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The purpose of this study was to use metabonomic pro-
filing to identify a potential specific biomarker pattern in
urine as a noninvasive bladder cancer (BC) detection
strategy. A liquid chromatography-mass spectrometry
based method, which utilized both reversed phase liquid
chromatography and hydrophilic interaction chromatog-
raphy separations, was performed, followed by multivar-
iate data analysis to discriminate the global urine profiles
of 27 BC patients and 32 healthy controls. Data from both
columns were combined, and this combination proved to
be effective and reliable for partial least squares-discrim-
inant analysis. Following a critical selection criterion,
several metabolites showing significant differences in ex-
pression levels were detected. Receiver operating char-
acteristic analysis was used for the evaluation of potential
biomarkers. Carnitine C9:1 and component I, were com-
bined as a biomarker pattern, with a sensitivity and
specificity up to 92.6% and 96.9%, respectively, for all
patients and 90.5% and 96.9%, respectively for low-
grade BC patients. Metabolic pathways of component I
and carnitine C9:1 are discussed. These results indicate
that metabonomics is a practicable tool for BC diagno-
sis given its high efficacy and economization. The com-
bined biomarker pattern showed better performance
than single metabolite in discriminating bladder cancer
patients, especially low-grade BC patients, from healthy
controls. Molecular & Cellular Proteomics 10: 10.1074/
mcp.M111.007922, 1–10, 2011.

Bladder cancer (BC)1 is one of the most commonly occur-
ring tumors in the urinary system. The incidence of BC con-

tinues to rise, and mortality rates have not changed signifi-
cantly in the past three decades. The success of BC treatment
depends mainly on early detection (1). Currently, cystoscopy
and urinary cytology are the standard diagnostic tools for BC
(2, 3). However, cystoscopy is invasive and labor-intensive,
and carcinoma in situ (CIS) of the bladder may easily be
missed, given the similarity in appearance of red mucosal
spots in inflammatory lesions and CIS of the bladder (4).
Urinary cytology is an adjunctive noninvasive detection tech-
nique that can detect high-grade lesions with high accuracy
but cannot efficiently detect low-grade BC patients (2, 5).
Statistically, urinary cytology can only reach a median sensi-
tivity of 35% (6). Screening BC patients through biomarker
technology is a promising strategy to improve detection and
diagnosis.

Most of the current strategies for cancer biomarker detec-
tion use a proteomic approach. A series of important pro-
teomic biomarkers have been reported in recent years, includ-
ing telomerase, hyaluronidase, CEACAM1 (carcinoembryonic
antigen-related cell adhesion molecule 1), nuclear matrix pro-
tein 22, cystatin B, cytokeratins, growth factors, and surviving
(1, 6, 7). All these urinary markers present challenges for
obtaining both high specificity and high sensitivity at the same
time (6). Urinary peptides were also evaluated as diagnostic
biomarkers, but the reported panel of peptides showed low
specificity (8). Although proteins or peptides seem to be
promising biomarkers, proteomics or peptidomics ap-
proaches are time-consuming, labor-intensive, and costly.
Thus, economic, convenient, and noninvasive methods for BC
detection should be explored.

Cellular tumor genes linked to molecular pathway altera-
tions produce or secrete specific metabolites into biofluids (9).
These metabolites can potentially serve as biomarkers for
cancer diagnosis (10). Metabonomics is defined by Nicholson
et al. as “quantitative measurement of the dynamic multi-
parametric metabolic response of living systems to patho-
physiological stimuli or genetic modification” (11). It provides
information that cannot be obtained directly from the geno-
type, gene expression profiles, or even the proteome of an
individual (1, 12, 13). Of all human malignancies, BC seems to
be ideally suited for carrying out a urinary diagnostic assay
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because the bladder is a temporary biofluid container (13–16).
However, metabolic research about BC is rare and incom-
plete. Pasikanti et al. used gas chromatography mass spec-
trometry (GC-MS) for urinary metabolic profiling of BC pa-
tients and non-BC controls and demonstrated that urinary
metabonomics is amenable to the noninvasive diagnosis of
human BC (2). Issaq et al. also reported that metabonomics
using RPLC-MS had the potential to be a noninvasive early
detection strategy for BC (17). Unfortunately, however, they
did not further investigate the biomarkers related to bladder
tumorigenesis.

It is well known that several metabolites cannot be analyzed
by GC-MS because they are prone to thermal decomposition
or are unable to be volatilized. In contrast, a LC-based plat-
form can detect a wider range of chemical species, and
reversed phase liquid chromatography (RPLC)-MS is the most
widely used platform in metabonomic studies (14). Urine is
predominantly aqueous and may contain a large proportion
of polar compounds, which would typically be unretained on
RP systems (18). To make up for this technical deficiency,
extensive hydrophilic interaction chromatography (HILIC)
separations should be performed (19, 20). HILIC has a sep-
aration principle similar to normal phase chromatography,
as it utilizes a polar stationary phase (21). Furthermore,
HILIC allows the use of aqueous solvents, which is fully
compatible with an electrospray ionization (ESI) source (22,
23).

In this study, a LC-MS based method that utilized both
RPLC and HILIC separations was carried out, followed by
multivariate data analysis to discriminate the global urine
profiles of BC patients and healthy controls. Data from both
columns were combined and evaluated by internal permu-
tation tests and external validation tests. The clinical utility
of potential biomarkers was evaluated using ROC analysis.
To our knowledge, no studies have previously used two
complementary chromatographic techniques to construct a
screening model for the noninvasive detection of BC. The
purpose of this study was to identify a potential biomarker
pattern in urine using metabonomics to aid noninvasive BC
detection.

EXPERIMENTAL PROCEDURES

Chemicals—HPLC-grade acetonitrile (ACN) was obtained from
Tedia (USA). HPLC-grade formic acid (FA) was purchased from
Sigma/Fluka (Germany). Distilled water (18.2 M�) for chromato-
graphic separation was prepared using a Milli-Q water purification
system (Millipore, Billerica, MA). Ammonium acetate was pur-
chased from Tedia (Fairfield, OH, USA). The standard hippuric acid
and phenylacetylglutamine (PAGN) was purchased from MaJin
(China). Leucylproline, acetylcarinitine, were obtained from Acros
(Fairlawn, NJ).

Clinical Samples—Twenty-seven BC patients and 32 healthy vol-
unteers from the First Hospital of Xiamen were enrolled in this
study. All the patients were diagnosed by histopathology examina-
tion, and none had received chemotherapy or radiation before
sample collection. Informed consent was obtained from each par-

ticipant before sample collection, and the procedures were ap-
proved by the institutional reviewer board. Detailed information of
the clinicopathogical characteristics of the BC patients and healthy
controls is provided in Table I. Tumors were graded according to
the criteria recommended by the World Health Organization (24). All
urine samples were collected in the morning before breakfast and
stored at �80 °C until analysis.

Urine Preparation—Urine samples were thawed at room tempera-
ture before analysis. For RPLC separation, a volume of 800 �l distilled
water was added to 200 �l urine and then centrifuged at 13,000 rpm
for 10 min at 4 °C. For HILIC separation, a volume of 800 �l of ACN
was added to 200 �l urine. After vortexing, the mixture was set aside
at 4 °C for 10 min, and then centrifuged at 13,000 rpm for 10 min at
4 °C. The addition of ACN is necessary to avoid the creation of a
water “plug,” which would greatly affect the chromatograph. The
supernatants from the two separation modes were filtered through
0.22 �m regenerated cellulose filters before HPLC-MS analysis. An
in-house quality control (QC) was prepared by pooling and mixing the
same volume of each sample. A subset of six samples (three BC
patients and three healthy controls) was randomly selected to form an
independent test set.

HPLC-MS Analysis—All chromatographic separations were per-
formed using an Ultimate-3000 HPLC system (Dionex, USA). A 2.1 �
150 mm Acclaim C18 3 �m column (Dionex, Sunnyvale, CA) was used
for reversed phase separation. The column was maintained at 30 °C.
The mobile phase was a mixture of (A) H2O with 0.1% FA and (B) ACN
with 0.1% FA, with a programmed gradient as follows: initial 15% B
maintained for 3 min, then increased to 60% in 9 min, increased to
95% in 4 min, held at 95% for 10 min, decreased to 15% in 0.1 min,
and finally maintained at 15% for 4 min. HILIC separation was per-
formed using a 2.1 � 150 mm Atlantis HILIC Silica 3 �m column
(Waters, Milford, MA). The mobile phases were (A) H2O containing 10
mM of ammonium acetate and 0.1% FA and (B) ACN. The gradient
started with an isocratic run at 95% B for 5 min, decreased to 80% in
7 min, proceeded to 50% in 6 min, maintained with 50% in 7 min, and
returned to 95% for column equilibration for 5 min. The injection
volume was 15 �l for both separation modes.

The chromatograph was coupled directly to the mass spectrometer
at a flow rate of 200 �l min�1 without splitting. The data were acquired
on a mass spectrometer (MicrOTOF-QII, Bruker Daltonics, Billerica,
MA) using positive ESI over the scan range of 50 to 1000 m/z. The
acquisition rate was set at 1 spectrum per second. In the source, the
capillary voltage was set at �4500 V, the end plate offset potential

TABLE I
Clinicopathogical characteristics of BC patients and healthy controls

Characteristics BC patients Healthy controls

No. of subjects 27 32
Age (mean, range) 56, 42–71 53, 46–67

Male 19 (70.4%) 18 (56.2%)
Female 8 (29.6%) 14 (43.8%)

Cancer grade
Low grade (LG) 21 (77.8%) �

High grade (HG) 6 (22.2%) �

BMI (median, range) 23.3, 16.4–26.8 24.4, 18.1–27.4
Hematuria 3 (11.1%) 0
Medications 0 0
Smoking habit

Nonsmokers 13 (48.1%) 18 (56.3%)
Ex-smokers 3 (11.1%) 0
smokers 10 (37.0%) 12 (37.5%)
information not available 1 (3.7%) 2 (6.2%)

Race Chinese Chinese
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was set at �500 V, the nebulizer gas pressure was set at 0.7 bar, and
the dry gas flow rate was set at 6 L min�1 at a temperature of 180 °C.
A blank and a QC sample were injected every 10 samples to monitor
the stability of the system. MS/MS experiments were carried out to
identify potential biomarkers. Argon was used as collision gas, and
the collision energy was adjustable from 10 eV to 30 eV.

Raw Data Pretreatment and Chemometric Analyses—All chromato-
grams were evaluated by ProfileAnalysis 1.1 software (Bruker), which
performs peak alignment, background noise subtraction, and data
reduction in an automated and unbiased way. Only peaks with signal-
to-noise ratio (S/N) greater than 5 were utilized for further analysis.
The main parameters were set as follows: retention time range 2–20
min for RPLC and 2–25 min for HILIC, mass window 0.5 Dalton, and
retention window of 1 min. To correct enrichment factors for different
samples and the MS shift during long analysis duration, the data of
each sample were normalized to the total area. Another advantage of
normalizing to the total area is that inaccuracies caused by injection
can be eliminated (25). After correction, the data were exported to
SIMCA-P v11.5 software (Umetrics AB, Sweden) for multivariate data
analysis. Partial least squares-discriminant analysis (PLS-DA) was
used for modeling the difference between the BC patients and healthy
controls. Potential biomarkers were selected based on the S-plot and
Variable Importance in the Project (VIP) column plot. Furthermore,
unpaired Student’s t-tests, with a Bonferonni correction for multiple
comparisons, were employed to ensure the selected metabolites
significantly differentially expressed between the BC patients and the
controls. p value threshold of 0.001 was used to define the signifi-
cance. For the identification of potential biomarkers, the following
databases were used: HMDB (http://www.hmdb.ca/), METLIN (http://
metlin.scripps.edu/), MassBank (http://www.massbank.jp), PubChem
(http://ncbi.nim.nih.gov/), and KEGG (http://www.kegg.com/). A sum-
mary of the analysis strategy utilized in this study is shown in
supplemental Fig. S1.

RESULTS

Metabonomic Profiling of RPLC-MS and HILIC-MS—Both
the RPLC and HILIC showed satisfactory chromatography,
and their typical chromatograms are shown in Fig. 1. For
metabonomic analysis, the stability of the analytical method is
important to obtain valid data. Three compounds, retained on
both columns, and six other compounds, retained only on one
column, were selected to verify the stability of the method.
The selection of nine representative peaks follows fair princi-
ples of covering a range of intensities and retention times
across the QC samples. The peaks are shown with arrows in
the chromatograms in Fig. 1. The variations of m/z values for
all nine compounds were less than 10 mDa. Standard devia-
tions (S.D.) of retention times (tR) were less than 0.7 min for
both chromatographic modes. RSDs of peak areas ranged
from 4.8% to 16.7% for RPLC and 8.4% to 19.8% for HILIC
(Table II). These results demonstrated the acceptable stability
and reproducibility of the chromatographic separation and
mass measurement. HILIC offers superb retention of the polar
analytes that elute quickly from RP column (22). For example,
ions of m/z 144.10 (peak No. 1 in Fig. 1) were eluted at 2.1 min
for RPLC, but have an tR of 20.3 min for HILIC; ions of m/z
166.08, which cannot be observed in RPLC, show a clear
peak from the HILIC column (Fig. 1B). A high proportion of
organic solvent present in the mobile phase of HILIC greatly

improved the MS response (18, 23). For example, for ions of
m/z 180.07, the response in HILIC is nearly twofold larger in
area than that of RPLC (supplemental Fig. S2). In total, 703
compounds were detected by HILIC, compared with 417
compounds by RPLC.

Multivariate Statistical Analysis—To further determine the
overall performance of the method, principal component anal-
ysis (PCA) was performed on all samples, including the 6 QC
samples. As shown in Figs. 2A and 2B, the QC samples are
clustered together in both separation modes, indicating sat-
isfactory stability and reproducibility of the chromatographic
separation and mass measurement during the whole se-
quence. However, the BC group and the healthy controls are
not well distinguished in the PCA score plot. This is likely
because human urine samples are extremely complex, and
the unsupervised PCA data analysis technique separates
samples based on random, BC-irrelevant variation of metab-
olites. PLS-DA, in contrast, is an extension of PCA that makes
use of class information to attempt to maximize the separa-
tion among classes of observations (10, 26). Thus, PLS-DA
was used to identify potential biomarkers related to BC.

The PLS-DA results are shown in Figs. 3A and 3B. Both
RPLC and HILIC data were mean-centered and Pareto

FIG. 1. Typical base peak chromatograms of urine from (A)
RPLC and (B) HILIC. The chromatograms from two separation
modes cover the detection of both polar and apolar metabolites. Peak
numbers refer to the corresponding peaks in Table II.
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scaled. Distinct clustering between the BC patients and con-
trols was achieved with both columns. In PLS-DA, the R2Y
(cum) and Q2 (cum) parameters were used for the evaluation
of the models, indicating the fitness and prediction ability,
respectively (27). For RPLC, two principal components were
calculated with R2Y (cum) and Q2 (cum) of 0.878 and 0.572,
respectively, whereas three principal components were ex-
tracted from HILIC with R2Y (cum) and Q2 (cum) of 0.979 and
0.676, respectively. These parameters demonstrate that
HILIC can generate a more robust model than RPLC, thus
indicating a strong contribution of polar molecules in the
model set-up and in disease onset. To construct a model
containing as much information on metabolites as possible,
the datasets from the two separation techniques were com-
bined and analyzed by PLS-DA. As shown in Fig. 3C, the
combined dataset depicts a more clear separation between
the BC and the controls than those built on the dataset from
a single column. The values of R2Y (cum) and Q2 (cum) of the
combined model are 0.995 and 0.751, respectively, indicating
that a combination of datasets from the two columns provides
better classification and prediction. To guard against model
overfitting, permutation tests with 100 iterations were per-
formed (Fig. 3D) to compare the goodness of fit of the original
model with that of randomly permuted models (28). The cri-

teria for validity included the following: all the permuted R2

and Q2 values to the left were lower than the original points to
the right and the regression line of the Q2 points intersects the
vertical axis (on the left) at or below zero (29). To evaluate the
predictive ability of the combined model, an external test
using urine samples from three BC patients (two LG and one
HG) and three healthy controls was performed, and satisfac-
tory results were obtained (Fig. 3E). None of those samples
had been previously included in the supervised analysis,
which therefore allowed for the estimation of true predictive
accuracy. The combined PLS-DA model correctly predicted
all BC patients and healthy controls with 100% sensitivity and
specificity. This result shows the great potential for the com-
bined dataset using PLS-DA analysis as a viable technique for
noninvasive BC screening. Therefore, the combined dataset
was used in the subsequent study.

Metabonomic Biomarker Determination and Evaluation—
Metabolites were carefully screened before being approved
as potential biomarkers. First, significant original variables
were extracted from the S-plot, which is a covariance-corre-
lation-based procedure, and thus the risk of false positives in
metabolite selection was reduced (30). The S-plot (Fig. 4A),
derived from the first component of the combined model,
explains most of the variables in data set. The markers with

TABLE II
Reproducibility evaluation based on selected peaks

Peak
No.a

RPLC HILIC

tR m/z S.D. tR
b RSDc tR m/z S.D. tR

b RSDc

1 2.1 144.10 0.19 4.8% 20.3 144.10 0.21 11.4%
2 8.4 376.14 0.08 9.8% � � �
3 9.0 288.28 0.13 16.7% 15.1 288.28 0.35 11.4%
4 10.8 286.19 0.23 5.2% 19.2 286.19 0.46 10.8%
5 12.8 314.23 0.41 10.6% � � � �
6 14.9 274.26 0.38 14.2% � � � �
7 � � � � 2.5 284.28 0.31 9.8%
8 � � � � 10.2 312.11 0.69 19.8%
9 � � � � 17.9 407.77 0.33 8.4%

a Peak No. refers to the corresponding peaks in Fig. 1.
b S.D. tR: standard deviation of retention times in six QC samples.
c RSD: relative stand deviation of peak areas in six QC samples.

FIG. 2. PCA score plots based on the data from (A) RP separation and (B) HILIC separation (● BC patients, Œ controls, and � QC).
The QC cluster is highlighted with blue diamonds. QC samples are clustered together in both separation modes, indicating the satisfactory
stability. The BC group and the healthy controls cannot be well distinguished in PCA score plots.
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higher p and p(corr) values were the most relevant metabolites
for the separation between the two groups. Sixty-six variables
(in two shaded areas of Fig. 4A) with absolute p � 0.5 and
p(corr) � 0.3 were selected in the S-plot (29). These are
potentially interesting biomarker candidates, reflecting dis-
crepant metabolic traits. Second, the VIP values of the bio-
marker candidates were checked. Variables with VIP scores
�1 have above average influence on the explanation of the
classification (29). Fifty-nine variables with VIP scores �1
were picked in the second step. Third, variables without the
support of the necessary confidence interval were rejected

(31). For example, on the VIP column plot of some variables
shown in Fig. 4B, variables highlighted with an arrow could
not be considered as biomarkers because of their negative
confidence intervals (29). Fifteen unqualified variables were
eliminated in this step. Unpaired Student’s t-tests were per-
formed as the final testing procedure, and variables without
significant differences (p value � 0.001) between BC patients
and the controls were eliminated. Only 20 variables of the
original 66 passed the above criteria. Of these 20 variables, 12
of them corresponded to 6 metabolites retained on both
columns, and the other 8 variables were retained on only one

FIG. 3. PLS-DA score plots obtained from (A) RPLC, (B) HILIC, and (C) a combined dataset. D, Validation plot obtained from 100
permutation tests. E, T-predicted scatter plot obtained from the combined PLS-DA model (● BC, Œ healthy controls, [daif2] BC patient
prediction set, and f control prediction set). In total, 24 BC patients and 29 controls participated in the PLS-DA modeling process. Urine
samples from three BC patients (two LG and one HG) and three healthy controls were used to test the predictive accuracy of the combined
model.
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column. Therefore, 14 variables were considered meaningful
metabolites in discriminating the BC patients from controls.

In the metabonomic analysis workflow, low molecular
weight biomarker confirmation and further structure elucida-
tion are considered to be the most challenging steps. A mo-

lecular formula was determined according to the exact mass
and the isotope pattern. Additional MS/MS experiments were
carried out to identify potential biomarkers. Hippuric acid,
PAGN, leucylproline, and acetylcarinitine were confirmed by
standard compounds, whereas other metabolites were iden-
tified based on database information, from the literature, or
through structure elucidation. The identifications of carnitine
C9:1 and component I are illustrated in supplemental Fig. S3.
What we need to emphasize is that the identity of component
I as BAHE is tentative because BAHE standard is not available
for the confirmation. In fact, component I has not been ob-
served in nature previously. Additional effort is required to
confirm the identification. These potential biomarkers are
listed in Table III.

Potential biomarkers were selected after applying PLS-DA
algorithms. The next step toward clinical utility is validation of
the markers. One popular variable ranking criterion is AUC
(area under the curve), which is also called area under the
“receiver operating characteristic ” (ROC) curve (32) AUC
combines the sensitivity and specificity of a given marker for
disease diagnosis (33). Similar utilizations have been reported
previously. Adam et al. showed that the power of a single
variable in discriminating prostate cancer from normal pa-
tients could be determined by AUC, which ranges from 0.5 (no
discriminating power) to 1.0 (complete separation) (34). An-
other study demonstrated that metabolite significance in dif-
ferentiating weight gain group during early breast cancer
chemotherapy could also be revealed by AUC (35).

It is worth noting that VIP values cannot be used to evaluate
clinical utility because they mainly reflect the importance of
the variables in the PLS model (29). A variable may have a
large VIP value, indicating its high weight on the correspond-
ing PLS model, because of large absolute variation between
the two groups. Small peaks will be easily ranked behind by
the PLS method. Component I, for example, has a VIP value
of 3.73, but its AUC reaches 0.900. Another example is PAGN,

FIG. 4. A, S-plot of the combined PLS-DA model. B, VIP column
plot with jack-knifed confidence intervals. The variables in two
shaded areas are considered significant because of their high p and
p(corr) values. The variables highlighted with arrows were eliminated
from the potential biomarker list because of their negative confidence
intervals.

TABLE III
Potential urine biomarkers for BC

NO. m/z Metabolite Element
composition Column Peak area

ratio (B/N) AUCa VIP valuea p valuea Trend %RSDb

(RP & HILIC)

1 318.30 Component I C18H39NO3 RP&HILIC 2.81 0.900 3.73 2.88E-07 1 6.3 and 13.8
2 300.20 Carnitine C9:1 C16H29NO4 RPLC 0.39 0.881 10.52 3.00E-04 2 10.2
3 180.07 Hippuric acid C9H9NO3 RP & HILIC 0.18 0.867 11.46 6.70E-05 2 4.9 and 22.1
4 105.03 Fragment of hippuric acid C9H9NO3 RP & HILIC 0.27 0.852 8.24 1.48E-06 2 4.6 and 28.2
5 326.19 Unidentified unidentified RPLC 1.17 0.834 6.11 2.67E-06 1 5.5
6 138.07 Trigonelline C7H7NO2 HILIC 0.34 0.808 3.21 4.44E-04 2 12.4
7 302.23 2, 6-Dimethylheptanoyl carnitine C16H31NO4 HILIC 0.48 0.796 9.98 7.56E-05 2 8.5
8 314.23 Carnitine C10:1 C17H31NO4 RPLC 0.48 0.785 4.07 8.62E-04 2 10.7
9 265.12 PAGN C13H16N2O4 RP & HILIC 0.45 0.774 16.18 9.13E-04 2 8.4 and 21.3
10 286.19 Carnitine C8:1 C15H27NO4 RP & HILIC 0.49 0.723 4.41 9.51E-04 2 5.2 and 10.8
11 229.16 Leucylproline C11H20N2O3 RP & HILIC 0.80 0.711 8.72 5.31E-05 2 10.9 and 6.0
12 185.08 Phosphorylcholine C5H15NO4P HILIC 0.41 0.647 7.34 9.40E-04 2 14.1
13 126.01 Fragment of phosphorylcholine C5H15NO4P HILIC 0.34 0.608 6.18 1.79E-04 2 10.1
14 204.14 Acetylcarinitine C9H17NO4 HILIC 2.16 0.598 6.27 1.06E-05 1 14.7

a Data given from the column with smaller RSD.
b RSD of peak areas derived from the QCs.
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a common component of urine, which has the largest VIP
value (16.2) but a low AUC value in terms of clinical utility.

Univariate ROC analysis of potential biomarkers was car-
ried out to identify the important metabolites and examine
their utility for the prediction of BC (36). Table III shows the
result of ROC analysis, and the variables are ranked accord-
ing to their AUC. All samples in the training set and predictive
set were used in the test. Component I had the highest AUC
of 0.900. At the best cut-off point (Fig. 5), 74.1% sensitivity
and 96.6% specificity were obtained. The specificity for com-
ponent I was high but the sensitivity was unsatisfactory. Con-
sidering that cancer is a complex disease involving systemic
deregulation of cell proliferation, survival, apoptosis, and cell
cycle,(37) a “biomarker pattern” containing a group of bio-
markers could be more effective for discrimination and more
informative for elucidating the pathophysiology of cancer (38,
39). Thus, metabolites (excluding fragments) with AUC � 0.85
were combined for the purpose of building a clinically valuable
panel. Permutations and combinations of the top three vari-
ables in Table III were fully processed, and the result of ROC
analysis for each combination is shown in Table IV. All sensi-
tivities and specificities were calculated at their best cut-off
points. An extremely promising result was achieved with the
combination of the top two variables (component I and car-
nitine C9:1). The AUC reached 0.963, and the sensitivity and
specificity were improved to 92.6% and 96.9%, respectively.
Other combinations did not increase overall sensitivities and
specificities as well as this combination. We further used ROC
analysis to test the ability of the combination of the top two

variables for LG-BC detection by excluding data from six
HG-BC patients and obtained a sensitivity and specificity of
90.5% and 96.9%, respectively. These results are shown in
Fig. 6 and Table V. The high sensitivity and specificity
achieved by the combined use of multiple urinary biomarkers
suggests that component I and carnitine C9:1 give an optimal
biomarker pattern that could be used in clinical applications
for diagnosing BC, including LG-BC detection. Future studies
will include much larger urine sample sets to verify these
conclusions.

DISCUSSION

To find a specific potential biomarker pattern in urine that
can aid noninvasive detection of BC, we performed LC-MS-
based metabolic profiling using both RPLC and HILIC to
identify abnormal levels of metabolites in BC patients. As
shown in Fig. 7A, the component I levels in the BC group
were significantly higher than those of healthy controls.

FIG. 5. Diagnostic efficacy evalua-
tion using ROC curves for potential
biomarkers. Var. 1, 2, and 3 correspond
to variable No. 1, 2, and 3 in Table III,
respectively. Top 2 represents the com-
bination of top two variables in Table III.
The open circles denote best cut-off
points. The single biomarkers (Var. 1, 2,
and 3) cannot achieve both good sensi-
tivity and specificity. The AUC of the bio-
marker pattern containing component I
and carnitine C9:1 (Top 2) reached
0.963, and the sensitivity and specificity
were improved to 92.6% and 96.9%,
respectively.

TABLE IV
Results of ROC analysis of variables in Table III

Var No.a AUC Sensitivity Specificity

1 0.900 74.1% 96.9%
2 0.881 66.7% 100%
3 0.867 92.6% 68.8%
1 � 2 0.963 92.6% 96.9%
1 � 3 0.926 88.9% 87.5%
2 � 3 0.951 96.3% 81.3%
1 � 2 � 3 0.962 96.3% 90.6%

a Var No. corresponds to var No. in Table III.
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Regrettably, no report was found about component I. The
function of component I and the reason why it is elevated in
BC urine are unclear. Further structure identification and the
biological function of this compound are well worth studying
in future work.

The carnitine C9:1 level in the BC group was lower than
those of healthy controls, as shown in Fig. 7B. Among the
14 potential biomarkers identified, five of them were carni-
tine species, including carnitine C10:1, carnitine C8:1, car-
nitine C9:1, acetylcarnitine, and 2, 6-dimethylheptanoyl
carnitine. As a group, carnitines function as important inter-
mediates in fatty acid transport across mitochondrial mem-
branes. We found that urinary acylcarnitine deficiency was
prevalent in BC patients (supplemental Fig. S4). Acylcar-
nitines are generated when corresponding fatty acids are
activated into acyl-coenzyme A (acyl-CoA) and then partic-
ipate in a carnitine palmitoyl transferase I (CPT I)-catalyzed
reaction. Afterward, acylcarnitines are catalyzed to carnitine
and acyl-CoA by carnitine palmitoyl transferase II (CPT II). In
this way, fatty acids penetrate the membrane of mitochon-
dria, become substrates of �-oxidation, and produce sev-
eral ATP molecules (40). Fatty acids can be oxidized in
several ways, but mainly undergo �-oxidation, producing
two carbon unit acetyl-coenzyme A (acetyl-CoA). Acetyl-
CoA successively participates in energy metabolism and
produces acetylcarnitine. In healthy subjects, lipid metabo-
lism is constantly in dynamic equilibrium, which means that
some fatty acids are being oxidized in mitochondria to
satisfy the energy needs, whereas others are being synthe-
sized and stored in the cytoplasm. Notably, we observed an
increased amount of acetylcarnitine concentration in BC
patients. The finding of varying levels of carnitine species
not only provides a better understanding of the pathophys-
iological changes of BC but also indicates possible nutri-
tional treatment and chemotherapy for patients. McClinton
et al. demonstrated significant differences in the plasma
phospholipid profiles of BC patients when compared with
the controls (41). They raised one possibility that fatty acid
abnormalities might be involved in the pathogenesis of the
tumor. We are inclined to take the same point of view, that
is, dysregulation of lipid metabolism might provide an envi-

FIG. 6. Diagnostic efficacy evaluation using ROC curves for
potential biomarkers after excluding data from six HG-BC pa-
tients. Var. 1, 2, and 3 correspond to variable No. 1, 2, and 3 in Table
III, respectively. Top 2 represents the combination of top two vari-
ables in Table III. The open circles denote best cut-off points. The
biomarker pattern was used for LG-BC detection, which gave good
sensitivity (90.5%) and specificity (96.9%).

FIG. 7. Variations of urine (A) Com-
ponent I and (B) Carnitine C9:1. Boxes
are drawn from the 25th to 75th percen-
tiles in the intensity distribution. The me-
dian, or 50th percentile, is drawn as a
black horizontal line inside the box.

TABLE V
Results of ROC analysis of variables in Table III with six samples from

HG-BC patients excluded

Var No.a AUC Sensitivity Specificity

1 0.875 66.7% 96.9%
2 0.871 66.7% 100%
3 0.871 81.0% 81.3%
1 � 2 0.954 90.5% 96.9%
1 � 3 0.911 85.7% 87.5%
2 � 3 0.946 95.2% 81.3%
1 � 2 � 3 0.953 95.2% 90.6%

a Var No. corresponds to Var No. in Table III.
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ronment which is beneficial to development of BC tumor.
Disturbed fatty acid transportation, fatty acid �-oxidation, or
energy metabolism might suggest one possible reason that
patients with BC are prone to feel fatigue.

In summary, with the combined use of two highly sensi-
tive and complementary separation techniques, we were
able to construct a combined PLS-DA model with 100%
predictive accuracy and further identify metabolic differ-
ences between BC patients and controls. Two urinary me-
tabolites, component I and carnitine C9:1, give an effective
BC diagnostic indicator biomarker pattern. ROC analysis
shows that the biomarker pattern achieves a sensitivity and
specificity up to 92.6% and 96.9%, respectively, for all
patients and up to 90.5% and 96.9%, respectively, for LG
patients. This potential specific biomarker pattern may thus
be an effective choice for the diagnosis of BC in addition to
conventional screening tools.

Further study toward clinical applications is under consid-
eration as possible extensions of our work. The biomarker
pattern containing component I and carnitine C9:1 implemen-
tation should undergo a vigorous process of initial disease-
specificity confirmation, quantitation assay establishment,
and multi-institutional cross-validation. Ideal disease bio-
markers or biomarker panels should exhibit high specificity
and high sensitivity. Therefore, larger and more diverse pa-
tient population, including various cancer patients and other
noncancer patients, will be enrolled in the study to further
verify the specificity of this newly discovered biomarker
pattern.
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30. Wiklund, S., Johansson, E., Sjöstrom, L., Mellerowicz, E. J., Edlund, U.,

Shockcor, J. P., Gottfries, J., Moritz, T., and Trygg, J. (2008) Visualization
of GC/TOF-MS-Based Metabolomics Data for Identification of Biochem-
ically Interesting Compounds Using OPLS Class Models. Anal. Chem.
80, 115–122

31. Yin, P., Wan, D., Zhao, C., Chen, J., Zhao, X., Wang, W., Lu, X., Yang, S.,
Gu, J., and Xu, G. (2009) A metabonomic study of hepatitis B-induced
liver cirrhosis and hepatocellular carcinoma by using RP-LC and HILIC
coupled with mass spectrometry. Mol. Biosyst. 5, 868–876

32. Hilario, M., Kalousis, A., Prados, J., and Binz, P. A. (2004) Data mining for
mass-spectra based diagnosis and biomarker discovery. Drug Discov.
Today 2, 214–222

33. Poynard, T., Halfon, P., Castera, L., Munteanu, M., Imbert-Bismut, F.,
Ratziu, V., Benhamou, Y., Bourliere, M., and de Ledinghen, V. (2007)
Standardization of ROC Curve Areas for Diagnostic Evaluation of Liver
Fibrosis Markers Based on Prevalences of Fibrosis Stages. Clin. Chem.
53, 1615–1622

34. Adam, B. L., Qu, Y., Davis, J. W., Ward, M. D., Clements, M. A., Cazares,
L. H., Semmes, O. J., Schellhammer, P. F., Yasui, Y., Feng, Z., and
Wright, G. L., Jr. (2002) Serum Protein Fingerprinting Coupled with a

Pattern-matching Algorithm Distinguishes Prostate Cancer from Benign
Prostate Hyperplasia and Healthy Men. Cancer Res. 62, 3609–3614

35. Keun, H. C., Sidhu, J., Pchejetski, D., Lewis, J. S., Marconell, H., Patterson,
M., Bloom, S. R., Amber, V., Coombes, R. C., and Stebbing, J. (2009)
Serum Molecular Signatures of Weight Change during Early Breast Can-
cer Chemotherapy. Clin. Cancer Res. 15, 6716–6723

36. Odunsi, K., Wollman, R. M., Ambrosone, C. B., Hutson, A., McCann, S. E.,
Tammela, J., Geisler, J. P., Miller, G., Sellers, T., Cliby, W., Qian, F., Keitz,
B., Intengan, M., Lele, S., and Alderfer, J. L. (2005) Detection of epithelial
ovarian cancer using H-1-NMR-based metabonomics. Int. J. Cancer
113, 782–788

37. Evan, G. I., and Vousden, K. H. (2001) Proliferation, cell cycle and apoptosis
in cancer. Nature 411, 342–348

38. Ludwig, J. A., and Weinstein, J. N. (2005) Biomarkers in Cancer Staging,
Prognosis and Treatment Selection. Nat. Rev. Cancer 5, 845–856

39. Theodorescu, D., Wittke, S., Ross, M. M., Walden, M., Conaway, M., Just,
I., Mischak, H., and Frierson, H. F. (2006) Discovery and validation of new
protein biomarkers for urothelial cancer: a prospective analysis. Lancet
Oncol. 7, 230–240

40. Cruciani, R. A., Dvorkin, E., Homel, P., Culliney, B., Malamud, S., Lapin, J.,
Portenoy, R. K., and Esteban-Cruciani, N. (2009) L-Carnitine Supplemen-
tation in Patients with Advanced Cancer and Carnitine Deficiency: A
Double-Blind, Placebo-Controlled Study. J. Pain Symptom Manage. 37,
622–631

41. McClinton, S., Moffat, L. E., Horrobin, D. F., and Manku, M. S. (1991)
Abnormalities of essential fatty acid distribution in the plasma phospho-
lipids of patients with bladder cancer. Br. J. Cancer 63, 314–316

Bladder Cancer Determination Via Two Urinary Metabolites

10.1074/mcp.M111.007922–10 Molecular & Cellular Proteomics 10.10


