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Abstract

Gene duplication is an important process in the functional divergence of genes and genomes. Several processes have been

described that lead to duplicate gene retention over different timescales after both smaller-scale events and whole-genome

duplication, including neofunctionalization, subfunctionalization, and dosage balance. Two common modes of duplicate gene

loss include nonfunctionalization and loss due to population dynamics (failed fixation). Previous work has characterized

expectations of duplicate gene retention under the neofunctionalization and subfunctionalization models. Here, that work is

extended to dosage balance using simulations. A general model for duplicate gene loss/retention is then presented that is capable
of fitting expectations under the different models, is defined at t 5 0, and decays to an orthologous asymptotic rate rather than

zero, based upon a modified Weibull hazard function. The model in a maximum likelihood framework shows the property of

identifiability, recovering the evolutionary mechanism and parameters of simulation. This model is also capable of recovering the

evolutionary mechanism of simulation from data generated using an unrelated network population genetic model. Lastly, the

general model is applied as part of a mixture model to recent gene duplicates from the Oikopleura dioica genome, suggesting

that neofunctionalization may be an important process leading to duplicate gene retention in that organism.

Key words: dosage balance, gene duplication, neofunctionalization, subfunctionalization, protein–protein interaction

network, stochastic model.

Introduction

Gene duplication has been identified as amajor driving force in

structural and functional genome evolution (Roth et al. 2007).

Gene duplication events are mutational events occurring in

a single individual within a population. The duplication events

occur through transposition events and through various other

events leading to segmental, whole-chromosome, or whole-

genome duplication (Zhang 2003; Hurles 2004). The subse-

quent mutational events in conjunction with the structure

and function of genes involved in the duplication process then

dictate the fate of the gene duplicate. For single-gene dupli-

cations, the possible fates of any gene duplicate are non-, neo-,

and subfunctionalization (Dittmar and Liberles 2010; Innan

and Kondrashov 2010). The original function could also be re-

tained due to selection for robustness or increased dosage.

However, for duplication events that include a number of in-

teracting genes, dosage balance constraints impose selective

pressure on individual gene retention and loss (Hughes

et al. 2007).

Individual genes can have a number of different functions

and structures that affect their likelihood of becoming non-

functionalized, gaining a function (neofunctionalization), be-

coming subfunctionalized (Hughes 1994; Force et al. 1999;

Lynch et al. 2001), or retaining function. In general, a eukary-

otic gene consists of multiple locations that can differentially

evolve after gene duplication, including splice sites in introns

(Tarrı́o et al. 1998; Lin et al. 2006), coding region sequence

(exons) (Gu et al. 2002; Conant and Wagner 2003; Makova

and Li 2003; Li et al. 2005), exon number (Kondrashov and

Koonin 2001; Letunic et al. 2002; Zhang et al. 2009), the

core promoter with transcription factor–binding and tran-

scription start sites (Reece-Hoyes et al. 2007), enhancers

(Kay et al. 1987; Panavas et al. 2003), silencers (Hickman

and Rusche 2010), insulators (Dorer and Henikoff 1994), un-

translated regions (D’Souza et al. 2004; Rogers et al. 2004),
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and multiple other regulatory elements necessary for proper
function and expression (Lee and Young 2000; Lynch 2006).

Depending on the location of mutations, the gene duplicate

can be affected differently, with the probabilities of affecting

each type of element dictated by the number of sites that can

accommodate change and differentially affect function (Lib-

erles et al. 2010).

Nonfunctionalization refers to the loss of all functionality

of a gene and is accepted as the most common fate post-
duplication (Lynch and Conery 2000). For example, if a given

gene has a single function where its protein product interacts

with one substrate through one binding site, is expressed in

a single tissue, and has no alternative splice variants, then

a knockout of that binding site, any essential site necessary

for proper folding, or any essential regulatory element will

lead to the non- (or pseudo-) functionalization of that gene

duplicate. Nonfunctionalization is different from the popula-
tion genetic-driven loss that can occur without mutation

post-duplication (Lynch et al. 2001). Whereas population

genetic loss refers to a failure of the duplicate to fix or

continue to segregate in the population, nonfunctionaliza-

tion leaves behind a pseudogenized gene in the genome

in at least a fraction of individuals (Zheng and Gerstein

2007; Zhang et al. 2008).

The neofunctionalizationmodelwas popularized as a the-
ory explaining evolutionary sources of novel protein function

(Ohno 1970) but can also apply to the level, timing, or lo-

calization of gene expression (Innan and Kondrashov 2010).

Subfunctionalization involves complementary loss and re-

tention of individually acting subfunctions between the

gene copies, leading to the need of retaining both, so that

all essential ancestral functions of the gene are conserved

between the duplicate pair (Hughes 1994; Force et al.
1999). This loss of function within the genes is generally me-

diated by nonfunctionalization of regulatory elements (tis-

sue or developmentally specific), splice sites, or mutations

in the coding region, which are specific to individual sub-

functions. The probability of subfunctionalization increases

with the number of subfunctions in the gene under consid-

eration (Lynch and Force 2000). If the duplicated gene has

multiple splice variants with different binding interactions
and knockouts of different splice sites between the two du-

plicates occur, then the result would be subfunctionalization

of the duplicates with the ultimate retention of both. The

same is true for complementary loss of different tissue-spe-

cific regulatory elements between the two gene copies or

differential loss of interaction at distinct binding sites on

the protein surface (Hughes 1994; Force et al. 1999; Liu

and Adams 2010).
In addition to the processes acting on individual genes

described above, large-scale gene duplication (segmental,

whole chromosome, and whole genome) events duplicate

multiple interacting genes together creating an additional

retention mechanism (Papp et al. 2003; Aury et al. 2006;

Hughes et al. 2007). Dosage balance promotes the retention
of duplicated interaction networks as loss of individual parts

of the interaction network can lead to declines in fitness.

However, if only individual genes within the network are du-

plicated, dosage balance promotes loss or nonfixation in or-

der to prevent imbalance within the ancestral interaction

network (Veitia et al. 2008; Edger and Pires 2009; Freeling

2009). This is also observed in genes on sex chromosomes,

where mechanisms to account for differences in expression
betweenmales and females have evolved in some but not all

species (Walters and Hardcastle 2011). The theory behind

the dosage balance model explains the retention of entire

gene networks post–large-scale duplications due to stoi-

chiometric balance constraints pre- and postduplication

(Veitia et al. 2008). Dosage imbalance involves changes in

protein concentrations relative to those of potential binding

partners, potentially resulting in improper protein complex
assembly (Veitia 2002), spurious interactions (Liberles et al.

2011), and deleterious downstream effects on pathways.

On the other hand, network duplication can affect the fit-

ness of an organism by increasing its energy needs as more

genetic material needs to be transcribed and translated at

energetic cost (Wagner 2005).

In terms of genome evolution, non-, neo-, and subfunc-

tionalization and dosage balance are not exclusive of one
another (He and Zhang 2005; Rastogi and Liberles 2005).

One would expect all duplicates under stoichiometric con-

straints to be retained for long evolutionary timescales before

duplicates are cooperatively lost (Hughes et al. 2007). Thus,

dosage balance may in fact be acting as an intermediate step

to neo-and subfunctionalization, prolonging the retention

of the duplicates before one of the other mechanisms deter-

mines the ultimate fate of the duplicates (Hughes et al. 2007).
In dosage-compensated duplicates, network interactions can

be lost through nonfunctionalization of entire genes or

through loss of individual interactions, which when lost com-

plementarily will result in subfunctionalization.

Models for gene duplicate retention enable insight into

the evolution of protein function following speciation and

lineage-specific evolution. Most genome sequencing studies

include a pairwise analysis of recent duplicates and models
of gene duplication are increasingly utilized to characterize

the average properties of synonymous substitution rate (dS)-

dependent duplicate gene retention (Lynch and Conery

2000, 2003; Aury et al. 2006; Hughes and Liberles 2007,

2008a; Denoeud et al. 2010). This gives an insight into

the retention of duplicates under different-scale gene/ge-

nome duplication events (Maere et al. 2005; Blomme

et al. 2006; Hughes and Liberles 2007, 2008a, 2008b)
and provides the basis for understanding and modeling

gene retention. After large-scale duplications, it has been

shown that certain biochemical functions of some genes

lead to preferential retention over others and that a larger

proportion of duplicates are retained than after small-scale
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duplication (Blomme et al. 2006). Hughes and Liberles
(2008a) illustrated that the size distribution of gene families

can be explained by heterogeneity of loss rates between

families, which further confirmed the differential retention

between genes of certain functions after large- and small-

scale duplications (Maere et al. 2005). This led to the con-

clusion that no single description of loss rates can be applied

to duplicate loss for both large- and small-scale duplications

but rather that the loss processes after different-scale dupli-
cations have to be addressed independently (Maere et al.

2005; Hughes and Liberles 2008b). In order to do so, loss

functions have to be described for neo- and subfunctional-

ization, as well as dosage balance.

The previously discussed models of gene retention can be

applied to the orthology/paralogy problem, as well as the

problem of gene tree/species tree reconciliation. Currently,

most phylogenetic approaches used for gene tree/species
tree reconciliation, inference of gene duplications and los-

ses, and orthology/paralogy identification have been based

on parsimony approaches such as Softparsmap (Berglund-

Sonnhammer et al. 2006) and Notung (Chen et al. 2000)

and on distance methods, such as Orthostrapper (Storm

and Sonnhammer 2002). Even without considering mecha-

nistic complexity, most parsimonious reconciliations will be

subject to the same limitations as parsimony-based ap-
proaches in sequence-based phylogenetics (Nielsen 2002)

and models are needed. Gene duplication and loss has been

modeled using a relatively simple birth–death process (Liu

and Pearl 2007; Arvestad et al. 2009; Rasmussen and Kellis

2011). The simplest biological birth–death model is based

upon an exponential distribution that assumes that the rate

of loss (hazard) of a duplicated gene is constant through

time and is based on earlier work by Lynch and Conery
(2000, 2003). This expectation is consistent with the non-

functionalization process but does not take into account

any of the processes of retention discussed previously. Fur-

ther, not only is the exponential loss model exclusively con-

sistent with a constant neutral rate of loss but it also decays

to zero (where all duplicates are lost) and is not defined at t
5 0, the point of duplication.

In order to expand this birth–death process to include the
processes of neofunctionalization, subfunctionalization, and

dosage balance, the hazard or loss rate function for these pro-

cesses has to be characterized. Hughes and Liberles (2007)

and Zhang et al. (2004) illustrated that the neofunctionaliza-

tion hazard rate (instantaneous rate of duplicate copy loss)

declines with time. Once a gene duplicate is neofunctional-

ized, the nonfunctionalization probability for this duplicate

declines, leading to the overall decline of duplicate loss over
long evolutionary time periods. This convexly declining loss

rate has been described with a Weibull hazard function

(Hughes and Liberles 2007). Further, the subfunctionalization

loss rate behavior has been characterized to be concavely de-

clining (Hughes and Liberles 2007) based upon theoretical ex-

pectations of a waiting time for complementary mutations
(Force et al. 1999; Lynch et al. 2001; Hughes and Liberles

2007). The hazard function for dosage balance has not yet

been characterized quantitatively. However, the theoretical

expectations under this model are an initial very low loss rate

over prolonged evolutionary time (due to negative selective

constraints on dosage imbalance caused by individual link

or gene loss), with a rapid increase due to cooperative loss

once the first loss of any one gene duplicate in the network
approaches fixation (Hughes et al. 2007), resulting in a con-

cavely increasing hazard rate.

These differences in the hazard functions between mod-

els have to be taken into account when using a birth–death

process for modeling duplicate retention. This can be mod-

eled by a flexible hazard function, which, under different

parameterizations, is consistent with any of the given under-

lying mechanisms. The function can simply be combined in
a mixture model for data covering multiple events, where

the number of components of themixture is determined sta-

tistically in either a Bayesian or a maximum likelihood frame-

work. Further, because duplicate genes exist at t 5 0,

a model defined at t 5 0 is necessary.

The basic features of the model are the hazard shapes seen

in figure 2. Nonfunctionalization as a neutral process involves

a flat hazard functionwith a constant neutral rate of gene loss.
Neofunctionalization involves a weighting time for a single ad-

vantageous change, characterized by a convexly declining

hazard function. Subfunctionalization involves a weighting

time for two complementary changes with an increased pe-

riod at the neutral loss rate, resulting in a concavely declining

hazard function. Dosage balance results in a convexly increas-

ing hazard function when balance is lost stochastically. Gen-

eralizations to the Weibull distribution have been previously
developed (e.g., Mudholkar et al. 1996), but a new flexible

distribution based upon aWeibull-like hazard functionwas de-

veloped with the above properties.

Here, we characterize the behavior of dosage balance–

mediated duplicate retention and loss rates via simulations,

allowing for different link and gene loss probabilities, popu-

lation sizes, and gene network size. Due to the potential

effect of subfunctionalization, we investigate the duplicate
loss behavior under three differentmodels. Onemodel allows

for subfunctionalization in addition to dosage balance (con-

sistent with a protein interacting with its different binding

partners at different times), whereas a second excludes sub-

functionalization (consistent with a protein that functions in

a complex). A third model builds upon previous characteriza-

tion of neofunctionalization (Hughes and Liberles 2007),

considering this process in combination with dosage balance.
Finally, we combine our findings of the hazard function

under dosage balance with the previous studies of non-,

neo-, and subfunctionalization and introduce a generalized

mathematical model that can explain the trends of duplicate

retention under all discussed models. Lastly, this mixture

Evolutionary Dynamics of Gene Duplicates GBE

Genome Biol. Evol. 3:1197–1209. doi:10.1093/gbe/evr093 Advance Access publication September 12, 2011 1199



model is applied to characterize patterns of duplicate gene

retention in the Oikopleura dioica genome.

Materials and Methods

Simulations of Dosage Balance Gene Retention

A network of varying size (three to five members) was con-

structed, where each protein product interacts with all other

protein products immediately after duplication, except its

own duplicate (fig. 1). Simulations on this network were

run for 2,000 generations with population sizes of 100

and 1,000 individuals following an initial whole-genome du-
plication event. Both entire genes as well as individual links

can be lost during any given generation with the probability

of losing a gene Pr(lose gene) and the probability of losing

a link Pr(lose link). Losing an entire gene refers to the simul-

taneous loss of all its links to all other genes. Loss of indi-

vidual links during the simulation refers to loss of

regulatory or structural elements that affects particular sub-

functions of the gene rather than the functionality of the
entire gene. In order to differentiate between effects of sub-

functionalization and dosage balance, we considered two

different models, one where subfunctionalization is allowed

and one where it is not.

Under each model, each individual is assigned a fitness
according to gene content and links present. The next gen-

eration is then sampled randomly with replacement,

weighted by the fitness of each individual. A fitness penalty

for each dosage imbalance is assigned and multiple fitness

penalties in an individual are assessed multiplicatively. Indi-

viduals with a single fully linked network are assigned a fit-

ness penalty of zero. In the case where subfunctionalization

is allowed, a subfunctionalized network has no fitness pen-
alty whereas in the other model, it has a fitness of zero. Im-

balance states and corresponding fitness penalties are

shown in supplementary figure 1 (Supplementary Material

online). Fitness penalties for each imbalance ranged from

0.0 (control) to 0.4.

For each set of parameters (table 1), as well as different

models, five replicates of the simulations were run. The total

number of genes retained in duplicate copy was recorded
for each generation, and the numbers of different replicas

were averaged and plotted.

Simulations were implemented in Perl and the code is

freely available at http://www.wyomingbioinformatics.org/

LiberlesGroup/Anke_software.

General Death Model for Gene Retention

A model was constructed for which different sets of param-
eterization generate hazard curves indicative of different

gene fates after a duplication event.

kðtÞ5 feð�btcÞ þ d

N0SðtÞ5 e
ð�dt� f

PN

n50

ð� bÞntcnþ1

cnðn!Þþ n!
Þ
:

k(t) is the hazard function describing the instantaneous rate

of loss. S(t) is the survival function describing the correspond-

ing probability of survival to a time t, multiplied by N0, the

number of gene duplicates at t 5 0. The f and d parameters

allow for an instantaneous hazard rate at the point of dupli-

cation (dþ f) to decay to an orthologous gene hazard rate (d),
also creating a continuous function defined at t 5 0. Hazard

functions that correspond to the expected or theoretical shape
of the hazard for the dosage balance (Hughes et al. 2007),

subfunctionalization (Lynch et al. 2001; Hughes and Liberles

2007), neofunctionalization (Zhang et al. 2004; Hughes and

Liberles 2007), and nonfunctionalization (Lynch and Conery

2003; Hughes and Liberles 2007) are given by contrasting pa-

rameter values (fig. 2). Nonfunctionalization is defined by b5

0, d. 10; dosage balance by b, 0, 0, c, 1, d5�f, k(t)0.02
, 0.1; neofunctionalization by b. 0, 0, c, 1, d. 0, f. 0;
and subfunctionalization by b. 0, c. 1, d. 0, f. 0.Models

have different numbers of parameters utilized and are com-

pared by their likelihoods and Akaike information criterion

(AIC) values. Parameterizations outside of these ranges were

considered nonbiological and were not evaluated. Further

FIG. 1.—After a larger-scale duplication event, a fully duplicated

network of three interacting partners including all links is obtained.

Every gene is connected to each other gene through a link, except its

own duplicate. These links are then allowed to decay in simulation with

various constraints according to different evolutionary mechanisms. The

fitnesses of the intermediate states are described in supplementary

figure 1 (Supplementary Material online).
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evaluation on real data will be necessary to fully evaluate the

biological parameterization ranges and misspecifications, but

some support is given when comparing parameterizations on

simulated data with those from O. dioica and from Hughes

and Liberles (2007). To summarize the justification of the pa-

rameterizations, nonfunctionalization is reflectedby a constant

instantaneous rate of loss, neofunctionalization by a waiting

time for a beneficial change, subfunctionalization by a double
waiting time for complementary changes that result in a sub-

functionalized state, and dosage balance by initial retention

followed by subsequent cooperative loss with an increasing

hazard.

Model Comparison on Simulated Data

Applying N0S(t) evaluatedwith n5 100 on the simulated data

enabled estimation of parameters representative of the differ-

ent models, using a maximum likelihood estimator written in

Cþþ using a probability library written by Brook Milligan
(http://biology.nmsu.edu/software/probability). Maximum like-

lihood estimates were approximately with a least squares

calculation according to Press et al. (1998). Parameter optimi-

zation utilized an uphill simplexmethod (Press et al. 1988) with

multiple (100–400) simultaneous simplexes for each optimiza-

tion. Generations were converted to dS using a factor of 10�4,

an approximation to the mutation rate used in the simulation.

The likelihood scores produced from subjecting the survival
function to the estimated parameterization for each model

of gene death are compared using AIC values. The best

AIC along with the corresponding model and the parameter-

ization of that model are given in table 2.

Model Comparison and Mixture Model Application
to O. dioica Data

dS values of duplicated genes in the O. dioica genome were

taken from published values (Denoeud et al. 2010), right

truncated at dS50.3. Because theprobability ofmultiple du-
plication events affecting a single gene increases, the pair-

wise estimate of the duplication rate becomes increasingly

inaccurate beyond dS5 0.3. The Oikopleura data were pre-

viouslyfitbyDenoeudetal. (2010)usingamixturemodel that

did not enablemechanistic inference using a Bayesian frame-

work. An initial approach used amaximum likelihood frame-

workadapted fromHughes andLiberles (2007), similar to the

approach popularized by Lynch and Conery (2000, 2003),
where data were treated as bins of size 0.01 dS units, reduc-

ing the size of the data to 30 data points. The computation is

as described for model comparison on simulated data. The

mixture model application then evaluated multiple compo-

nents of the survival function according to the formula illus-

trated below for two components:

N0SðtÞ5 ððqÞðS1ðtÞÞ þ ð1 � qÞðS2ðtÞÞÞ:

Here, N0 is the number of duplicates at t 5 0 but is fit as

a parameter model and q is the contribution of each mixture

component. Birth was assumed to be constant in this model,

Table 1

Simulations Generating the Retention Profiles in Figures 3–5 Were Generated with the Following Parameter Values Consistent with Different

Mechanisms and Processes

Curve Name

Population

Size

Network

Size

Fitness

Penalty Pr(Link Loss) Pr(Gene Loss) SF Allowed Pr(Neo Link)

Neo Fitness

Adv.

3A 1,000 4 0.0 0.005 0.0001 No 0.0 0.0

3B 1,000 4 0.4 0.01 0.0001 No 0.0 0.0

3C 1,000 4 0.4 0.005 0.0001 No 0.0 0.0

3D 1,000 4 0.4 0.005 0.001 No 0.0 0.0

3E 1,000 4 0.4 0.00001 0.0001 No 0.0 0.0

3F 1,000 4 0.4 0.01 0.0001 Yes 0.0 0.0

3G 1,000 4 0.4 0.005 0.0001 Yes 0.0 0.0

3H 1,000 4 0.4 0.005 0.001 Yes 0.0 0.0

3I 1,000 4 0.0 0.005 0.0001 Yes 0.0 0.0

3J 1,000 4 0.4 0.00001 0.0001 Yes 0.0 0.0

3K 1,000 4 0.0 0.005 0.0001 No 0.0001 0.05

3L 1,000 4 0.0 0.005 0.0001 No 0.0001 0.2

3M 1,000 4 0.4 0.005 0.0001 No 0.0001 0.05

3N 1,000 4 0.4 0.005 0.0001 No 0.0001 0.2

4A 1,000 4 0.0 0.005 0.0001 No 0.0 0.0

4B 100 4 0.0 0.005 0.0001 No 0.0 0.0

4C 1,000 4 0.4 0.005 0.0001 No 0.0 0.0

4D 100 4 0.4 0.005 0.0001 No 0.0 0.0

5A 1,000 3 0.4 0.005 0.0001 No 0.0 0.0

5B 1,000 4 0.4 0.005 0.0001 No 0.0 0.0

5C 1,000 5 0.4 0.005 0.0001 No 0.0 0.0

NOTE.—Neo Fitness Adv., fitness advantage of a neofunctionalized individual; SF, subfunctionalization.
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where the birth rate is N0/gene number. In future models,

amore complex treatment of the birth process can be explored.

Results

Examination of Simulation Results

Simulation of duplicate gene retention showed that pat-

terns of retention varied significantly depending upon

model parameters (fig. 3). When subfunctionalization was

allowed, it became the dominant fate, especially when link

loss had a high probability relative to gene loss (fig. 3). Mod-
els that did not allow subfunctionalization decayed to loss of

all duplicates, whereas models that did allow

subfunctionalization did not. In models where dosage

balance acted (with a high fitness penalty), a prolonged

period of retention without loss was observed, both when

subfunctionalization was allowed and when it was not.

Neofunctionalization alone led to an increased retention

of duplicates over the nonfunctionalization process,
although in low frequency under the parameter settings

used in curve 3K. In combination with dosage balance,

neofunctionalization resulted in a similar pattern to the

combination of subfunctionalization and dosage balance,

although with expectedly different dynamics.

In figure 4, as expected by population genetic theory,

smaller population sizes exhibit more stochasticity and

a greater role for drift. In both population sizes in the sim-

ulation, dosage balance results in absolute initial preserva-

tion of the network across individuals. However, and

consistent with predictions of Hughes et al. (2007), the

greater efficiency of selection in the larger population size

results in more rapid cooperative loss once individual genes
are lost from the network. Further, in larger populations,

segregating alleles may undergo additional mutations and

fix multiple changes at once via stochastic tunneling (Iwasa

et al. 2004), also consistent with the rapid complete loss ob-

served in figure 4.

In figure 5, larger networks show stronger effects for in-

creased dosage balance as evidenced by the prolonged reten-

tion periods of interacting networks. Hughes et al. (2007)
predicted that cooperativity of losswould be dependent upon

network size. The support for this hypothesis is not obvious

from visual examination of the retention data but can be eval-

uated through model parameterization (below).

Model Comparison on Simulated Data

The General Death Model was applied to the simulated data

described above. The model was based upon published

theoretical expectations of dS-dependent retention of
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FIG. 2.—The hazard function (left) and corresponding survival function (right) for duplicated gene retention under different theoretical models is

shown. Nonfunctionalization has a flat hazard, whereas neofunctionalization a concavely declining hazard, subfunctionalization a convexly declining

hazard, and dosage balance a concavely increasing hazard. The figure is only illustrative, and different parameterizations with each mechanism will give

variations on the curve shapes, including the timescale of action.
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duplicates under different evolutionary mechanisms (Hughes

and Liberles 2007; Hughes et al. 2007). Nonfunctionalization

is a neutral process characterized by a constant instantaneous

rate of duplicate gene loss (Lynch and Conery 2003; Hughes

and Liberles 2007). Neofunctionalization involves a waiting
time for a single advantageous change, resulting in a convexly

declining hazard (Zhang et al. 2004; Hughes and Liberles

2007). Subfunctionalization involves a waiting time for two

complementary deleterious changes, resulting in a concavely

declining hazard (Lynch et al. 2001; Hughes and Liberles

2007). Dosage balance involves initial retention followed

by cooperative loss once an initial gene duplicate is lost

resulting in a concavely increasing hazard (Hughes et al.
2007). These expectations are independent of expectations

of change in protein function or change in gene expression.

Before evaluating simulated data from the network model,

simulations generated from the distribution itself were tested.

The model showed the ability to recapture parameterizations

with small numbers of data points, althoughmore data points

were required to reject alternative null parameterizations with

nonfunctionalization when AIC was utilized rather than sim-
ply likelihoods. This problem was somewhat alleviated with

the restriction of the parameter range of nonfunctionalization

to d. 10, which prevented a nonbiological slow loss process.

This is justified by parameterizations on simulated and real

data below as well as from the analysis in Hughes and Liberles

(2007). The simulations are based upon a network model,
where the action of various processes can occur simulta-

neously. The current version of the fit model will support pa-

rameterization of the mechanism that dominates the signal

when multiple processes are acting.

As observed in table 2, the model comparison on the sim-

ulated data selects the proper mechanism in all cases. As is

seen in curves 3G and 3H, thesemodels reflect a combination

of dosage balance and subfunctionalization. The mechanism
that is selected depends upon the amount of data early in the

simulation where dosage balance acts and provides signal

comparedwith that late in the simulation where subfunction-

alization acts and provides signal. With increasing time and

corresponding data, these models will converge on a predic-

tion of subfunctionalization. A comparison of curves 3A and

3B, although both are suggestive of nonfunctionalization

according to themodel, shows a neutral loss rate for 3A com-
pared with selective pressure for loss in 3B, parameterized as

a much steeper loss rate.

As with subfunctionalization, neofunctionalization also

combines with dosage balance to yield a hybrid curve. In

curve 3K, the parameterization of the simulation resulted

in a small neofunctionalization effect. For this curve, the

neofunctionalization model had the best likelihood, but

due to the extra parameters, nonfunctionalization was pre-
ferred by AIC. Curve 3L, which had a stronger neofunction-

alization effect, was properly identified as

neofunctionalization. Curves 3M and 3N, like 3G and 3H,

reflected hybrid processes and were identified with dosage

balance as the dominant signal. Similarly, with increasing

simulation time, the neofunctionalization signal will domi-

nate over the dosage balance signal.

In figure 5, the parameterizations of the dosage balance
model show much steeper increases in the rate of loss with

increasing network size (as observed in the stepwise reduction

of the c parameter toward 0). This parameterization provides

some support for the hypothesis of cooperativity of loss that

increases with the number of interacting partners as sug-

gested in Hughes et al. (2007). However, a parameterization

where the c value was held constant in 5A and 5C showed

a lower likelihood, but this was not statistically significant
when accounting for the reduction of one parameter in

AIC. It may be that a model dominated by gene loss rather

than link loss would show stronger statistical support for

the cooperativity hypothesis.

Model Comparison and Mixture Model Application
to O. dioica Data

The publication of the genome of the tunicate O. dioica
included a characterization of recent duplicates based

upon their pairwise dS values (Denoeud et al. 2010). These

duplicates were originally fit with a mixture of a discrete

distribution at dS 5 0 and two Weibull components.

The fit did not enable mechanistic inference but was

Table 2

The General Loss Model Was Fit to the Data Shown in Figures 3–5,

Generating Maximum Likelihood Parameterizations

Curve Model b c d f

3A Non 20.0

3B Non 23.5

3C D.B. �25.2 0.231 �1.47e�06

3D D.B. �29.0 0.220 �3.17e�07

3E D.B. �13.8 0.105 �8.05e�09

3F Sub 1,300 2.37 5.40e�04 5.84

3G D.B. �12.2 0.0450 �4.46e�05

3H D.B. �18.4 0.0484 �5.72e�07

3I Sub 1,300 2.76 0.237 3.77

3J D.B. �14.4 0.0984 �5.03e�09

3K Non 16.5

3L Neo 42.2 0.0300 13.7 0.154

3M D.B. �13.5 0.0373 �2.80e�05

3N D.B. �14.4 0.0548 �2.55e�05

4A Non 21.2

4B Non 20.9

4C D.B. �23.9 0.215 �2.53e�06

4D D.B. �20.9 0.0622 �2.97e�08

5A D.B. �67.7 0.507 �3.67e�07

5B D.B. �24.6 0.240 �2.70e�06

5C D.B. �36.0 0.168 �3.52e�10

NOTE.—After adjusting for the number of parameters used in the various models

with AIC, the maximum likelihood parameterization and the model it is consistent with

are shown. D.B., dosage balance; Neo, neofunctionalization; Non, nonfunctionaliza-

tion; Sub, subfunctionalization.
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suggestive of aWeibull fitting the loss process and a second

Weibull fitting some variation in both the birth and loss

process not described by the first component. There is

no evidence of a recent whole-genome duplication in

the Oikopleura genome, and the mechanistic modeling

here is built upon the assumption of Lynch and Conery
(2000, 2003) and of Hughes and Liberles (2007) of a con-

stant birth rate that can be relaxed in future work. Unlike

previous work, not only is the decay process more flexible,

but the function is defined at t 5 0 and can decay to

asymptotic values .0.

A binning approach to fitting mixture models to duplicate

data from the tunicate genome was performed, using

maximum likelihood for parameter estimation (table 3). A

one-componentmodel showedsupport foraneofunctionaliza-

tion parameterization (where most genes are nonfunctional-

ized, but those retained are retained through a process
dominated by single-event waiting times) but with a c value

close to 1 (0.948; a c value of 1 is equivalent to an exponential

distribution, the neutral model). A two-component mixture

showed two neofunctionalization components, one similar

to the component in the one-component model with a c value

FIG. 3.—Duplicate retention for the model including subfunctionalization (A), a model of dosage balance only (B), and a model combining

neofunctionalization with dosage balance (C) in the case of four interacting partners and population size of 1,000 is shown. The neutral model (no

dosage balance) is shown as black lines. Even under conditions of increased gene and/or link loss probabilities, dosage balance (pairwise link out-of-

balance fitness penalty 5 0.4) leads to the prolonged retention of gene duplicates in comparison with the neutral models. These curves were generated

using the parameter values in table 1 for the network model and were fit with the parameter values from the loss model in table 2.
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at 0.725 and a weight of 58% and a second neofunctional-

ization-like component with steep decay and an initial high

hazard (d .. f, d 5 115), possibly fitting loss due to lack

of fixation that was not explicitly modeled. However, the
two-component mixture was not supported by AIC. The inter-

play between neofunctionalization parameterization and pop-

ulation genetic loss will be discussed further. A simple decay

function as is commonly applied would be consistent with

the nonfunctionalization mechanism parameterization but

was not statistically supported by the data. The interpretation

of these results, including caveats, will be discussed further.

Discussion

Gene duplication is an important process in the functional

divergence of genomes. To predict and understand how

function diverges, mechanistic models to characterize dupli-

cate gene retention and divergence are needed. The work

described here has characterized duplicate retention pro-

cesses when dosage balance acts as a mechanism, a process

that has received less attention in the literature than subfunc-
tionalization and neofunctionalization. Further, a general

model for characterizing the retention of gene duplicates un-

der different processes has been generated, extending the

models of Lynch and Conery (2000, 2003) and of Hughes

and Liberles (2007) to the dosage balance and subfunction-

alization mechanisms. The work also generated support for

the prediction of Hughes et al. (2007) that once a protein is
lost from a network, there will be positive selective pressure

to lose the additional copies under the dosage balancemodel

and the strength of that selective pressure is dependent upon

the number of interacting partners (cooperativity). The hy-

pothesis that cooperativity increased with network size

was supported in trend, but this was not statistically signif-

icant, and the lack of statistical support may be due to the

nature of the simulated data (dominated by link loss rather
than gene loss). Conversely, duplication of single genes in

FIG. 4.—The effect of population size on duplicate retention is

shown. The black and green lines refer to the neutral model for

population sizes 1,000 and 100, respectively. The red line shows dosage

balance for a population size of 1,000, whereas the blue line shows that

of population size 100. Whereas the duplicate retention under the

neutral model behaves similarly between the two population sizes,

dosage balance–driven loss is much more deterministic for the larger

population size due to higher effectiveness of selection (Pr(lose gene) 5

0.0001; Pr(lose link) 5 0.005). The fitness penalty for links out-of-

balance is 0.4. These curves were generated using the parameter values

in table 1 for the network model and were fit with the parameter values

from the loss model in table 2.

FIG. 5.—Dosage balance for three different network sizes is

shown. Larger network size corresponds to prolonged retention due

to comparatively larger fitness effects of individual gene losses as well as

the mutational opportunity to lose a gene from link loss being lower

because there are more links to be lost before an entire gene is

nonfunctionalized. The fitness penalty for links out-of-balance is 0.4.

These curves were generated using the parameter values in table 1 for

the network model and were fit with the parameter values from the loss

model in table 2.

Table 3

Pairwise Duplicate Retention Data from the Oikopleura dioica Genome

(Denoeud et al. 2010) Right Truncated at dS 5 0.3 Was Fit with the

General Death Model

Components Model AIC N0 b c d f q

1 Neo Yes 65.6 115 0.948 5.03 130

2 Neo No 64.8 39.3 0.112 115 23.8 0.42

Neo 46.2 0.725 4.45 74.0

NOTE.—AIC was used to compare parameterizations within a component class and

between mixtures with different numbers of components. Using a fit to binned data,

the best supported model was a one-component neofunctionalization model.
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highly connected networks should be more strongly selected
against. Indeed, such a trend is observable across the tree of

life, and duplicability of proteins with high connectivity is

greatly increased when a large-scale event (such as

a whole-genome duplication) also duplicates their interact-

ing partners (D’Antonio and Ciccarelli 2011).

The trends of gene duplicate loss and retention show an

interesting interplay between mutation rate, fitness penal-

ties, the size of the duplicated networks, and whether or not
subfuntionalization occurs. We have shown that increased

fitness penalties for pairwise links out of balance prolong the

retention of duplicate genes in network settings. This

strongly implies that not only are multiple interactions per

gene in networks subject to subfunctionalization but that

dosage balance can also play an intricate role in the reten-

tion of duplicates over long time periods. Whether the re-

tention is due to subfunctionalization or dosage balance
depends on the nature of the genes involved. As previously

discussed, subfunctionalization is characterized by initial

loss of duplicates, followed by high retention once sub-

functionalization is achieved, whereas dosage balance

causes initial retention, followed by cooperative loss. If

the genes in the interaction network function in such

a way that interactions cannot be separated temporally

or spatially (as implied in our dosage balance–only model),
then the trends seen strictly follow the dosage balance ex-

pectations. However, when the interactions can be sepa-

rated, subfunctionalization produces the dominant signal

seen. This is a result consistent with graph theory expect-

ations that link the probability of gaining or losing links to

the probability of retaining complete networks, known as

the Erdös–Rényi Model (Bollobás and Erd}os 1976) for the

case of a completely random network (of which this is
a generalization).

In the context of protein interaction networks and the na-

ture of the binding interface, it is possible to predict when

subfunctionalization might be possible. As noted above,

when highly connected proteins participate in a complex

(coexpressed, often referred to as ‘‘party hubs’’; Ekman

et al. 2006), the cause of the fitness loss due to dosage im-

balance, including over-/underwrapping leading to incorrect
complex assembly (Liang et al. 2008), makes it highly improb-

able that interactions could be partitioned in a way that main-

tains fitness. Additionally, there is a large expected difference

in pleiotropic constraint between proteins that bind different

partners via multiple interfaces and those that concentrate

multiple interactions to a single binding patch (Kim et al.

2006). Although interaction network data with this type of

structural resolution are currently rather sparse, the rapid
growth of the number of experimentally determined protein

complexes (Juettemann and Gerloff 2011) should aid this

type ofmodel inference in the near future. An additional layer

of biological complexity that will not appear in databases but

that will be subject to this type of selective constraint with

dosage effects and subfunctionalization are selective pres-
sures on what not to bind (Liberles et al. 2011). Although this

will not affect application of the general model for loss, it will

affect data interpretation.

The general model described was based upon expected

hazard functions under different evolutionary mechanisms

as shown in figure 2. The expectations derive from themath-

ematics associated with the processes being described.

However, there are additional considerations worth discus-
sing. Because the rates of deleterious and advantageous

mutation are different, this may affect the parameterization

of the subfunctionalization and neofunctionalizationmodels

in a manner that was not considered. This will need future

calibration on real data. Although the expectations of the

model associated with the mechanism are correct, parame-

terization of rapid neofunctionalization might suggest that

neofunctionalization has a faster decay in the hazard than
subfunctionalization, whereas simulation (Rastogi and Liber-

les 2005) and genetic data analysis (He and Zhang 2005)

have suggested that subfunctionalization occurs more rap-

idly than neofunctionalization.

Further, the model treats nonfunctionalization as the

dominant process leading to loss and does not describe

the population genetic process that can lead to loss with very

different dynamics. It is possible that rapid loss under this
model contributes to support for the neofunctionalization-

type parameterizations. However, in the Oikopleura data

where neofunctionalization was supported, a second model

with a second neofunctionalization-like component involv-

ing rapid decay was not statistically supported. Additionally,

the simulated data did not give false support for neofunc-

tionalization even though the population genetic process

of loss occurred in the simulation.
Biologically, the analysis of the O. dioica duplicates here,

like that of mammalian duplicates (Hughes and Liberles

2007), was consistent with a neofunctionalization model.

Although there are caveats (listed above) to this biological

data interpretation, one interpretation might be that neo-

functionalization is indeed an important process for the re-

tention of duplicated genes, even in small population size

organisms. Examination of selection through dN/dS ratios
(the ratio of nonsynonymous to synonymous nucleotide

substitution rates) in Oikopleura did show evidence for

a large Neu (the effective population size multiplied by

themutation rate), making suggestions of neofunctionaliza-

tion less surprising than for mammals (Denoeud et al. 2010).

Further, understanding any departure from simple neutral

population genetic expectations (Lynch et al. 2001) might

have roots in biophysics, where adaptive changes of binding
functions in proteins and of transcription factor–DNA inter-

actions regulating transcription are actually much more

common, with more mutational opportunity than is com-

monly thought in the population genetics literature. Indeed,

it may be that gain of a gene expression domain (e.g., time

Konrad et al. GBE
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in development or tissue where a gene is expressed) shows
a greater mutational opportunity than complementary loss

of expression domains, and this has indeed been observed

among duplicates retained after the teleost whole-genome

duplication event (e.g., Østbye et al. 2001).

Further, it has recently been suggested that interactome

complexity can be built up in small population size organ-

isms through neutral processes, resulting in secondary selec-

tion for protein–protein interactions to maintain proper
function (Fernández and Lynch 2011). This mechanism

would also interplay with expanded mutational opportuni-

ties for new protein–protein interactions in small population

size organisms. Further consideration of the underlying

physical chemistry of protein–protein interaction in an evo-

lutionary context will illuminate these possibilities.

The model fitting that supported a single neofunctionaliza-

tion model on theOikopleura data was based upon a fit to 30
bins of data, as has been applied in the comparative genomics

literature. Because bin size introduces an arbitrary component

to the model, an alternative approach that can be conceived is

to use the right truncated probability density function to fit the

continuous data. This approach may have more power to

support a mixture model with additional components that

may be biologically informative and will be described else-

where.
Another current debate in the molecular evolution litera-

ture is on the relative importance of change at the gene

expression and at the protein-coding levels. The model does

not currently enable differential prediction of changes at

the protein-coding level and those at the gene expression

level. For both neofunctionalization and subfunctionalization,

there are different expectations for the evolution of dN/dS ra-

tios relative to dS ratios when the protein function is changing
as opposed to when change is occurring at the level of gene

expression. A future version of this model can include dN/dS

versus dS evolution as part of the likelihood. A framework for

evaluating this was presented in Hughes and Liberles (2007).

When genes are changing function at the gene expression

level, negative selection is expected on the coding sequence.

Neofunctionalization of protein function is expected to show

positive selection detectable with dN/dS. Dosage-balanced
genes will be expected to show negative selection until they

are being lost. Simulations will be necessary to characterize

these expectations more fully.

The model described deals exclusively with gene loss and

retention from a birth event. Variation in the birth rate in

small-scale duplication events may be an important consider-

ation for modeling duplicates, and attention will also have to

bepaid tomodelingof thebirth process, potentially as amixture
model involving different constant rate processes or involving

the addition of discrete distributions when statistically sup-

ported. Variation in the birth process and extending this frame-

work to the analysis of a mixture of small-scale duplication and

whole-genome duplication will become a critical next step.

The models that have been described have been applied
to the pairwise analysis of duplicates in the O. dioica ge-

nome. It is well known that phylogenetic analysis outper-

forms pairwise analysis on comparative genomic data.

The models described can be extended to the gene tree/spe-

cies tree reconciliation problem, and this will also be an

important future trajectory. Powerful tools for mechanistic

functional characterization of gene duplicates will be in-

creasingly valuable as computational comparative genomics
moves forward.

Supplementary Material

Supplementary figure 1 is available at Genome Biology and
Evolution online (http://www.gbe.oxfordjournals.org/).
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