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Atherogenic w-6 lipids are physiological ligands of peroxisome proliferator-activated receptors (PPARs) and elicit pro- and
antiatherogenic responses in vascular cells. The objective of this study was to investigate if w-6 lipids modulated the early growth
response-1 (Egr-1)/PPAR crosstalk thereby altering vascular function. Rat aortic smooth muscle cells (RASMCs) were exposed to
w-6 lipids, linoleic acid (LA), or its oxidized form, 13-HPODE (OxLA) in the presence or absence of a PPAR« antagonist (MK886)
or PPARy antagonist (GW9662) or PPAR-specific siRNA. Our results demonstrate that w-6 lipids, induced Egr-1 and monocyte
chemotactic protein-1 (MCP-1) mRNA and protein levels at the acute phase (1-4 hrs) when PPAR« was downregulated and at
subacute phase (4-12 hrs) by modulating PPARy, thus resulting in altered monocyte adhesion to RASMCs. We provide novel
insights into the mechanism of action of w-6 lipids on Egr-1/PPAR interactions in vascular cells and their potential in altering

vascular function.

1. Introduction

Early growth-response (Egr-1) is a critical mediator of
vascular pathology by activating its dependent genes, tumor
necrosis factor-a (TNFa) (a potential stimulator of nuclear
factor kappa B-NF«xB) and monocyte chemotactic protein-1
(MCP-1) [1-4]. MCP-1 has a specific Egr-1 binding element
in its promoter region and is therefore directly activated by
Egr-1 [5, 6]. Many of these target genes in turn activate
Egr-1 by a positive feedback mechanism and thereby further
amplifying their effects [7].

Peroxisome proliferator-activated receptors (PPAR«, f,
y) are transcription factors that regulate various cellular
processes including lipid and glucose homeostasis [8, 9].
Both PPAR« and PPARy are expressed in vascular cells in-
cluding endothelial cells, smooth muscle cells (vSMCs), and
monocyte/macrophages [10, 11]. Activators of PPARs have
beneficial effects against atherosclerosis [12, 13]. Ligand-
mediated activation of PPAR« [14-17] and PPARy attenuates
the release of inflammatory factors including the production
of monocyte chemotactic protein-1 [18, 19]. Interestingly,

PPARs can directly interact with Egr-1 and attenuate its
downstream effects [20]. This attenuation is effective by
the activation of both PPAR isotypes, PPAR« [21] and
PPARy [22]. However, in vascular cells there exists a time-
dependent crosstalk between Egr-1 and PPARs, for example,
Egr-1 exhibits a critical early stimulatory effect but a later
inhibitory effect on PPARs [23].

Atherogenic w-6 lipids such as linoleic acid (LA, 18:2n —
6) and its oxidized forms, 13-hydroperoxy octadecadienoic
acid (13-HPODE) and 13-hydroxyoctadecadienoic acid (13-
HODE) are physiological ligands for both PPAR« [24] and
PPARy [25-28], that can covalently interact with PPARs and
alter their activity [29, 30]. The biological significance of
these interactions is not well understood. LA is the pre-
dominant polyunsaturated fatty acid found in the Western
diet [31], which at lower doses has lipid-lowering beneficial
effects [32], but, deleterious effects when consumed in excess
[33]. Oxidized forms of LA (oxidized linoleic acid (OxLA))
and other oxidized w-6 lipids are present in significant
amounts in heated oils and processed foods [34-37]. w-6
lipids are also major components of oxidized low-density
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ScHEME 1: Atherogenic w-6 lipids modulate PPAR-Egr-1 crosstalk.
A schematic representation of a possible mechanism by which w-
6 lipids and their oxidized forms regulate PPAR-Egr-1 crosstalk in
a time-mediated fashion and thereby altering smooth muscle cell
function. w-6 lipids seemed to have a time-dependent modulation
of PPAR isotypes, PPAR« at acute phase and PPARy at subacute
phase. This modulation of PPAR isotype altered the ability of
these lipids to exert an antiatherogenic effects via PPARs or
proatherogenic effects via Egr-1.

lipoproteins (Ox-LDLs) that exhibit both pro- and anti-
atherogenic effects on vascular cells [38—40].

Since Egr-1 regulates the proinflammatory and PPARs
regulates the anti-inflammatory pathways in vascular cells,
and that atherogenic w-6 lipids interact with both these
transcription factors, we speculate that these lipids could
influence the crosstalk between these two transcription
factors in a time- and concentration-dependent manner
(Scheme 1) and thereby influence atherogenic events. In
this study, the ability of LA and OxLA (w-6 lipids that
are abundant in dietary sources and OxLDL) to influence
Egr-1 and PPAR crosstalk was investigated in primary rat
aortic smooth muscle cells (RASMCs) in the presence or
absence of known PPAR antagonists or by knocking down
PPARs by siRNA approach. To our knowledge this is the
first study that has investigated the ability of atherogenic w-
6 lipids to modulate EGR-1-PPAR crosstalk. Our findings
will provide insights into the biological significance of the
interactions between physiological ligands of PPAR and
other transcription factors.

2. Materials and Methods

2.1. Materials. Dimethylsulfoxide (DMSO), PPARy antag-
onist (GW9662) was obtained from Invitrogen (Carlsbad,
CA). PPAR« antagonist (MK886) was obtained from Cay-
man (Ann Arbor, MI). Linoleic acid and soybean lipoxidase
were obtained from Sigma (St. Louis, MO). Rabbit Egr-1
and MCP-1 monoclonal antibody was obtained from Abcam
(Cambridge, MA). Rabbit anti-actin monoclonal antibody
was obtained from Sigma (St. Louis, MO). PPRE-luciferase
construct [p(AOX3)-TKSL] was a gift (Dr. Richard Niles,
Marshall University, Huntington, WV).

2.2. Oxidation of Linoleic Acid. A 10 mM stock solution of
linoleic acid (LA-18:2) was first prepared in absolute ethanol
which was further diluted in phosphate-buffered saline (PBS)
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to make 0.1 mM LA solution. A fresh aliquot of 0.1 mM
LA solution was oxidized with soybean lipoxidase (100-
200 U/100 nmol, 1 hr at 37°C) to generate oxidized linoleic
acid (OxLA-13-HPODE and 13-HODE) [41]. The conver-
sion of LA to OxLA (HPODE or HODE) was monitored
spectrophotometrically (Shimadzu, Columbia, MD) as an
increase in the absorbance at optical density of 234 nm.
Usually, >98% of unoxidized LA was converted to OxLA.

2.3. Cell Treatment and Sample Collection. Primary rat aortic
smooth muscle cells (RASMCs) were cultured in specific
growth media following the recommendations of the manu-
facturer (ATCC, Manassas, VA) and used at a passage number
below 15. Unless otherwise indicated, 70-80% quiescent cells
were first pretreated with GW9662 (1 uM), MK886 (10 uM)
or DMSO (1uM) (vehicle) for 2 hours. Pretreated cells
were then exposed to either LA or OxLA at 10, 25 and
50 uM concentrations, for 0, 1, 4, or 12 hours (hrs). The
control (CTRL) was defined as cells treated with vehicle alone
(DMSO). Each treatment was run in duplicates and one set
of cells were used for qRT-PCR analyses and the second set
was used for Western blotting. Each experiment was repeated
at least three times.

2.4. siRNA Transfection. RASMCs were cultured to 50-70%
confluence and then transfected using 50 nmoles of a pooled
mixture of ON-TARGETplus SMARTpool siRNA duplexes
(SMARTpool, Thermo Scientific Dharmacon, Lafayette, CO)
for PPARa, PPARY or a nonspecific control siRNA (Nontar-
geting pool, Thermo Scientific Dharmacon, Lafayette, CO)
using Thermo Scientific DharmaFECT transfection reagents
and siRNA transfection protocol (Thermo Scientific Dhar-
macon, Lafayette, CO). Forty eight hours after transfection,
quiesced cells were treated with vehicle (CTRL), 25 and
50uM LA, and 10, 25 and 50 uM OxLA for either 4 or
12 hours. Egr-1 mRNA levels were determined after each
treatment by real-time PCR.

2.5. Quantitative Real-Time Reverse-Transcriptase PCR (qRT-
PCR). Total RNA was extracted from the treated cells
using the TRIzol reagent kit (Sigma, St-Louis, MO) ac-
cording to the manufacturer’s protocol. The mRNA lev-
els of Egr-1 and MCP-1 were analyzed in a MyiQ real
time PCR system (Bio-Rad, Hercules, CA). f-actin was
used as the house-keeping gene. The real-time PCR was
carried out in 25uL of a SYBR green reaction mix-
ture containing 1uL of cDNA and iQ SYBR Green Su-
permix (Bio-Rad, Hercules, CA) containing the respec-
tive primers: Egr-1 (NM_012551) 5’-aacactttgtggcctgaacc-
3', 3'-aggcagaggaagacgatgaa-5'; MCP-1 (NM_031530) 5'-
atgcagttaatgccccacte-3’,  3'-ttecttattggggtcageac-5';  fB-actin
was used as the house-keeping control (NM_031144)
5'-gtccaccegegagtacaacct-3’, 3'-tcgacgacgagegeagegata-5'. A
sequence detection program calculated a threshold cycle
number (CT) at which the probe cleavage-generated flu-
orescence exceeded the background signal [42]. The real-
time PCR results were expressed as fold change + Standard
Error of ACt for each group compared to control (vehicle
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treatment) after normalizing to beta actin (housekeeping
gene) using the Pfaffl method (2-24€t) [42].

2.6. Western Blot Analysis. For Western blotting, the treated
cells were rinsed in phenol-red free Hanks buffer and whole
cell lysates were prepared in RIPA buffer (TRIS 50 mM,
sodium chloride 150 mM, Triton 1%, sodium deoxycholate
1%, SDS 0.1%, EDTA 5 mM) containing protease inhibitors
(Roche Diagnostics, Indianapolis, IN). Total protein in the
cell lysates was quantified using the Lowry method [43].
Equal amount of the cell proteins were subjected to SDS-
PAGE. After transfer, blots were probed individually with
a solution of rabbit antibody to rat Egr-1 (1:3000), MCP-
1 (1:7000), PPAR« (1:2000), PPARy (1:7000), or f-actin
(1:1000) as housekeeping protein and then analyzed using
the chemiluminescence detection method (Millipore, Biller-
ica, MA). The protein levels were quantified by densitometry
of the respective bands on the autoradiograph (Bio-Rad,
Hercules, CA). The results were expressed as the ratio of
protein levels in treated samples compared to CTRL after
normalizing to $-actin.

2.7. Transient Transfection and Luciferase Reporter Assay.
RASMC:s in 12-well plates (50,000 cells per well) were trans-
fected with 0.5 ug per well of the PPRE-luciferase construct
(p(A-OX3)-TKSL) using Lipofectamine-2000 transfection
reagent (Promega, Madison, WI). After 24 hrs of transfec-
tion, cells were transferred to serum-free EMEM media con-
taining 1% charcoal stripped fetal bovine serum and either
pretreated or untreated with PPAR antagonists, [MK886
(10uM) or GW9662 (1 uM)]. Following pretreatment, the
cells were exposed for 4 hrs with either LA or OxLA at 10,
25, 50 uM concentrations. Controls (CTRL) were defined as
samples without LA or OxLA treatment. At the end of lipid
treatment, the cells were washed in PBS three times and
solubilized in 1X lysis buffer (Roche, Indianapolis, IN). PPRE
transactivity was determined in the cell lysates by assaying
for firefly luciferase activities using the Luciferase Reporter
Assay System (Berthold, Germany). Each experiment was
performed in duplicates and repeated three times. The results
were expressed as the ratio of relative luciferase units (RLU)
in treated samples/CTRL values.

2.8. Monocyte Adhesion Assay. To demonstrate the physio-
logical consequences of alterations in Egr-1/MCP-1 levels
by w-6 lipids on vascular function, monocyte adhesion
studies were performed using established protocols [44].
Briefly, RASMCs were seeded in 12-well plates at a cell
density of 1 x 10° cells/well. Once the cells reached 70—
80% confluence, it was exposed to 10-50 M concentrations
of LA or OxLA with or without pretreatment to PPAR
antagonists, MK886 (10 uM) or GW9662 (1 uM). At the end
of 4 or 12 hours of lipid treatment, RASMCs were rinsed
with Hanks balanced salt solution (HBSS) followed by the
addition of 5 x 10%cells/cm?> THP1 (human monocytes)
to each well. After 24 hrs coculture of RASMC and THP]1,
the plates were rinsed three times with PBS and adhered
monocytes were counted in a 3 X 3 field under an inverted

microscope (Leica-DMI4000B, Wetzlar, Germany) for each
condition and duration of treatment. The average number
of adhered monocytes for each treatment and time duration
were counted by two independent investigators.

2.9. Statistical Analysis. The real-time PCR results were ex-
pressed as fold change + Standard Error of ACt for each
group compared to control using the Pfaffl method (2-44¢t)
[42]. All statistics were performed at the ACt stage in order to
exclude potential bias due to averaging of data transformed
through the equation 2" ~(22C9[45]. One way ANOVA was
used for the comparison between two treatments at each time
point. Vehicle control of the baseline (no antagonist pre-
treatment) group was used as the control for all statistical
comparisons. Differences due to treatments in the density
of the protein bands after Western blotting and the number
of attached THP1 monocytes were analyzed for significance
by one-way ANOVA, compared to the untreated, vehicle
control. The relative data was presented as mean + Standard
Error of mean. Significance was confirmed using post hoc
analysis using Fisher’s least significant difference (Fisher’s
LSD) test. A P < 0.05 was considered statistically significant.
In the figures, significant differences between vehicle control
and treated samples is indicated as an asterisk-*, whereas
significant difference between the lowest concentration to
higher concentrations of the lipid treatments is indicated as

«H»

3. Results

3.1. w-6 Lipids Modulate PPAR Protein Levels and Transac-
tivity. PPARs are transcription factors, which upon ligand
activation, promote regulation of genes that exhibit PPAR
response elements [46, 47]. The PPAR ligands regulate these
transcription factors at the protein level. In RASMCs, LA
and OxLA had a differential induction of PPAR subtypes,
with an induction of PPAR« protein in the acute phase (1-
4 hrs) (Figure 1(a)) and induction of PPARy at the subacute
phase (12hrs) (Figure 1(b)) compared to vehicle CTRL.
The OxLA at increasing concentrations had 2—4-fold higher
induction of PPAR« protein at 4 hrs but less than baseline
levels at 12hrs. In contrast, OxLA was less effective on
PPARy protein, with an induction of only about 2-fold at
12 hrs.

PPAR transactivity studies using RASMCs transfected
with PPRE-luciferase constructs showed that compared to
vehicle CTRL, both LA and OxLA induced PPRE transac-
tivity in a concentration-dependent manner, (Figure 1(c)).
Pretreatment of the cells with a PPAR« antagonist MK886,
exhibited a significant attenuation of the PPRE activity
that was induced at all concentrations of LA and OxLA
(—81% for LA and —50-80% for OxLA) (P < 0.005)
after 4 hrs treatment. On the contrary, pretreatment with
PPARy antagonist, GW9662 only partially inhibited the
PPRE transactivity induced by LA and OxLA (—17% for LA
and —3-17% for OxLA), (Figure 1(c)). These results suggest
a time-dependent modulation of PPAR subtypes by w-6
lipids.
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FIGURE 1: w-6 lipids modulate PPAR protein levels and PPRE transactivity in a time-dependent manner. Western blotting of RASMC lysates
treated with 10-50 yM of LA and OxLA for 0-12 hrs using PPARa and PPARy antibody shows induction of PPAR« at acute phase and PPARy
at subacute phase. Control (CTRL) was defined as the cells treated with vehicle only. The results were expressed as mean = SEM (Standard
Error of Mean) defined by the ratio of protein levels in treated samples compared to CTRL. All data were normalized to S-actin (house-
keeping protein) (a) PPAR« protein levels after 1 hr, 4 hr, 12 hrs treatment. (b) PPARy protein levels after 1 hr, 4 hr, 12 hrs treatment. The
figure is a representation of three independent blots. One way ANOVA was used for the comparison between two treatments. Significance
was confirmed using post hoc analysis using Fisher LSD test. *P < 0.05. (c) PPAR transactivity was measured in PPRE-luciferase transfected
RASMCs which were pretreated with 10 uM MK886 (PPAR« antagonist) or 1 uM GW9662 (PPARy antagonist) followed by exposure to
10-50 uM LA or OxLA for 4 hrs. The assay were run in duplicates and repeated three independent times. The results were expressed as
mean relative luciferase activity + SEM (Standard Error of Mean). One way ANOVA was used for the comparison between two treatments.

Significance was confirmed using post hoc analysis using Fisher LSD test. *compared to CTRL, P < 0.05; *compared to 10 M concentration,
P < 0.05.
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Ficure 2: Ligand-mediated regulation of PPAR transactivity altered Egr-1/MCP-1 mRNA levels. Downregulation of PPAR« or y by
pretreatment of RASMCs with 10 uM MK886 or 1 uM GW9662 followed by exposure to 10-50 uM LA or OxLA for 1-12 hrs resulted in
time-dependent induction of Egr-1 and MCP-1 mRNA levels as analyzed using qRT-PCR. Control-(CTRL-) vehicle only. mRNA levels were
expressed as fold change = SEM (Standard error of ACT mean). (a) Egr-1 mRNA levels at 1, 4 and 12 hrs; (b) MCP-1 mRNA levels at
1 hr, 4 and 12 hrs. One way ANOVA was used for comparison between two treatments. Significance was confirmed using Fisher LSD test.

*compared to CTRL, compared to 10 uM concentration.

3.2. Ligand-Mediated Regulation of PPAR Transactivity Alters
Egr-1/MCP-1 mRNA Levels. w-6 lipids and its oxidized
forms have dual effects on vascular cells. Since these lipids
target both PPAR and Egr-1, we speculated that in the
absence of PPARs (either by antagonizing the receptor using
chemical antagonists or by siRNA approach), the w-6 lipids
will be able to activate Egr-1 and proinflammatory effects.
The results shown in Figure 2 indicate that in the presence
of a PPAR«a antagonist MK886, the w-6 lipids, LA, and
OxLA had an immediate effect (acute phase) on Egr-1 and
its downstream target MCP-1 mRNA levels. At 1 hour,

both lipids significantly induced Egr-1 mRNA levels (3-20
fold) (Figures 2(a)-2(b)) but only had minimal effect on
MCP-1 (1-2-fold), at all concentrations (10-50 uM LA and
OxLA) tested, compared to vehicle CTRL. This induction
was further increased around 4 hrs, when levels of Egr-1
(10-80-fold) and MCP-1 (5-45-fold) by LA and Ox-LA was
induced by 3-5 times higher than after 1 hr treatment and
compared to vehicle CTRL. But around 12 hours, the Egr-
1/MCP-1 levels returned to near baseline levels. Minimal
effects on Egr-1/MCP-1 were observed by the antagonists
themselves.
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F1GURE 3: PPAR mediated alteration in Egr-1/MCP-1 protein levels by w-6 lipids. Egr-1 and MCP-1 protein levels were determined using
Western blot in cells exposed to w-6 lipids after pretreatment with PPAR« or y antagonists, MK886 or GW9662. Control-(CTRL) vehicle
only. The results were expressed as mean + SEM (Standard Error of Mean). (a—c) Egr-1 protein levels after 1, 4, and 12 hrs; (d—f) MCP-1
protein levels after 1, 4, and 12 hrs. One way ANOVA was used for the comparison between two treatments. Significance was confirmed using

post hoc Fisher LSD test. *P < 0.05.

In contrast, in the presence of PPARy antagonist
GW9662, the w-6 lipids had a higher induction of Egr-1
and MCP-1 at a later time point, that is, 12 hours (subacute
phase) (Figures 2(a)-2(b)). There was a minimal or no
apparent induction of Egr-1 or MCP-1 at 1-4hrs at all
concentrations of LA and OxLA tested compared to vehicle
CTRL. However, after 12 hours, cells exposed to GW9662
exhibited enhanced induction of Egr-1 and MCP-1 (5-10-
fold) mRNA levels especially at higher concentrations of
OxLA [18 fold, 50 yM] compared to vehicle CTRL.

3.3. PPAR-Mediated Alteration in Egr-1/MCP-1 Protein Levels
by w-6 Lipids. Western blotting of the cell lysates obtained

from the above treated cells indicated that both LA and OxLA
had similar trends on Egr-1 or MCP-1 protein levels as seen
with the mRNA levels. As shown in Figures 3(a)-3(b), at 1 hr
and 4 hrs (acute phase), LA and OxLA had minimal induc-
tion of Egr-1 protein. However, pretreatment with MK886
(PPARe« antagonist) exhibited a slightly larger induction of
Egr-1 (2-fold). At 12hrs the baseline Egr-1 protein levels
were higher than that seen in the acute phase, however, when
cells were pretreated with MK886 followed by exposure to w-
6 lipids there was a downregulation of Egr-1 protein levels,
whereas pretreatment with GW9662, exhibited higher levels
of Egr-1 protein, in a concentration-dependent manner
(Figure 3(c)) compared to vehicle CTRL. This induction
reached significance at 50 yM OxLA (P < 0.05).
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Similar trends were observed with the Egr-1 downstream
target, MCP-1 protein levels in the presence of w-6 lipids
(Figures 3(d)-3(f)). MK886 pretreatment had an initial
increase in MCP-1 levels at 4hrs followed by a return
to baseline levels at 12hrs, upon exposure to w-6 lipids.
On the other hand, these lipids had minimal effects on
MCP-1 protein levels when PPARy was inhibited (GW9662
pretreated cells) at all time points tested except for the higher
doses of the OxLA at 12 hrs.

3.4. siRNA-Mediated Downregulation of PPARs Modulated
Egr-1 Levels. The results above indicated that inhibition of
PPARs by antagonists modulated Egr-1 levels by w-6 lipids.
In order to validate the above findings where PPARs were
downregulated by the use of antagonists and establish the
relationship between PPAR levels and Egr-1 modulation by
w-6 lipids, in this experiment we used siRNA approach to
downregulate either PPARa or PPARy in RASMC:s followed
by treatment with different concentrations of w-6 lipids for
4 or 12 hrs. As shown in Figure 4, our preliminary findings
indicated that compared to the concentration-dependent
Egr-1 induction by w-6 lipids the nontargeting siRNA group,
the Egr-1 levels were upregulated by over 20-25-fold when
PPAR«a was downregulated by siRNA approach at 4hrs
compared to PPARy downregulation. The effects of w-6
lipids were less apparent at the subacute phase. These initial
findings have similar trends in Egr-1 levels as observed in the
presence of PPAR antagonists.

3.5. Alterations in Egr-1/MCP-1 Levels by w-6 Lipids Modu-
lates Monocyte Adhesion to RASMCs. Monocyte/macrophage
infiltration into the subendothelial space of arteries is
an important step in the atherogenic process [48]. Egr-
1/MCP-1 interplay plays an important role in promoting
atherogenic lipids (OxLDLs) initiating monocyte infiltration
and adhesion during atherosclerosis [49-51]. Since, our
results thus far indicated that w-6 lipids by regulating
PPAR transactivity were able to modulate Egr-1/MCP-1
mRNA and protein levels, we speculated that this will alter
monocyte adhesion to vascular cells in a time-dependent
fashion. Figures 5(a)-5(b) demonstrate that in the absence of
PPAR antagonists, w-6 lipids had a concentration-dependent
increase in the number of monocytes adhered to RASMCs
(P < 0.05) at both 4 and 12hrs treatments. However,
in the presence of PPAR antagonists, these lipid ligands
had a PPAR-subtype-dependent modulation of monocyte
adhesion to RASMCs. Pretreatment with MK886 (PPAR«
antagonist) significantly increased monocyte adhesion by
PPAR lipid ligands at 4 hours, whereas PPARy inhibition
(GW9662 treated) increased adhesion at a later time point
(12 hours) reflecting the increase in Egr-1/MCP-1 mRNA
and protein levels in the presence of these antagonists at
these respective time points. PPAR antagonists by themselves
did seem to have an effect on the monocyte adhesion to
RASMC:s, but the lipid treatments were in addition to what
was observed at baseline.

7
30 + Egr-1
620 -
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4 hrs 12 hrs
o CTRL & OxLA 10
B 1A 25 ® OxLA 25
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FiGure 4: Downregulation of PPARs by siRNA alters w-6 lipid-
mediated induction of Egr-1 mRNA: RASMCs were transfected
with SMART-pool siRNA duplexes of PPAR«, PPARy or nontar-
geting control siRNA, followed by treatment with w-6 lipids for
4 and 12 hrs. Preliminary findings indicated Egr-1 mRNA levels
were upregulated when PPARa was knocked down compared to
PPARy knockdown as determined by qRT-PCR. The fold change
was calculated by comparing lipid treatments with vehicle controls
in each siRNA group. All values were normalized to $-actin (house-
keeping gene). mRNA levels were expressed as fold change + SEM
(Standard error of ACT mean).

4. Discussion

Our study for the first time demonstrates that atherogenic
w-6 lipids, such as linoleic acid and its oxidized forms
(13-HPODE/13HODE), (abundant in diet and associated
with OxLDL) modulate PPAR/Egr-1 crosstalk, resulting in
altered vSMC function. In the presence of PPAR antagonists,
w-6 lipids altered Egr-1-mediated responses through its
divergent effect on PPAR subtypes in a time-dependent
manner. Though our studies used these lipids in the free
form, in physiology these fatty acids are either part of
membrane lipids or major components of lipoproteins. We
predict that oxidation of most of the dietary lipids both
in the free form or in an esterified form will have similar
effects. Depending on its dose and time of exposure, w-6
lipids have biphasic effects on vascular inflammation [51—
53]. vSMCs that make up the intimal and medial layer of
the vessel wall play an important role in the initiation and
early progression of atherosclerosis [54]. w-6 lipids medi-
ate smooth muscle migration, proliferation, and apoptosis
during the atherosclerotic process [55]. These lipids have
multiple proinflammatory effects on the vasculature which
include, activation of adhesion molecules, chemoattractants,
NF«xB pathway, and activation of scavenger receptors leading
to foam cell formation [50, 56, 57]. On the other hand, we
and others have also shown anti-inflammatory effects of w-6
lipids, such as their ability to inhibit tumor necrosis alpha
(TNFa) production, inhibition of nitric oxide production,
and activation of antioxidant enzymes [53, 58-60].

The zinc finger transcription factor, Egr-1, is expressed in
all vascular cells including endothelial cells, smooth muscle
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FIGURE 5: Alterations in Egr-1/MCP-1 by w-6 lipids resulted in altered monocyte (THP1) adhesion to RASMCs THP1 (human monocyte)
cells adhesion to RASMCs exposed to LA and OxLA (with or without pretreatment to MK886 and GW9662) was determined by counting
the number of cells in a 3 x 3 field on an inverted fluorescent microscope. Results showed that monocyte adhesion reflected the alterations in
Egr-1and MCP-1 levels by w-6 lipids by an increase in adherent monocyte cell number at 4 hrs when PPARa was downregulated and increase
in adherent cell number at 12 hrs when PPARy was downregulated. The data presented represents mean numbers of THP1 cells adhered to
RASMC:s in each field + SEM (Standard Error of Mean). (a) monocyte adhesion at 4 hrs; (b) monocyte adhesion at 12 hrs. *P < 0.05,

**P < 0.01, ***P < 0.005.

cells, and monocyte/macrophages [61]. Egr-1 is also upregu-
lated in the atherosclerotic fibrous cap [62]. Oxidative stress,
an important player in atherosclerosis can induce Egr-1
[63, 64] and conversely, deletion of Egr-1 showed a protective
effect in the Apo E7/~ atherosclerosis mouse model [65,
66]. Several factors including platelet-derived growth factor
[67, 68], fibroblast growth factor [69], angiotensin-II [70],
and oxidative stress [71] activates Egr-1 in vascular tissues
including vascular smooth muscle cells [70]. A recent study
demonstrated that oxidants such as H,O,, activated Egr-1
in vascular smooth muscle cells in both a time- and dose-
dependent manner [64]. In the present study, in the presence
of PPAR antagonists, the w-6 lipids had a biphasic effect on
PPAR subtypes, an activation of PPAR« in the acute phase
(1-4 hours), and PPARy in the subacute phase (12 hours).
The mechanism behind this biphasic effect can only presently
be speculated to be a probable regulation of PPAR turnover
by these lipids. w-6 lipids are physiological ligands of PPARs
and biophysical studies confirmed a covalent interaction
between these lipids with PPARs [29, 30]. These interactions
were different from that seen with known PPAR synthetic
ligands that is, rosiglitazone or fibrates. In the present study,

both from the preliminary PPAR siRNA findings and the
PPRE-luciferase transactivity studies in RASMCs, in the
presence of PPAR antagonists indicated that w-6 lipids had
a higher induction of PPAR«a promoter compared to PPARy,
however, we still observed that blocking PPARy did enhance
Egr-1/MCP-1 in the subacute phase. This can probably be
attributed to increased generation of intracellular oxidative
stress including H,O, [58, 72] at the subacute phase or
through the inhibition of Egr-1 by PPARy [20, 23].

In both atherosclerotic and ischemic models, PPAR
ligands are known to inhibit multiple proinflammatory genes
by inhibiting Egr-1 [20, 21, 73]. Our findings further showed
that the time-dependent effect of OxLA on PPARs/Egr-1
crosstalk and the resultant alterations in Egr-1/MCP-1 levels
also resulted in altered smooth muscle cell chemoattrac-
tion to monocytes. Selective blocking of PPAR«a (MK886)
enhanced monocyte adhesion at 4 hrs, whereas blocking of
PPARy (GW9662) enhanced monocyte adhesion at 12 hrs.
This data further supports the time-dependent paradoxical
effects of OxLA during the atherogenesis process [50, 53,
59]. Since, pretreatment with MK886 exhibited a higher
inhibition of OxLA-induced PPRE transactivity but a higher
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induction of Egr-1/MCP-1 and monocyte adhesion than
GW9662, it can be speculated that the w-6 lipids seems
to have a predominant influence on PPAR« compared to
PPARy in vSMCs.

In the present studies, though both unoxidized and
oxidized linoleic acid exhibited similar regulatory effects on
Egr-1/MCP-1 and PPAR levels, at similar concentrations,
OxLA had a more dramatic effect than LA. Both unoxidized
and oxidized forms are ligands of PPARs and have been
shown to have similar vascular effects. This may be explained
by (i) the ability of LA similar to OxLA to generate
reactive oxygen species (ROS), though at lower levels, by
mitochondrial oxidation [74] and fatty acid peroxisomal
degradation [75]. ROS generated through these pathways
induces transcription factors including NFxB and Egr-1
[71, 76, 77]. (ii) Secondly, other than dietary and other
extracellular sources, the hydrolysis of esterified lipids by
intracellular lipoxygenase and cycloxygenase pathway can
also generate oxidized lipids [78, 79] from LA.

Our results, to our knowledge, for the first time demon-
strate that w-6 lipids depending on the dose and time of
exposure on vascular cells have a preferential activation of
specific PPAR subtypes. Whether this preferential activation
of PPAR subtypes is reflective of the ability of these lipids
to modulate PPAR turnover is currently being investigated.
The interactions of these lipid ligands on both Egr-1 and
PPAR subtypes results in an altered crosstalk between Egr-1
and PPARs which ultimately reflected in altered atherogenic
response by the vascular cells (Scheme1). Our results
provide novel insights into the regulatory role of dietary w-
6 lipids on two of the major transcription factors that are
relevant to atherosclerosis, PPAR, and Egr-1 with differing
vascular effects.

Acknowledgments

The authors acknowledge the grant support from NIH,
HL074239 (NS), and 5P20RR016477 (NS), MG-WV-NASA
fellowship.

References

[1] L. M. Khachigian, “Early growth response-1 in cardiovascular
pathobiology,” Circulation Research, vol. 98, no. 2, pp. 186—
191, 2006.

[2] U. R. Pendurthi, J. T. Williams, and L. V. M. Rao, “Inhibition
of tissue factor gene activation in cultured endothelial cells by
curcumin: suppression of activation of transcription factors
Egr-1, AP-1, and NF-«B,” Arteriosclerosis, Thrombosis, and
Vascular Biology, vol. 17, no. 12, pp. 3406-3413, 1997.

[3] J. Yao, N. Mackman, T. S. Edgington, and S. T. Fan,
“Lipopolysaccharide induction of the tumor necrosis factor-
o promoter in human monocytic cells: regulation by Egr-1,
c-Jun, and NF-xB transcription factors,” Journal of Biological
Chemistry, vol. 272, no. 28, pp. 17795-17801, 1997.

[4] X. Bao, C. Lu, and J. A. Frangos, “Temporal gradient in
shear but not steady shear stress induces PDGF-A and MCP-1
expression in endothelial cells: role of NO, NF«B, and egr-1,
Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no.
4, pp. 996-1003, 1999.

(5]

(10]

[13]

[14]

[16]

(19]

R. K. Girj, S. K. Selvaraj, and V. K. Kalra, “Amyloid peptide-
induced cytokine and chemokine expression in THP-1 mono-
cytes is blocked by small inhibitory RNA duplexes for early
growth response-1 messenger RNA,” Journal of Immunology,
vol. 170, no. 10, pp. 5281-5294, 2003.

T. Maekawa, N. Takahashi, T. Honda et al., “Porphyromonas
gingivalis antigens and interleukin-6 stimulate the production
of monocyte chemoattractant protein-1 via the upregulation
of early growth response-1 transcription in human coronary
artery endothelial cells,” Journal of Vascular Research, vol. 47,
no. 4, pp. 346-354, 2009.

S. Goetze, U. Kintscher, K. Kaneshiro et al., “TNFa induces
expression of transcription factors c-fos, Egr-1, and Ets-1 in
vascular lesions through extracellular signal-regulated kinases
1/2,” Atherosclerosis, vol. 159, no. 1, pp. 93—-101, 2001.

S. Z. Duan, M. G. Usher, and R. M. Mortensen, “PPARs:
the vasculature, inflammation and hypertension,” Current
Opinion in Nephrology and Hypertension, vol. 18, no. 2, pp.
128-133, 2009.

E. Robinson and D. J. Grieve, “Significance of peroxisome
proliferator-activated receptors in the cardiovascular system in
health and disease,” Pharmacology and Therapeutics, vol. 122,
no. 3, pp. 246-263, 2009.

N. Marx, H. Duez, J. C. Fruchart, and B. Staels, “Peroxisome
proliferator-activated receptors and atherogenesis: regulators
of gene expression in vascular cells,” Circulation Research, vol.
94, no. 9, pp. 1168-1178, 2004.

R. E. Law, S. Goetze, X. P. Xi et al., “Expression and function
of PPARy in rat and human vascular smooth muscle cells,”
Circulation, vol. 101, no. 11, pp. 1311-1318, 2000.

S. T. de Dios, R. C. O’Brien, and P. J. Little, “Clinical
thiazolidinediones as PPARy ligands with the potential for
the prevention of cardiovascular disease in diabetes,” Current
Diabetes Reviews, vol. 2, no. 2, pp. 227-239, 2006.

Z. Israelian-Konaraki and P. D. Reaven, “Peroxisome prolifer-
ator-activated receptor-alpha and atherosclerosis: from basic
mechanisms to clinical implications,” Cardiology in Review,
vol. 13, no. 5, pp. 240-246, 2005.

J. C. Fruchart, “Peroxisome proliferator-activated receptor-
alpha (PPAR«): at the crossroads of obesity, diabetes and
cardiovascular disease,” Atherosclerosis, vol. 205, no. 1, pp. 1-8,
2009.

R. Altman, D. D. Motton, R. S. Kota, and J. C. Rutledge, “Inhi-
bition of vascular inflammation by dehydroepiandrosterone
sulfate in human aortic endothelial cells: roles of PPAR«a and
NE-«B,” Vascular Pharmacology, vol. 48, no. 2-3, pp. 76-84,
2008.

V. R. Babaev, H. Ishiguro, L. Ding et al., “Macrophage expres-
sion of peroxisome proliferator-activated receptor-a reduces
atherosclerosis in low-density lipoprotein receptor-deficient
mice,” Circulation, vol. 116, no. 12, pp. 1404—1412, 2007.

G. Kronke, A. Kadl, E. Tkonomu et al., “Expression of heme
oxygenase-1 in human vascular cells is regulated by peroxi-
some proliferator-activated receptors,” Arteriosclerosis, Throm-
bosis, and Vascular Biology, vol. 27, no. 6, pp. 1276-1282, 2007.
J. Barlic and P. M. Murphy, “An oxidized lipid-peroxisome
proliferator-activated receptor y-chemokine pathway in the
regulation of macrophage-vascular smooth muscle cell adhe-
sion,” Trends in Cardiovascular Medicine, vol. 17, no. 8, pp.
269-274, 2007.

Y. Jung, S. Song, and C. Choi, “Peroxisome proliferator
activated receptor y agonists suppress TNFa-induced ICAM-1



10

(20]

(22]

expression by endothelial cells in a manner potentially depen-
dent on inhibition of reactive oxygen species,” Immunology
Letters, vol. 117, no. 1, pp. 63-69, 2008.

M. Okada, S. F Yan, and D. J. Pinsky, “Peroxisome pro-
liferator-activated receptor-y (PPAR-y) activation suppresses
ischemic induction of Egr-1 and its inflammatory gene
targets,” FASEB Journal, vol. 16, no. 14, pp. 1861-1868, 2002.
S. Ichihara, K. Obata, Y. Yamada et al., “Attenuation of cardiac
dysfunction by a PPAR-« agonist is associated with down-
regulation of redox-regulated transcription factors,” Journal of
Molecular and Cellular Cardiology, vol. 41, no. 2, pp. 318-329,
2006.

M. Fu, J. Zhang, Y. Lin, X. Zhu, M. U. Ehrengruber, and
Y. E. Chen, “Early growth response factor-1 is a critical
transcriptional mediator of peroxisome proliferator-activated
receptor-yl gene expression in human aortic smooth muscle
cells” Journal of Biological Chemistry, vol. 277, no. 30, pp.
26808-26814, 2002.

M. Fu, J. Zhang, Y. Lin et al., “Early stimulation and late
inhibition of peroxisome proliferator-activated receptor y
(PPARy) gene expression by transformino growth factor
in human aortic smooth muscle cells: role of early growth-
response factor-1 (Egr-1), activator protein 1 (AP1) and
Smads,” Biochemical Journal, vol. 370, no. 3, pp. 1019-1025,
2003.

P. Delerive, C. Furman, E. Teissier, J. C. Fruchart, P. Duriez,
and B. Staels, “Oxidized phospholipids activate PPAR« in a
phospholipase A2-dependent manner,” FEBS Letters, vol. 471,
no. 1, pp. 34-38, 2000.

L. Nagy, P. Tontonoz, J. G. A. Alvarez, H. Chen, and R. M.
Evans, “Oxidized LDL regulates macrophage gene expression
through ligand activation of PPARy,” Cell, vol. 93, no. 2, pp.
229-240, 1998.

S. A. Kliewer, J. M. Lenhard, T. M. Willson, I. Patel, D. C.
Morris, and J. M. Lehmann, “A prostaglandin J2 metabolite
binds peroxisome proliferator-activated receptor y and pro-
motes adipocyte differentiation,” Cell, vol. 83, no. 5, pp. 813—
819, 1995.

B. M. Forman, P. Tontonoz, J. Chen, R. P. Brun, B. M. Spiegel-
man, and R. M. Evans, “15-deoxy-A12, 14-prostaglandin J2 is
a ligand for the adipocyte determination factor PPARy,” Cell,
vol. 83, no. 5, pp. 803-812, 1995.

J. T. Huang, J. S. Welch, M. Ricote et al., “Interleukin-4-
dependent production of PPAR-y ligands in macrophages by
12/15-lipoxygenase,” Nature, vol. 400, no. 6742, pp. 378-382,
1999.

T. Ttoh, L. Fairall, K. Amin et al., “Structural basis for the
activation of PPARy by oxidized fatty acids,” Nature Structural
and Molecular Biology, vol. 15, no. 9, pp. 924-931, 2008.

K. W. Nettles, “Insights into PPARy from structures with
endogenous and covalently bound ligands,” Nature Structural
and Molecular Biology, vol. 15, no. 9, pp. 893-895, 2008.

J. Whelan, “The health implications of changing linoleic acid
intakes,” Prostaglandins Leukotrienes and Essential Fatty Acids,
vol. 79, no. 3-5, pp. 165167, 2008.

P. M. Kris-Etherton, K. D. Hecker, and A. E. Binkoski,
“Polyunsaturated fatty acids and cardiovascular health,”
Nutrition Reviews, vol. 62, no. 11, pp. 414-426, 2004.

E. M. Berry, “Who’s afraid of n-6 polyunsaturated fatty acids?
Methodological considerations for assessing whether they are
harmful,” Nutrition, Metabolism and Cardiovascular Diseases,
vol. 11, no. 3, pp. 181188, 2001.

(34]

(40]

[41]

(49]

PPAR Research

I. Staprans, J. H. Rapp, X. M. Pan, D. A. Hardman, and
K. R. Feingold, “Oxidized lipids in the diet accelerate the
development of fatty streaks in cholesterol-fed rabbits,” Arte-
riosclerosis, Thrombosis, and Vascular Biology, vol. 16, no. 4, pp.
533-538, 1996.

N. Totani, M. Burenjargal, M. Yawata, and Y. Ojiri, “Chemical
properties and cytotoxicity of thermally oxidized oil,” Journal
of Oleo Science, vol. 57, no. 3, pp. 153-160, 2008.

J. C. Alexander, “Chemical and biological properties related to
toxicity of heated fats,” Journal of Toxicology and Environmen-
tal Health, vol. 7, no. 1, pp. 125-138, 1981.

W. C. Byrdwell and W. E. Neff, “Autoxidation products of
normal and genetically modified canola oil varieties deter-
mined using liquid chromatography with mass spectrometric
detection,” Journal of Chromatography A, vol. 905, no. 1-2, pp.
85-102, 2001.

S. Wassmann, K. Wassmann, and G. Nickenig, “Modulation
of oxidant and antioxidant enzyme expression and function in
vascular cells,” Hypertension, vol. 44, no. 4, pp. 381-386, 2004.
S. Wassmann, K. Wassmann, and G. Nickenig, “Regulation of
antioxidant and oxidant enzymes in vascular cells and implica-
tions for vascular disease,” Current Hypertension Reports, vol.
8, no. 1, pp. 69-78, 2006.

S. Parthasarathy, N. K. Merchant, M. Penumetcha, and N.
Santanam, “Oxidation and cardiovascular disease—potential
role of oxidants in inducing antioxidant defense enzymes,”
Journal of Nuclear Cardiology, vol. 8, no. 3, pp. 379-389, 2001.
J. Fruebis, S. Parthasarathy, and D. Steinberg, “Evidence
for a concerted reaction between lipid hydroperoxides and
polypeptides,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 89, no. 22, pp. 10588—
10592, 1992.

M. W. Pfaff], “A new mathematical model for relative quantifi-
cation in real-time RT-PCR,” Nucleic Acids Research, vol. 29,
no. 9, p. E45, 2001.

O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall,
“Protein measurement with the Folin phenol reagent,” The
Journal of Biological Chemistry, vol. 193, no. 1, pp. 265-275,
1951.

K. Jaworski, F. Kinard, D. Goldstein et al., “S-nitrosothiols
do not induce oxidative stress, contrary to other nitric oxide
donors, in cultures of vascular endothelial or smooth muscle
cells,” European Journal of Pharmacology, vol. 425, no. 1, pp.
11-19, 2001.

J. S. Yuan, A. Reed, F. Chen, and C. N. Stewart, “Statistical
analysis of real-time PCR data,” BMC Bioinformatics, vol. 7,
article no. 85, 2006.

M. H. Hsu, U. Savas, K. J. Griffin, and E. E Johnson,
“Identification of peroxisome proliferator-responsive human
genes by elevated expression of the peroxisome proliferator-
activated receptor « in HepG2 cells,” Journal of Biological
Chemistry, vol. 276, no. 30, pp. 27950-27958, 2001.

M. Heinaniemi, J. O. Uski, T. Degenhardt, and C. Carl-
berg, “Meta-analysis of primary target genes of peroxisome
proliferator-activated receptors,” Genome Biology, vol. 8, no.
7, article R147, 2007.

Y. I. Miller, S. H. Choi, L. Fang, and S. Tsimikas, “Lipoprotein
modification and macrophage uptake: role of pathologic
cholesterol transport in atherogenesis,” Sub-Cellular Biochem-
istry, vol. 51, pp. 229-251, 2010.

A. Furnkranz, A. Schober, V. N. Bochkov et al., “Oxidized
phospholipids trigger atherogenic inflammation in murine
arteries,” Arteriosclerosis, Thrombosis, and Vascular Biology,
vol. 25, no. 3, pp. 633-638, 2005.



PPAR Research

[50] J. Barlic, Y. Zhang, and P. M. Murphy, “Atherogenic lipids
induce adhesion of human coronary artery smooth muscle
cells to macrophages by up-regulating chemokine CX3CLI on
smooth muscle cells in a TNFa-NFxB-dependent manner,”
Journal of Biological Chemistry, vol. 282, no. 26, pp. 19167—
19176, 2007.

[51] K. G. Birukov, “Oxidized lipids: the two faces of vascular
inflammation,” Current Atherosclerosis Reports, vol. 8, no. 3,
pp. 223-231, 2006.

[52] S. Parthasarathy, N. Santanam, S. Ramachandran, and O.
Meilhac, “Invited review: potential role of oxidized lipids and
lipoproteins in antioxidant defense,” Free Radical Research, vol.
33, no. 3, pp. 197-215, 2000.

[53] E. Niki, “Lipid peroxidation: physiological levels and dual
biological effects,” Free Radical Biology and Medicine, vol. 47,
no. 5, pp. 469484, 2009.

[54] A. C. Doran, N. Meller, and C. A. McNamara, “Role of
smooth muscle cells in the initiation and early progression
of atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular
Biology, vol. 28, no. 5, pp. 812-819, 2008.

[55] M. E. Rosenfeld, “Inflammation, lipids, and free radicals:
lessons learned from the atherogenic process,” Seminars in
Reproductive Endocrinology, vol. 16, no. 4, pp. 249-261, 1998.

[56] B. Friedrichs, M. Toborek, B. Hennig, L. Heinevetter, C.
Miiller, and R. Brigelius-Flohé, “13-HPODE and 13-HODE
modulate cytokine-induced expression of endothelial cell
adhesion molecules differently,” BioFactors, vol. 9, no. 1, pp.
61-72, 1999.

[57] S. Parthasarathy, N. Santanam, S. Ramachandran, and O.
Meilhac, “Potential role of oxidized lipids and lipoproteins in
antioxidant defense,” Free Radical Research, vol. 33, no. 3, pp.
197-215, 2000.

[58] O. Meilhac, M. Zhou, N. Santanara, and S. Parthasarathy,
“Lipid peroxides induce expression of catalase in cultured
vascular cells,” Journal of Lipid Research, vol. 41, no. 8, pp.
1205-1213, 2000.

[59] C. Marantos, V. Mukaro, J. Ferrante, C. Hii, and A. Fer-
rante, “Inhibition of the lipopolysaccharide-induced stim-
ulation of the members of the MAPK family in human
monocytes/macrophages by 4-hydroxynonenal, a product of
oxidized omega-6 fatty acids,” American Journal of Pathology,
vol. 173, no. 4, pp. 1057-1066, 2008.

[60] A. Huang, C. Li, R. L. Kao, and W. L. Stone, “Lipid
hydroperoxides inhibit nitric oxide production in RAW264.7
macrophages,” Free Radical Biology and Medicine, vol. 26, no.
5-6, pp. 526-537, 1999.

[61] J. D. Kakisis, C. D. Liapis, and B. E. Sumpio, “Effects of cyclic
strain on vascular cells,” Endothelium: Journal of Endothelial
Cell Research, vol. 11, no. 1, pp. 17-28, 2004.

[62] T. A. McCaffrey, C. Fu, B. Du et al., “High-level expression
of Egr-1 and Egr-1-inducible genes in mouse and human
atherosclerosis,” Journal of Clinical Investigation, vol. 105, no.
5, pp. 653-662, 2000.

[63] R. N. Hasan and A. L. Schafer, “Hemin upregulates Egr-1
expression in vascular smooth muscle cells via reactive oxygen
species ERK-1/2-Elk-1 and NF-«B,” Circulation Research, vol.
102, no. 1, pp. 42-50, 2008.

[64] C. C. L. Wang, G. Sharma, and B. Draznin, “Early growth
response gene-1 expression in vascular smooth muscle cells:
effects of insulin and oxidant stress,” American Journal of
Hypertension, vol. 19, no. 4, pp. 366-372, 2006.

[65] E.Harja, L. G. Bucciarelli, Y. Lu et al., “Early growth response-
1 promotes atherogenesis: mice deficient in early growth

(6]

[68]

‘o
)

[70]

[71

(73]

11

response-1 and apolipoprotein E display decreased atheroscle-
rosis and vascular inflammation,” Circulation Research, vol. 94,
no. 3, pp. 333-339, 2004.

N. Hamada, M. Miyata, H. Eto et al., “Loss of clusterin limits
atherosclerosis in apolipoprotein E-deficient mice via reduced
expression of Egr-1 and TNF-w,” Journal of Atherosclerosis and
Thrombosis, vol. 18, no. 3, pp. 209-216, 2010.

L. M. Khachigian, V. Lindner, A. J. Williams, and T. Collins,
“Egr-1-induced endothelial gene expression: a common theme
in vascular injury,” Science, vol. 271, no. 5254, pp. 1427-1431,
1996.

E. S. Silverman, L. M. Khachigian, V. Lindner, A. J. Williams,
and T. Collins, “Inducible PDGF A-chain transcription in
smooth muscle cells is mediated by Egr-1 displacement of Sp1
and Sp3,” American Journal of Physiology, vol. 273, no. 3, pp.
H1415-H1426, 1997.

E. Biesiada, M. Razandi, and E. R. Levin, “Egr-1 activates
basic fibroblast growth factor transcription. Mechanistic
implications for astrocyte proliferation,” Journal of Biological
Chemistry, vol. 271, no. 31, pp. 18576-18581, 1996.

S. Ling, A. Dai, Y. H. Ma, K. Chatterjee, H. E. Ives, and
K. Sudhir, “Matrix-dependent gene expression of Egr-1 and
PDGF A regulate angiotensin II-induced proliferation in
human vascular smooth muscle cells,” Hypertension, vol. 34,
no. 5, pp. 1141-1146, 1999.

N. Jin, N. D. Hatton, M. A. Harrington, X. Xia, S. H. Larsen,
and R. A. Rhoades, “H(2)O(2)-induced egr-1, fra-1, and c-
jun gene expression is mediated by tyrosine kinase in aortic
smooth muscle cells,” Free Radical Biology and Medicine, vol.
29, no. 8, pp. 736-746, 2000.

N. Auge, N. Santanam, N. Mori, C. Keshava, and S.
Parthasarathy, “Uptake of 13-hydroperoxylinoleic acid by cul-
tured cells,” Arteriosclerosis, Thrombosis, and Vascular Biology,
vol. 19, no. 4, pp. 925-931, 1999.

E. Blessing, M. Preusch, R. Kranzhofer et al., “Anti-
atherosclerotic properties of telmisartan in advanced
atherosclerotic lesions in apolipoprotein E deficient mice,”
Atherosclerosis, vol. 199, no. 2, pp. 295-303, 2008.

R. S. Chapkin, M. Young Hong, Y. Y. Fan et al., “Dietary n-3
PUFA alter colonocyte mitochondrial membrane composition
and function,” Lipids, vol. 37, no. 2, pp. 193-199, 2002.

S. S. Dadras, S. S. Thorgeirsson, M. S. Rao, and J. K. Reddy,
“Implication of hydrogen peroxide generation and apoptosis
in the neoplastic transformation of mouse fibroblasts over-
expressing peroxisomal fatty acyl-CoA oxidase,” International
Journal of Oncology, vol. 12, no. 1, pp. 37-44, 1998.

V. N. Bochkov, D. Mechtcheriakova, M. Lucerna et al.,
“Oxidized phospholipids stimulate tissue factor expression in
human endothelial cells via activation of ERK/EGR-1 and
Ca++/NFAT,” Blood, vol. 99, no. 1, pp. 199-206, 2002.

J. J. Chiu, B. S. Wung, H. J. Hsieh, L. W. Lo, and D. L. Wang,
“Nitric oxide regulates shear stress-induced early growth
response-1: expression via the extracellular signal-regulated
kinase pathway in endothelial cells,” Circulation Research, vol.
85, no. 3, pp. 238-246, 1999.

V. A. Folcik, R. A. Nivar-Aristy, L. P. Krajewski, and M.
K. Cathcart, “Lipoxygenase contributes to the oxidation of
lipids in human atherosclerotic plaques,” Journal of Clinical
Investigation, vol. 96, no. 1, pp. 504-510, 1995.

K. Uchida, “Lipid peroxidation and redox-sensitive signaling
pathways,” Current Atherosclerosis Reports, vol. 9, no. 3, pp.
216-221, 2007.



	Introduction
	Materials and Methods
	Materials
	Oxidation of Linoleic Acid
	Cell Treatment and Sample Collection
	siRNA Transfection
	Quantitative Real-Time Reverse-Transcriptase PCR (qRT-PCR)
	Western Blot Analysis
	Transient Transfection and Luciferase Reporter Assay
	Monocyte Adhesion Assay
	Statistical Analysis

	Results
	-6 Lipids Modulate PPAR Protein Levels and Transactivity
	Ligand-Mediated Regulation of PPAR Transactivity Alters Egr-1/MCP-1 mRNA Levels
	PPAR-Mediated Alteration in Egr-1/MCP-1 Protein Levels by -6 Lipids
	siRNA-Mediated Downregulation of PPARs Modulated Egr-1 Levels
	Alterations in Egr-1/MCP-1 Levels by -6 Lipids Modulates Monocyte Adhesion to RASMCs

	Discussion
	Acknowledgments
	References

