166).

OOEP ( Mus musculus)

Transfer of genetic material from maternal cells to precise locations

in oocytes is important for proper mouse embryogenesis and de-

velopment. The previously unannotated mouse gene, Ooep, was

predicted by FFAS03 to be a member of the Eukaryotic type KH-

domain SCOP superfamily (sccs: d.51.1). The KH-domain is a di-

verse RNA-binding domain superfamily. Our function prediction

method using the assigned superfamily, GO-P ‘‘cellular macro-

molecule metabolic process’’ (GO:0034960) and GO-C ‘‘intra-

cellular part’’ (GO:0044424), confidently predicted OOEP to have

a ‘‘nucleic acid binding’’ GO-MF annotation (GO:0003676). It was

later shown experimentally by Herr et al. (2008) that OOEP binds ri-

bonucleotide homopolymers using an RNA binding assay. The study

also showed that Ooep is a maternal effect gene involved in blasto-

mere polarity, suggesting its involvement in patterning RNA in the

developing oocyte (http://www.yeastrc.org/pdr/viewPSPOverview.

do?id=614967).

Interfaces to our proteome-wide structure
and function predictions

Biologists can obtain structure, superfamily, and molecular function

predictions along with other predictions (such as secondary struc-

ture, disordered regions, and multiple sequence alignments) via a

standard web interface, http://www.yeastrc.org/pdr/ (Supplemental

Fig. S5; Riffle et al. 2005). A BLAST interface (http://pfp.bio.nyu.

edu/blast/index) is available for searching our database using se-

quences not in the 94 genomes processed (as well as variants of

the sequences processed). Additionally, we have integrated our da-

tabase with the Cytoscape protein–protein interaction plug-in

BioNetBuilder (Avila-Campillo et al. 2007) so that our predictions

can be explored in a network context. BioNetBuilder automati-

cally builds gene association networks for any organism in the

NCBI taxonomy based on nine publicly available interaction data-

bases (http://err.bio.nyu.edu/cytoscape/bionetbuilder/). Nodes in

BioNetBuilder display visual cues (e.g., size, shape) indicating the

confidence or relevance of our predictions for each gene in the

network. Links to the web database are provided as attributes for

each node in the Cytoscape network. Raw data are available upon

request.

Discussion
We now discuss how the PFP pipeline relates to complementary

methods, and the need for improved gene prediction and domain

boundary prediction, as well as the importance of domain-centric

function annotation.

Comparison of PFP to complementary methods
and complementary experimental efforts

The Robetta server (Chivian et al. 2005) is a domain-centric

structure prediction pipeline and, like the PFP, attempts to run the

most accurate applicable structure prediction method on each

predicted domain (PDB-BLAST! Fold recognition! Rosetta). The

main disadvantages of this server are extremely long wait times (in

many cases >6 mo), the inability to upload whole genomes, the

lack of integrated function prediction, and the much smaller

amount of sampling used for the de novo portion of the structure

prediction. In the case of genome annotation, the most critical of

these limitations is the long wait times (due to the computational

cost of Rosetta modeling), which makes full-proteome analysis

impossible, given the current architecture. Our pipeline solves this

problem by pre-computing and archiving de novo structure pre-

dictions run on WCGrid, allowing immediate access to results and

full proteome database queries. For example, a list of all putative

transcription factors in a genome is a required input into regulatory

network inference algorithms. This and previous work (Bonneau

et al. 2004, 2007) show that proteome-wide structure prediction

significantly expands the list of putative regulators and signaling

proteins. Other key advantages to the PFP as a full proteome an-

notation tool include SCOP superfamily classification of structures

and GO function predictions based on those structure annota-

tions. Integrating the Robetta server with the PFP database (such

that queries to the Robetta server already contained in our database

can be resolved without repeating costly structure prediction cal-

culations) is an attractive area for future work.

The Protein Structure Initiative (PSI) is a multigroup effort to

increase the coverage of structure annotations across protein se-

quence space using both experimental and computational ap-

proaches (Dessailly et al. 2009). The computational effort we describe

here and the PSI are extremely complementary in both methodology

and coverage of protein sequence space. The PSI has greatly increased

the number of structures in the Protein Data Bank and thus ex-

panded the mapping of sequence space to structures. This improves

the coverage of PFP sequence and fold recognition-based methods

(PDB-BLAST, FFAS03) and indirectly improves the accuracy and yield

of our de novo procedure by adding to the set of structures from

which to classify de novo predictions (SCOP superfamily classifica-

tion). The PSI has increased the fraction of protein sequences that can

be assigned a structure by 2.0% over a 3-yr period (based on the

UniProt protein set) (Dessailly et al. 2009). In comparison, we report

an increase of 1.8% in structural coverage of 94 genomes based on

confident de novo structure predictions over all domains predicted

(Table 1). Although computationally predicted structures are less

valuable for many tasks, the additional coverage afforded by our

pipeline is mostly orthogonal to the PSI coverage. The PSI and PFP

also differ in focus: Eukaryotic organisms are not the primary focus of

the PSI, whereas the PFP has been applied to a balanced distribution

of eukaryotic and prokaryotic organisms (Supplemental Table S1).

Finally, de novo structure predictions from the PFP could be used to

aid in target selection by the PSI. A current problem in selecting se-

quences for experimental structure determination by the PSI is dis-

criminating sequences with novel folds from evolutionarily divergent

sequences of known folds. Our pipeline reports SCOP superfamily

classifications for de novo structures, which are potential evolutionary

divergent members of the matched superfamily. Sequences without

quality SCOP superfamily classifications are possible members of

novel folds and thus could be assigned a higher priority for experi-

mental structure determination with respect to increasing structural

coverage of protein space.

Need for improved gene prediction and domain
boundary prediction

Our ability to use structure-based methods to improve proteome

annotation is sensitive to the accuracy of gene prediction and do-
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main prediction methods. It has been reported that large numbers of

genes have incorrectly assigned start sites (Nielsen and Krogh 2005)

and splice sites (Guigó et al. 2006). We believe that as gene pre-

diction techniques continue to improve the identification of protein

boundaries, the PFP will show increased accuracy in predicting pro-

tein structure annotations for a greater number of proteins. An

analysis of the performance of Ginzu (Kim et al. 2005) showed that

errors in domain boundary prediction are major sources of error in all

downstream predictions. Other domain parsing programs such as

CHOP (Liu and Rost 2004) could also be used in conjunction with

Ginzu to predict domain boundaries. Encouragingly, there are sev-

eral promising recent high-throughput experimental approaches to

determining protein domains, which could feasibly alleviate signif-

icant portions of domain prediction error. For example, Boxem et al.

(2008) used a modular domain view of protein–protein interactions

to determine the minimal region of the protein necessary to main-

tain a protein–protein interaction, thus elucidating individual do-

mains. In many cases, the minimal interacting domains detected by

Boxem et al. corresponded well to known or predicted structural

domains. Similar approaches may be developed in the future to

probe domain boundaries in a scalable genome-wide fashion.

Domain-centric annotation

In general, different domains within the same protein perform

different functions. Unfortunately, many of the function annota-

tions in the Gene Ontology database are not mapped to a specific

domain in a multidomain protein. Applications such as genome-

wide protein evolution and coevolution studies are hampered by

the lack of domain-specific annotations. Chothia et al. (2003) have

used domain structures of proteins to study gene duplication, re-

combination, and divergence, and they quantitate these processes

in terms of their evolutionary impact. Vogel et al. (2004) describe

the coevolution of domain combinations, called ‘‘supra-domains,’’

that continually recur in proteins. They note that more than one-

third of structurally characterized proteins contain a supra-domain

and therefore are particularly useful for genome evolution and

annotation efforts. Such evolutionary studies require domain-level

annotation and could be expanded if improved domain pre-

dictions were available.

We have demonstrated the ability to accurately and efficiently

predict protein domains and their 3D structures on a proteome

scale, classify unknown proteins into structural superfamilies, and

predict functions based on this structural information. We have

provided annotations for 94 proteomes, including medically

relevant genomes, model organisms, and the human proteome, all

of which will be valuable to the computational biology, biology,

and clinical communities.

Methods
Previously published methods used in this study are described fully
in the Supplemental Methods section, specifically domain pre-
diction, domain selection for de novo prediction, de novo struc-
ture prediction, and SCOP classification of structure predictions.
Below are new methods specific to this study.

Genome selection

Genomes were chosen to be representative of genomes across the
tree of life as well as their value to the broader biological community
(for a complete list, see Supplemental Table S1). Most major model
organisms are covered, as well as a broad sampling of bacteria and

archaea. Protein FASTA formatted files were downloaded from NCBI
or the organism’s genome web database circa December 2004 (HPF1
protocol) or November 2007/Feburary 2008 (HPF2 protocol). For
the GOS data set, representatives from only novel protein families as
described by Yooseph et al. (2007) were analyzed with the PFP.

World Community Grid

Rosetta was run on IBM’s World Community Grid (WCGrid) us-
ing the Boinc framework (Anderson 2004). Owners of PCs run-
ning Windows, MAC OS/X, or Linux participate in WCGrid by
installing a secure grid client program available from http://www.
worldcommunitygrid.org. The grid client program requests work
units from WCGrid servers and runs Rosetta in the background at
the lowest possible priority. The state of the computation is check-
pointed every few minutes to allow for efficient recovery of calcu-
lations in the event of machine failure. The Rosetta program was
modified for use in the grid environment, which included adding
checkpointing and modifications to remove security vulnerabilities.

Enrichment analysis

Enrichment scores were determined using the following equation:

Esf = log
n=N

ðb + 1Þ=B

� �
; ð1Þ

where n is the number of domains with superfamily sf, N is the
total number of domains in the organism, b is the number of do-
mains with superfamily sf in background organisms, and B is the
total number of domains in all background organisms. The back-
ground organisms used for D. radiodurans analysis were E. coli,
Mycobacterium tuberculosis, C. crescentus, and Bacillus subtilis. The
background organisms used for P. vivax analysis were Homo sapiens,
Drosophila melanogaster, Caenorhabditis elegans, M. musculus, Sac-
charomyces cerevisiae, and Arabidopsis thaliana.

Binding pocket conservation analysis

Example predictions CC_3056 (C. crescentus) and GOS_6366033
(Ocean Metagenomics) were produced as described above using
the PFP protocol. Known ligand binding and catalytic residues of
the matched superfamily were determined from the FireDB data-
base (Lopez et al. 2007). A structural alignment between the pre-
dicted structure and the superfamily representative structure was
then obtained using Mammoth. This alignment was used to cal-
culate the Blossum62 conservation score for the ligand binding
residues.

Molecular function prediction

Molecular function predictions were made using a naive Bayes
method that estimates a log-likelihood ratio (LLR) based on available
evidence for each molecular function term, mf, in the GO ontology.
Given the naive Bayes assumption that available predictors, GO-P (p),
GO-C (c), or SCOP classification (s) are conditionally independent, an
individual LLR score is calculated for each predictor and summed
along with a prior to produce an overall LLR score (Eq. 2).

LLRðs; p; c jmf Þ= LLRðmf Þ+ LLRðs jmf Þ�PðsÞ
+ LLRðp jmf Þ+ LLRðc jmf Þ

ð2Þ

Individual log-likelihood ratios are calculated as the ratio of
the likelihood that the mf term is true over the likelihood that the
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term is false for an individual predictor x (where x is p, c, or s) and is
formally defined by the equation:

LLRðxjmf Þ= log
Pðxjmf Þ
Pðxjmf Þ

 !
: ð3Þ

The mf prior LLR is calculated as the ratio of the probability
that the mf term is true over the probability that the term is false
and is given by the equation:

LLRðmf Þ= log
Pðmf Þ
Pðmf Þ

 !
: ð4Þ

To account for the error in our structure evidence, the LLR of
the structure predictor was scaled by the confidence of the classi-
fication. Superfamily classifications based on structural evidence
[P(s)] are fixed for PDB-BLAST and FFAS alignments at 1.0 and 0.9,
respectively, to reflect the expected error of these methods. De
novo–based LLR scores are scaled to 0.8 of the MCM score to rep-
resent the estimated uncertainty of our predictions:

PMCMðsÞ= MCMðsÞ�0:8: ð5Þ

The method was applied to predict functions for all protein
domains predicted by Ginzu and had a predicted SCOP super-
family classification. All molecular functions predicted above
a cutoff of LLR $ �3 are saved, but only LLR > 0 are considered
confident (i.e., more likely correct than incorrect).

Training data and calculation of function probability tables

A set of sequences annotated with GO terms and structure was
created for the purpose of building probability tables required for
our function prediction method. We first compared sequences
with known GO annotations from the June 2009 MYGO lite da-
tabase (Ashburner et al. 2000) to the Astral95 1.75 database of
structurally classified domain sequences (Chandonia et al. 2004)
using BLAST. BLAST matches with expectation values better than
10�8 and a match length >85% of the full length of the Astral se-
quence were included in the set. Sequences were clustered using
CD-HIT with a sequence identity cutoff of 80% and a length dif-
ference of 80% to reduce sequence redundancy and sample bias (Li
and Godzik 2006). All GO annotations of members within a cluster
were assigned to the cluster’s representative sequence.

Probability tables for evidence (x = {p,c,s}) were calculated
using the following equation:

Pw=pseudoðxjmf Þ= Nðmf \ xÞ
NðMF \ xÞ �

Nðmf \ xÞ + Pðmf Þ�M
Nðmf \ xÞ + M

; ð6Þ

where N is the number of sequences with the given annotation, \
is the intersection, and MF is the set of all GO MF terms. Note, in
Equation 6, M indicates the number of pseudocounts added to the
probability distributions. Negligible differences in results were
seen when using a range of M values from 4 to 10. The value of M
was conservatively chosen to be 10. Priors used in pseudocount
calculations are calculated using the following equation:

Pðmf Þ= Nðmf Þ
NðMFÞ : ð7Þ

Transfer of GO annotations for features of our function prediction method

GO annotations were used as features (GO-P and -C) to perform
function prediction. Often, an unannotated protein has a similar

protein that is well characterized, and it can be inferred that the
two share the same GO terms. GO annotations from annotated
sequences in MYGO were transferred to sequences in our 94
genomes based on high-confidence BLAST matches. In addition,
true labels (GO MF) were also generated automatically to benchmark
our function prediction classifier. Each PFP protein sequence was
searched against the MYGO sequence database (Ashburner et al.
2000), and annotations were transferred from BLAST matches with
an expectation value better than 10�10 and a match alignment
consisting of 85% of the smaller sequence. The MYGO database June
2009 was used for evaluating confidence of function prediction
methods. The MYGO database August 2010 was used to generate
automated GO annotations for final molecular function predictions.

Selection of relevant features for function prediction

Since the GO Ontology is represented as a directed acyclic graph
(i.e., specific terms are children of related less-specific terms),
multiple terms annotated to a single protein are often condition-
ally dependent, which violates our naive Bayes assumption of in-
dependent predictors. We remedy this by selecting the most rele-
vant GO-P and GO-C terms for predicting each molecular function
by way of mutual information. Initially, we observed high mutual
information scores for non-specific GO-P and -C terms with spe-
cific MF terms and correct for this by only calculating mutual in-
formation for joint probabilities where MF and P or C terms are
true. The modified mutual information (MI) of a GO term (x) with
a molecular function (mf) is given by the following equation:

MIðx; mf Þ= Pðx;mf Þ� log
Pðx;mf Þ

PðxÞPðmf Þ

� �
: ð8Þ

The P and C terms (x) with the maximum mutual information
out of all terms annotated were selected as predictors of function in
the naive Bayes method.

Evaluating confidence

De novo solved after predicted (SAP)

We built a benchmark of de novo structure predictions whose
predictions were made prior to an experimental structure being
solved. Sequences were compared to the Astral 1.75 database using
BLAST. A BLASTexpectation value of 10�5 and alignment length of
80% was used to transfer SCOP superfamily assignments of Astral
domains to query sequences. Sequences were then clustered with
CD-HIT using 40% identity and 70% length parameters to limit
over-representation and sequence bias. Sequences of each cluster
were then searched in the full PDB using BLAST to identify se-
quences that were possibly crystallized prior to our structure pre-
dictions (2005-01-01). Sequences with BLAST matches (<10 eval),
which met a threshold of 20% identity and 50% length to PDB
sequences deposited prior to 2005, were filtered out. This conser-
vative filtering ensures that sequences with de novo structure
predictions in the SAP set were folded prior to any similar structure
solved in the PDB. A list of the sequences used in the SAP set can be
found in Supplemental Table S5.

Superfamily classification error

To estimate the error of our de novo superfamily classifier, the SAP
benchmark was classified using an earlier version of SCOP (1.67). We
compared these predicted superfamilies to the true superfamilies as
determined by sequence comparisons to Astral 1.75 sequences (as
described in the previous section). We then only included incorrectly
classified entries (i.e., predicted superfamily 6¼ true superfamily) for
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further analysis, as these are examples of error in our classification
method. We were then able to determine three types of error from
this set, specifically, new superfamily error, model error, and mis-
classification error. New superfamily error was calculated as the
number of SAP entries in which the true superfamily was not pres-
ent in SCOP 1.67. To calculate model error and misclassification
error, we compared predicted structures of a SAP entry to a structure
in the incorrectly assigned superfamily and to a structure in the true
superfamily using Mammoth Z-score. SAP structures that are more
similar to the incorrect superfamily than the true superfamily (i.e.,
higher Z-score) are due to insufficient quality of 3D Rosetta models
and are therefore considered model error. SAP structures that are
closer to the correct superfamily but still incorrectly classified are
incorrectly predicted due to misclassification error.

Function prediction

To analyze the performance of the naive Bayes function prediction
method using PDB-BLAST and FFAS03 superfamily classifications as
predictors, function predictions were made for 5000 randomly
sampled eukaryotic PDB-BLAST and FFAS03 proteins with known
GO-MF annotations. To analyze performance using de novo super-
family classifications as predictors, function predictions were made
for 231 domains of the SAP set with known GO-MF. Predictions were
compared to the known MF annotation terms (i.e., automated GO
annotations based on MYGO June 2009) for accuracy. Only specific
molecular functions (annotated to <2% of proteins) are included in
the set of known annotations. Performance of the function pre-
diction classifier is determined by Precision versus Recall:

Precision =
TP

TP + FP
; ð9Þ

Recall =
TP

TP + FN
; ð10Þ

where TP is true predictions, FP is false predictions, and FN is true
annotations not predicted. The predictions labeled ‘‘random’’ in
Precision–Recall graphs were produced sampling GO-MF terms from
all predictions and ranking by base LLR calculated from priors.

To determine the uniqueness of function prediction between
evidence sets (with structure, PCS; and without structure, PC),
functions were predicted with both evidence sets for a random
sampling of 5000 proteins with FFAS03 domain predictions that
had SCOP classifications and known GO MF annotations. Pre-
dictions were ordered by log likelihood ratio, and precision esti-
mates were created based on comparing the predicted MF term to
the known (or electronically transferred) MF annotation term.
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