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The study of chronic brain diseases including Alzheimer’s
disease in patients is typically limited to brain imaging or
psychometric testing. Given the epidemic rise and insuf-
ficient knowledge about pathological pathways in spo-
radic Alzheimer’s disease, new tools are required to iden-
tify the molecular changes underlying this disease. We
hypothesize that levels of specific secreted cellular sig-
naling proteins in cerebrospinal fluid or plasma correlate
with pathological changes in the Alzheimer’s disease
brain and can thus be used to discover signaling path-
ways altered in the disease. Here we measured 91 pro-
teins of this subset of the cellular communication pro-
teome in plasma or cerebrospinal fluid in patients with
Alzheimer’s disease and cognitively normal controls to
mathematically model disease-specific molecular traits.
We found small numbers of signaling proteins that were
able to model key pathological markers of Alzheimer’s
disease, including levels of cerebrospinal fluid �-amyloid
and tau, and classify disease in independent samples.
Several of these factors had previously been implicated in
Alzheimer’s disease supporting the validity of our ap-
proach. Our study also points to proteins which were
previously unknown to be associated with Alzheimer’s
disease thereby implicating novel signaling pathways in

this disorder. Molecular & Cellular Proteomics 10:
10.1074/mcp.M111.008862, 1–11, 2011.

The brain regulates key biological processes throughout the
organism by releasing molecules into the blood and cerebro-
spinal fluid (CSF)1, and systemic factors in turn can induce
cognitive and behavioral changes in animals and humans (1,
2). Thus, brain and periphery are interconnected not only on a
cellular level but also in a complex molecular network of
soluble communication factors.

Alzheimer’s disease (AD) is the most common form of de-
mentia affecting an estimated 5.4 million individuals in the US
(3). The cause of AD is not known but genetic and patholog-
ical studies point to a key role for cerebral �-amyloid (A�)
peptide and hyperphosphorylated tau in the disease. Levels
of soluble A�42 in CSF decrease in AD in parallel to its
deposition into amyloid plaques in the brain parenchyma,
whereas tau increases as the disease progresses making
these proteins good biomarkers of AD (4–6). Moreover, ratios
between the concentrations of tau phosphorylated at threo-
nine 181 (p-tau181) and total tau (t-tau) or A�42 are predictive
of future development of AD in patients with mild cognitive
impairment (MCI) (7–9) and cognitive decline (10–12) or brain
atrophy in nondemented older adults (13). Despite the useful-
ness of these CSF markers in the diagnosis of AD patients (4,
5), they provide little information on biological mechanisms
involved in this disorder.

Some members of the molecular network, which include
cytokines, chemokines, or growth factors, have been reported
to have different expression levels in patients with neurolog-
ical diseases compared with those found in healthy controls
[reviewed in (14)]. We and others have measured in plasma or
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CSF from AD patients and controls large numbers of commu-
nication factors, which we collectively called the communi-
come, and by statistically comparing levels in AD patients
versus levels in controls we identified small groups of factors
that could form a signature for the disease (15–19). Together,
these findings implicate abnormal transcriptional regulation of
peripheral leukocytes (20, 21) or neuroinflammatory pathways
in AD (22). Technical problems and small sample sizes, how-
ever, have made it difficult to identify proteins, which are
predictive of AD across various centers and studies (18) and
the two-class analysis approach (AD patients versus a control
group) is appealing for finding differences among groups but
provides little insight into the role of these markers in AD.

Here we propose an alternative analytical approach in
which levels of communication factors in CSF and plasma are
used to mathematically model levels of A�42 and tau. We do
this based on the hypothesis that the systemic network of the
extracellular signaling proteome is linked with the levels of
CSF markers of AD pathology and indicators of disease pro-
gression. The findings could help in identifying proteins and
biological pathways hitherto unknown to be involved in AD.

EXPERIMENTAL PROCEDURES

Subjects and APOE Genotyping—AD patients and healthy nonde-
mented controls (NDC) (supplemental Table S1) were recruited for
multicenter studies that aim to identify molecular biomarkers for AD in
blood and CSF. Subjects were chosen based on standardized inclu-
sion and exclusion criteria (see Supplemental Methods). Written in-
formed consent was obtained from all subjects, or assent from sub-
jects and consent from caregivers in the case of subjects with
significant impaired decisional capacity, in accordance with institu-
tional ethics committee review boards at each participating institu-
tion. APOE genotyping was performed by the restriction digest
method (23).

Collection of CSF and Plasma—CSF and plasma samples were
generated by standard procedures as described (19, 24). Briefly, for
the majority of patients lumbar puncture and blood draw was con-
ducted between 9am and 11am after an overnight fast. After blood
draw into K2-EDTA-coated lavender top vacutainers, blood was kept
on ice, spun at 1000 � g in a refrigerated centrifuge within 1 h of draw,
aliquoted, and frozen on dry ice. All samples were stored at �80 °C
until use with no previous thaw cycle.

Measurement of Analytes in CSF and Plasma—We measured CSF
levels of A�42, t-tau, and p-tau181 by Luminex xMAP method (Alz-
Bio3, Innogenetics, Ghent, Belgium) a bead-based sandwich immu-
noassay. Plasma samples were shipped from Seattle to Palo Alto
where they were thawed and aliquoted. For the multi-analyte profiling
plasma aliquots were sent to Rules-Based Medicine (RBM, Austin,
Texas) and measured in two big batches of samples from NDC and
AD patients. CSF was sent directly to RBM and analyzed in one
experiment. All samples were analyzed blinded by robotic sample
handlers in a bead-based multiplex sandwich immunoassay (Luminex
bead analyzer), according to Clinical Laboratory Standards Institute
(CLSI) guidelines and rigorous assessment of fundamental assay
parameters (http://www.rulesbasedmedicine.com/quality-policy/
data-quality/). Out of 90 analytes measured by RBM IFN-�, IGF-1,
IL-1�, and lipoprotein-a were not detectable in any of the CSF and
plasma samples. Additional analytes were excluded if they were
detectable in less than 10% of samples. This resulted in 73 detectable
proteins in each, plasma and CSF, with 60 proteins overlapping

between the two biological fluids (supplemental Table S2). Soares
and colleagues reported a similar sensitivity of this platform (18). As a
quality control we remeasured 35 plasma samples at RBM 17 months
after the initial plasma measurements. 86% of the detectable analytes
correlated between the two measurements with a Pearson correlation
coefficient R � 0.7 (52% R � 0.9, 34% r � 0.7–0.9) and 14% with R �
0.7. Lower R-values were because of changes in assay settings in the
second experiment, which rendered most values for these analytes
below least detectable dose or undetectable. Nevertheless, these
data generated at two independent time points made us confident,
that RBM produces highly reproducible data. Also, analytes with low
correlation coefficient were deemed suitable for analysis because in
the first experiment they were well above detection limit. Only data
from the first experiment were subsequently used for the analysis. In
addition, plasma levels of MCSF were quantified separately by Quan-
tikine ELISA (R&D Systems, Minneapolis, MN) and were detectable in
all plasma samples.

Statistical Analysis—Analysis was done in Prism 5 and R [http://
www.r-project.org/, (25)]. The entire plasma sample set contained 78
AD patients and 118 NDC (supplemental Table S1) and we measured
levels of tau, p-tau181, and A�42 in 72 AD patients and 112 controls.
We standardized the values to z-scores by subtracting the mean and
dividing by the standard deviation (26). Measurements below lowest
detectable protein concentration were imputed conservatively with
the lowest available value of an analyte. Values missing at random
(e.g. analyte not measured because of insufficient amounts of sample)
were imputed with 0 (which is the mean of the available observations)
after standardization. The entire plasma set was randomly split into a
training set (79 NDC, 52 AD) and a test set (39 NDC, 26 AD), whereby
we insisted on the same AD versus NDC frequency distribution in the
training and test as in the entire dataset and that all subjects in the
training set have measurements for A�42 and tau. The CSF sample
set was analyzed without further splitting. For the CSF sample set and
the plasma training set high-dimensional linear regression models for
continuous endpoints were computed with an elastic net penalty
[http://cran.r-project.org/web/packages/elasticnet/index.html, (27)]
using the add-on package elasticnet. We used the standardized levels
of t-tau, p-tau181, A�42, or the ratios of A�42/t-tau, or A�42/p-tau181,
respectively, as the continuous response variables in the linear re-
gression equation and the standardized values of CSF or plasma
protein levels together with sex and risk factors for AD APOE geno-
type and age as the explanatory variables. The penalty parameter was
chosen via 10-fold cross validation minimizing prediction error. For
fixed alpha, the regularization parameter lambda is varied from
lambda_max, the smallest lambda such that all coefficients are esti-
mated without constraint, down to a very small lambda_min;
lambda � 0 renders the algorithm unstable (28). We use the built-in
specification of lambdas that automatically chooses a suitable num-
ber of lambdas in the interval [lambda_min, lambda_max]. For alpha
we used {0.01, 0.2, 0.4, 0.6, 0.8, 1}. Alpha � 1 specifies a pure Lasso
penalty. For each response a separate model was calculated (Table I,
Model C1–5 in CSF, P6–8 in plasma) and variables that fitted best
into the corresponding model (selected predictors) are listed in order
of decreasing association to the response variable (absolute size of
regression coefficient, RC). To test the diagnostic utility of the se-
lected predictors in both the training and the test set, we used the
selected predictors to model the binary end point AD versus NDC
(based on clinical diagnosis) and calculated a ROC curve where the
linear predictor from the logistic regression was the continuous vari-
able. This was compared with the ROC curve that is based on models
with t-tau, p-tau181p, A�42, and their ratios A�42/t-tau, and A�42/p-
tau181p, respectively. Comparison of the logistic regression analyses
was done via ROC with 95% Wald-type confidence intervals for AUC
on logit-scale were computed using the approach of Hanley and
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McNeil (29, 30). To assess the risk associated with APOE genotype
we computed an ordinary logistic regression model with dependent
variable AD versus non-AD and explanatory variable APOE4 status
(�4 versus non-�4). In addition to the odds ratio we report a 95%
profile likelihood confidence interval.

Connectivity Network Diagrams—First, we calculated the Spear-
man rank correlation coefficients (RS) among all analytes in separate
correlation matrices for AD patients and NDC, respectively. Confidence
intervals for RS between analytes in plasma and CSF were calculated
using Fisher’s z-transformation and t-quantiles. The RS is an indicator of

TABLE I
List of variables selected in the Elastic net models. All values were standardized and penalized linear regression models were calculated with
the E-net method. Response variables: t-tau, p-tau181, A�42, or the ratios of A�42/t-tau, or A�42/p-tau181. Explanatory variables: CSF or plasma
protein levels together with sex and risk factors for AD APOE genotype and age. For each response a separate model was calculated (Model
C1–5 in CSF, P6–8 in plasma) and variables that fitted best into the corresponding model are listed in order of decreasing absolute size of the
estimated regression coefficient (RC, indicated in parentheses). RC lies between �0.01 and 0 for variables without a coefficient. Since all
variables had been standardized, the RC serves as a measure of the strength for the association between an explanatory variable and its
corresponding response variable: the larger RC in absolute value, the higher the association to the response. A RC close to 0 points to a low

degree of association between the corresponding variable and the response. For protein nomenclature see supplemental Table S2

Variables selected in the models for CSF a  

Model C1: t-tau Model C2: p-tau181 Model C3: A 42 Model C4: A 42/t-tau Model C5: A 42/ p-tau181 

FABP3 (0.34) FABP3 (0.41) IL-7 (0) FABP3 (-0.17) APOE (-0.28) 

CK-MB (-0.10) CCL11 (-0.21)  APOE (-0.15) FABP3 (-0.10) 

 APOE (0.21)  SCF (-0.11) IL-13 (-0.08) 

 Endothelin-1 (0.20)  Endothelin-1 (-0.07) SCF (-0.08) 

 CK-MB (-0.20)  TNF-  (-0.03) CK-MB (-0.05) 

 IL-13 (0.19)  CK-MB (0.03) -Fetoprotein (-0.03) 

 MMP-3 (0.18)   Endothelin-1 (-0.03) 

 CXCL8 (-0.17)   CRP (0.01) 

 +18 more c     
     Variables selected in the models for plasma b  

Model P6: t-tau Model P7: p-tau181 Model P8: A 42 Model P9: A 42/t-tau Model P10: A 42/ p-tau181 
TNF RII (0.08) MCSF (-0.07) APOE (-0.31) APOE (-0.32) APOE (-0.21) 

Age (0.06) CD40L (-0.04) Age (-0.24) Age (-0.28) MCSF (0.15) 
MCSF (-0.06) APOE (0.04) MCSF (0.15) MCSF (0.17) Age (-0.12) 

TF (0.06) G-CSF (-0.04) IL-18 (0.02) IL-12 p70 (0.07) G-CSF (0.12) 
IL-3 (0.04) Adiponectin (0.04) IL-12 p70 (0.02) CK-MB (0.04) GH (0.03) 

APOE (0.04) CCL2 (-0.02) IgA (0.01) IL-4 (-0.03) TPO (0.01) 
ApoCIII (-0.02) CK-MB (-0.02) CK-MB (<0.01) TIMP-1 (0.02)  

Adiponectin (0.02) TNF-  (0.01)  G-CSF (0.02)  
EN-RAGE (0.02) Age (0.01)  2-Microglobulin (-0.02)  

G-CSF (-0.02) 2-Microglobulin (0.01)  TNF RII (-0.01)  
CK-MB (-0.01) TNF RII (0.01)  EN-RAGE (-0.01)  
Insulin (-0.01) IL-4 (0.01)  TF (-0.01)  
CD40L (-0.01) IL-3 (0.01)  PAI-1 (0.01)  
PAI-1 (-0.01) IL-18  IL-3  

 PAI-1    
 Apo CIII    
 TBG    

a Based on the CSF set with 43 subjects, AD n � 25, NDC n � 18 subjects.
b Based on the training set with 131 subjects, AD n � 52, NDC n � 79 subjects.
c In model C2 the E-net chose 26 predictors for modeling p-tau181p with CSF proteins and subjects’ characteristics. To avoid overfitting for

this model we limited the number of selected variables to eight. The additional 18 variables in order of how they were selected by the E-net
here in an extended list: CRP, age, VEGF, SCF, CA19–9, IL-10, IL-5, C3, haptoglobin, TBG, calcitonin, GST, CCL2, �-fetoprotein, PAPP-A,
ApoA1, CCL3, IgM.
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connectivity of two analytes and RS ranges [0.4,1] and [–1,–0.4] were
used to draw connectivity network diagrams for selected analytes. To
quantify the strength of integration of an analyte in the connectivity
network we calculated for each analyte an interaction score, which is
the sum of the squared values of all RS in the range of [–1,1] between
this analyte and all analytes in the connectivity diagram.

RESULTS

Two Thirds of Measured Communication Factors are De-
tectable in CSF—We measured the concentrations of 91 se-
creted proteins in plasma from 78 AD patients and 118 cog-
nitively normal elderly NDCs; we also measured 90 proteins in
CSF of 25 AD patients and 18 NDC (supplemental
Table S1 and S2). These proteins represent some of the
best-studied cytokines, chemokines, growth factors, and
acute phase response proteins and were selected based on
availability in multiplex sandwich immunoassay. Seventy-four
proteins were detectable in plasma and 73 in CSF, with 60
proteins overlapping between the two biological fluids. Pro-

tein concentrations were generally lower in CSF than in
plasma (between 5- and 8000-fold) with a few interesting
exceptions. �2-microglobulin, CD40, CCL11/eotaxin, tissue
inhibitor of metalloproteinase (TIMP)-1, or tissue factor (TF)
were measured at similar concentrations in both fluids and
levels of fatty acid binding protein 3 (FABP3), CCL2/monocyte
chemotactic protein-1 (MCP-1), CXCL8/interleukin-8, and
vascular endothelial growth factor (VEGF) were 1.5- to 10-
times higher in CSF than in plasma. Interestingly, systemic
�2-microglobulin, CCL11, and CCL2 were recently identified
in an unbiased screen as key aging factors with a possible role
in adult neurogenesis in mice (31). These observations sug-
gest that a majority of the communicome factors, many
known classically for their role in peripheral immune function,
developmental processes, or systemic diseases, may have a
function in the CNS as well.

CSF Communication Factors Can Model CSF A� and Tau
And Hence Discriminate Between AD and NDC—Consistent

TABLE II
Classification of AD and nondemented controls. Compare AUC calculated using variables selected in elastic net models (Table I) with AUC

calculated using established markers for pathology. See also ROC curves in Figures 2 and 3

Established biomarker
model

CSF sample set (n � 43)

AUC calculated based on
established biomarkers in

CSFa
E-net model

AUC calculated based on
CSF communicome, age,

and APOE4 statusb

t-tau 0.86 (0.71–0.94) C1 0.75 (0.56–0.88)
p-tau181 0.90 (0.74–0.97) C2 0.88 (0.70–0.96)
A�1–42 0.75 (0.58–0.87) C3 n.a.
A�1–42/t-tau 0.84 (0.69–0.93) C4 0.91 (0.77–0.97)
A�1–42/p-tau181 0.86 (0.70–0.94) C5 0.93 (0.78–0.98)

Established biomarker
model

Training set (n � 131)

AUC calculated based on
established biomarkers in

CSFa
E-net model

AUC calculated based on
plasma communicome,
age, and APOE4 statusb

t-tau 0.80 (0.71–0.87) P6 0.86 (0.79–0.92)
p-tau181 0.82 (0.73–0.89) P7 0.86 (0.78–0.92)
A�1–42 0.81 (0.72–0.87) P8 0.85 (0.76–0.90)
A�1–42/t-tau 0.85 (0.78–0.91) P9 0.86 (0.78–0.92)
A�1–42/p-tau181 0.84 (0.76–0.90) P10 0.84 (0.76–0.90)

Established biomarker
model

Test set (n � 65)

AUC calculated based on
established biomarkers in

CSFc

Validation of variables
selected in E-net

model

AUC calculated based on
plasma communicome,
age, and APOE4 status
selected in the training

setd

t-tau 0.80 (0.630–0.907) P6 0.77 (0.63–0.87)
p-tau181 0.81 (0.648–0.909) P7 0.76 (0.61–0.86)
A�1–42 0.84 (0.704–0.925) P8 0.75 (0.60–0.85)
A�1–42/t-tau 0.86 (0.715–0.938) P9 0.77 (0.63–0.87)
A�1–42/p-tau181 0.86 (0.725–0.934) P10 0.74 (0.60–0.85)

a AUC calculated based on the levels of established pathological CSF biomarkers t-tau, p-tau181, A�1–42 and their ratios in subjects used
for CSF or plasma models, respectively.

b AUC (in bold) calculated based on communicome, age and APOE4 status and their corresponding regression coefficients as selected in
Elastic net (E-net) models C1–5 (CSF) and P6–10 (plasma) in subjects used for CSF or plasma models, respectively. Note that for A�1–42 only
IL-7 with a regression coefficient close to 0 was selected in the E-net model C3. Thus, no ROC/AUC could be calculated (n.a., not applicable).

c These AUC results are based on 53 subjects because 6 controls and 6 AD patients had no measurement of A� and tau in CSF.
d Variables selected by the E-net models P6–10 in the training set were validated in an independent test set and AUC was calculated for all

65 subjects (italicized and bold).

Abnormal Systemic Protein Networks in Alzheimer’s Disease

10.1074/mcp.M111.008862–4 Molecular & Cellular Proteomics 10.10

http://www.mcponline.org/cgi/content/full/M111.008862/DC1
http://www.mcponline.org/cgi/content/full/M111.008862/DC1


with published reports (9, 11, 32) CSF levels of A�42, t-tau,
p-tau181 alone or in combination were strong classifiers of AD
in our data set (area under the curve (AUC) 0.75–0.90 for
various models; Table II). If levels of communication factors
are indeed associated with the disease process (discussed in
(6)) they should be able to model the pathological changes
characteristic of AD (Fig. 1). We thus modeled levels of CSF
A�42, t-tau, p-tau181, or ratios A�42/t-tau or A�42/p-tau181

with all measurements of communication factors in CSF (73
detectable factors) using the linear regression-modeling tool
Elastic net (E-net, (27)). We adjusted for sex and AD risk
factors age and APOE4 status by including them as variables
in the analysis. In E-net models C1–C5 a total of 12 CSF
proteins were selected to be associated with the 5 patholog-
ical markers of AD. Interestingly, FABP3 and creatine kinase-
muscle/brain (CK-MB), showed a consistently strong associ-
ation in all models involving tau; (indicated by shades of green
in Table I) endothelin-1, and interleukin-13 (IL-13) were also
required to model p-tau181. IL-7 was the only factor selected
to model A�42 but with a regression coefficient of nearly zero,
implying that its influence on the response variable in the
regression model is small.

The communication factors selected in E-net Models C2
and C5 (the latter in conjunction with APOE4 status) were
capable of independently classifying AD and NDC similar to or
slightly better than p-tau181 or A�42/p-tau181 levels measured
in these patients (Fig 2A, B and Table II). This validates the
chosen communication proteins and suggests that they are
biologically related to the abundance of p-tau181 and A�42 in
CSF, the pathological hallmarks of AD.

Consistent with the E-net analysis, we observed in the
connectivity network diagram of the overall 12 selected CSF

communication factors strong, positive Spearman rank cor-
relations (RS) between t-tau or p-tau181 and several commu-
nication factors in healthy individuals but A�42 was only
weakly integrated into this network (Fig 2C). Other factors
including CXCL8, FABP3, matrix metalloproteinase 3 (MMP-
3), and stem cell factor (SCF) show strong correlations with
each other in the network (RS � 0.8). Although some of the
relationships are maintained in AD (FABP3, MMP-3, SCF), the
strong correlations with tau are missing; instead, negative
relationships among tau, CK-MB, and TNF-� appear, and
C-reactive protein (CRP) becomes a network hub with several
positive interactions (Fig 2D). This change in connectivity
between pathological and communicome factors in AD versus
NDC is reflected by differences in the interaction scores.

Plasma Communication Factors Can Model CSF Tau and
A� and Hence Discriminate Between AD and NDC—We next
asked whether blood-derived proteins have a relationship to
CSF pathological markers of AD and may thus be related to
the disease itself (Fig. 1). We again used E-net to model A�42,
t-tau, p-tau181, or ratios A�42/t-tau or A�42/p-tau181 but this
time based on values for 74 detectable plasma communica-
tion proteins (supplemental Table S2) in a training set of 52 AD
patients and 79 NDC (supplemental Table S1), and we ad-
justed for sex, age and APOE4 status. A total of 22 plasma
communication factors were selected to best model patholog-
ical CSF markers in E-net Models P6-P10 (Table I). Notably,
CK-MB and tumor necrosis factor-� (TNF-�) overlapped with
proteins selected in the CSF models. Among the 22 proteins,
macrophage-colony stimulating factor (MCSF) showed the
strongest and most consistent association with all 5 patholog-
ical markers in CSF although APOE4 status and age were key
drivers in two of these models (P8, P9). Other prominent factors

FIG. 1. Modeling of pathological markers in CSF and classification of AD based on communication factors in CSF and plasma.
Accumulation of plaques and tangles in the AD brain is associated with decreased levels of A� and increased levels of tau in CSF, respectively
(green dashed double arrow). Relative levels of these proteins alone or their ratios can be used to classify AD and NDC (green solid arrow). In
Elastic net (E-net) regression models C1–C5 soluble communication factors in CSF (CSF communicome; see text for details) are used to model
tau and A� levels or their ratios (dashed purple double arrow) and subsequently to classify AD and NDC (solid purple line). In E-net models
P6-P10 soluble communication factors in plasma (plasma communicome) derived from the training set are used to model tau and A� levels
or their ratios (dashed red double arrow) and subsequently to classify AD and NDC (solid red line). These variables were validated by classifying
AD and NDC in an independent test set. In a separate analysis correlations are studied between CSF communicome proteins and
corresponding plasma communicome proteins in AD patients and NDCs (dashed blue double arrow).
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were selected in four models (CK-MB and granulocyte-colony
stimulating factor (G-CSF)) or in three models (TNF-RII, IL-3,
and PAI-1) (indicated by shades of orange in Table I).

To assess the potential diagnostic utility of the selected
plasma proteins we calculated ROC curves for the training
set. Several models outperformed the pathological CSF mark-
ers in classifying NDC and AD, and this effect was not simply
explained by APOE4 status and age (Table II and Fig 3A, C).
Moreover, plasma communication factors in combination with
APOE4 status and age were as effective in classifying AD as
CSF measurements of A�42/tau and A�42/p-tau181 (Table II).
We validated the results of these models in an independent
test set with 65 subjects (supplemental Table S1), producing
a classification (AUC 0.74–0.77), which was clearly stronger
than with APOE4 status and age alone (AUC 0.63, Fig 3B, D).

Consistent with the E-net analysis, connectivity network
diagrams illustrated a considerable complexity of relation-

ships among all 22 plasma communication factors selected
by E-net models P6-P10 and tau and A� in NDC (Fig 4A).
Interestingly, this network becomes seemingly more com-
plex in AD subjects where immune and inflammatory factors
become important network hubs (Fig 4B). For example,
�2-microglobulin shows strong correlations with inflamma-
tory factors TIMP-1, PAI-1 and members of the TNF super-
family (CD40L, TNF RII, and TNF-�) in the AD network.

Correlations and Connectivity Between Communication
Factors in CSF and Plasma are Altered in AD—To assess
whether levels of a given protein factor in the CSF are related
to its levels in plasma we compared CSF and plasma con-
centrations in 43 subjects using Spearman rank correlation. In
healthy individuals, levels of 10 out of the 60 proteins detect-
able in CSF and plasma (supplemental Table S2) correlated
considerably between the two fluids (Rs � 0.5; Fig 5A). Strik-
ingly, 6 of these 10 correlations were much weaker in AD

FIG. 2. Pathology associated CSF communicome models can classify AD and NDC and the connectivity network of the proteins in
these models is altered in AD patients. A, B, CSF pathological markers or CSF Elastic net (E-net) models C2 and C5 were used to calculate
ROC curves. The color-coding is based on Fig. 1 and the numbers indicate the AUC values and 95% C.I. (listed also in Table II). A, CSF samples
from AD patients and NDC were classified based on levels of CSF p-tau181 (solid green line) or levels of CSF communicome proteins (FABP3,
CCL11, endothelin-1, CK-MB, IL-13, CXCL8) and APOE4 status selected in model C2 (dashed purple line). B, CSF samples from AD patients
and NDC were classified based on levels of CSF A�42/p-tau181 (solid green line) or levels of CSF communicome proteins (FABP3, IL-13, SCF,
CK-MB, �-fetoprotein, endothelin-1, CRP) and APOE4 status selected in model C5 (dashed purple line). C, D, Network diagrams illustrating
connectivity between CSF pathological markers and CSF communication factors selected in models C1–C5. The connectivity between two
proteins is expressed as Spearman rank correlation coefficient RS calculated from all measurements for these two proteins in CSF samples
of nondemented controls (C) or AD patients (D), respectively. The correlations are visualized in a network with different strokes and colors
depending on strength and type of connectivity among proteins. Red strokes RS � 0.4, blue strokes RS � –0.4. In parentheses next to the name
of the analyte is the interaction score, which is the sum of the squared values of all RS among all analytes in the connectivity diagram. Note
the considerable change of the interaction scores between communication factors in AD patients (D) compared with NDC (C).
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(FABP3, IL-10, TIMP-1, CCL4 (macrophage inflammatory pro-
tein-1�, MIP-1�), myoglobin, and TSH. Conversely, levels of
intercellular adhesion molecule-1 (ICAM-1) and CCL5 did not
correlate between CSF and plasma in NDCs but correlated
highly in AD patients (Fig 5A and supplemental Fig. S1).
Similarly, it becomes apparent that the connectivity network
of factors selected in models C1–5 and P6–10 (Fig 5B, C) are
overall very different in AD and NDC, and this is supported by
the change in interaction scores for each factor. Many of the
factors appearing as well-connected network hubs in
healthy individuals (e.g. insulin, �-fetoprotein, FABP3, or
SCF) have very low connectivity in AD patients. In turn,
MCSF and CRP have high positive correlations in AD but
negative or fewer correlations in NDC. Together, these anal-
yses across the BBB support the notion that the disease

process in AD is accompanied by changes in secreted
signaling proteins in CSF and plasma.

DISCUSSION

The study of genetic forms of AD has greatly advanced our
knowledge about disease processes linked to the disease but
the cause of sporadic forms of AD affecting �95% of all
patients is unknown. One reason may be that studying this
disease is typically limited to imaging or psychometric testing
of patients. Also, existing in vitro or transgenic animal models
based on genetic forms of AD provide limited unbiased infor-
mation on molecular or cellular networks involved in the
pathogenesis of sporadic AD. Here we analyzed AD in a more
continuous and complex fashion based on the hypothesis that
the systemic network of the extracellular signaling proteome

FIG. 3. Pathology associated plasma communicome models that efficiently classify AD and NDC are validated in an independent test
set. ROC curves for the plasma training and a test set were calculated with CSF pathological markers (solid green lines), AD risk factors APOE4
status and age (solid black lines), or plasma Elastic net (E-net) models P2 and P5 (dashed red lines), respectively. The color-coding is based
on Fig. 1 and the numbers indicate the AUC values and 95% C.I. (listed also in Table II). A, AD patients and NDC in the training set were
classified based on levels of CSF p-tau181 or the variables selected to be associated with p-tau181 in e-net model P2: plasma communicome
proteins (MCSF, CD40L, G-CSF, adiponectin, CCL2, CK-MB, TNF-�, �2-microglobulin, TNF RII, IL-4, IL-3, IL-18, PAI-1, Apo CIII, TBG), APOE4
status, and age. B, The variables selected in the training set E-net model P2 are validated in an independent test set of AD and NDC and
compared with the ROC curves that were calculated based either on levels of CSF p-tau181 or APOE4 status and age of 53 of the 65 subjects
in the test set; measurements of A�42 and tau were not done for six NDC and six AD in the test set. C, AD patients and NDC in the training
set were classified based on levels of CSF A�42/p-tau181 or the variables selected to be associated with p-tau181 in E-net model P10: plasma
communicome proteins (MCSF, G-CSF, GH, TPO), APOE4 status, and age. D, The variables selected in the training set E-net model P10 are
validated in an independent test set of AD and NDC and compared with the ROC curves that were calculated based either on levels of CSF
A�42/p-tau181 or APOE4 status and age of the subjects in the test set. See connectivity network in Fig. 4 for illustration of the changes in
interactions among communication factors in AD patients compared with controls.
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is linked with the pathological traits in AD. To test this hypoth-
esis we modeled known and accepted pathological indicators
of the disease (A�42, t-tau, p-tau181, or ratios A�42/t-tau or
A�42/p-tau181) (4, 5) with other CSF or plasma proteins (Fig.
1 and supplemental Table S2) using the penalized linear
regression method E-net (27). We also correlated levels of
proteins measured in CSF and plasma with each other and
analyzed how the connectivity or “network” of correlations
among these factors changes with disease (Fig. 1). The
current study attempts therefore to provide methods for
discovery of potentially diagnostic or biologically relevant
proteins in AD.

We discovered several small groups of proteins in CSF
which could be used to model or predict levels of pathological
markers and classify AD and non-demented controls with
similar or better diagnostic utility than the CSF pathological
markers themselves (Fig 2A, B and Table II). These proteins
alone or in combination may therefore be associated with the
disease process either in a direct or indirect way [see also
discussion on fluid biomarkers in relation to AD pathology in
(6)], and future experimental studies will need to test this.
Consistent with their ability to model CSF tau and A�, several
of the selected CSF communicome proteins correlate with
these markers and it is striking that most correlations are
prominently changed in AD patients (Fig 2C, D). This is par-
ticularly obvious for correlations between FABP3 or SCF, and
pathological markers. FABP3, which shows many strong cor-
relations with other proteins and functions as a network hub,
is a cytosolic protein involved in cellular fatty acid uptake,

transport, and metabolism (33). It is highly expressed in the
adult human brain (34) and has previously been suggested to
be a peripheral marker for mild traumatic brain injury and
stroke (34–36). In support of a possible change in the half-life
of FABP3 in brain and the systemic environment in disease,
we observed a moderate positive correlation between CSF
and blood FABP3 levels in NDC but a negative correlation in
AD patients (Fig 5A and supplemental Fig. S1). FABP3 was
also independently identified as a possible predictor of AD in
a recent ELISA study (37) and two studies of CSF communi-
come proteins using the same platform that was used in our
study (15, 38). Other proteins overlapping between our anal-
ysis and the latter two studies include IL-7, SCF, and CCL11/
eotaxin (with Hu et al. identifying its close relative
Eotaxin-3/CCL26).

Using levels of plasma communicome proteins to model AD
pathological markers we identified between 4 and 15 proteins
(out of 74 detectable proteins; supplemental Table S2) for the
various models P6-P10. The selected proteins were slightly
weaker in their diagnostic utility than the ones selected in CSF
models C2, C4, and C5 but outperformed models C1 and C3
(Table II). All plasma models required age and APOE4 status
as parameters to achieve sufficient classification accuracy
(Fig. 3 and Table II). Further validation of the models in an
independent test set resulted in reduced AUC values but a
clear improvement over the classification accuracy with
APOE4 status and age. Because each of the 5 plasma models
was developed independently with the E-net tool, it is reas-
suring that several proteins were selected in 3, 4 or even all

FIG. 4. Plasma predictors of pathological markers point to changes in the communicome network in plasma of AD patients. A, B,
Connectivity diagrams of pathological markers in CSF and communication factors in plasma, which were chosen in Elastic net regression
models for these markers. The relationship between two proteins is expressed as Spearman rank correlation coefficient RS calculated from all
measurements for these two proteins in nondemented controls (A) or AD patients (B), respectively. The correlations are visualized in a network
with different strokes and colors depending on strength and type of a relationship among proteins. Red strokes RS � 0.4, blue strokes RS �

�0.4. In parentheses next to the name of the analyte is the interaction score, which is the sum of the squared values of all RS among all analytes
in the connectivity diagram. Note the considerable difference in connectivity among communication factors in AD patients compared with NDC.
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models (shades of orange in Table I). Of these, MCSF and
G-CSF may be particularly relevant in AD, as they are reduced
in AD plasma (17) and systemic administration of either MCSF
(39) or G-CSF (40) ameliorated memory deficits in mouse
models of the disease. Furthermore, MCSF functions as a
network hub and shows strong positive correlations with
FABP3, SCF, and MMP-3 in the CSF-plasma connectivity
diagram in AD patients but not in NDC (Fig 5B, C).

The comparison of individual correlations of communicome
proteins between CSF and plasma in AD and NDC (Fig 5A)

resulted in an additional set of proteins which overlapped in
part with those identified in models C1-C5 (FABP3, CRP) and
P6-P10 (CCL2) as well as proteins reported in the literature as
having a role in AD (CCL5, ICAM-1, leptin). Notably, many of
these correlations are different in AD compared with NDC.
Whether the correlations between CSF and plasma are the
result of exchange between the compartments or co-regula-
tion of these proteins and why the correlations change with
disease needs to be explored mechanistically. It is reassuring
that out of a 18 protein signature we previously described to

FIG. 5. Correlations and connectivity between communication factors in CSF and plasma are different in AD patients compared with
NDC. A, Spearman rank correlations (correlation coefficient RS) between CSF and plasma in nondemented controls (green bars) and AD patients
(blue bars). Proteins with RS � 0.5 in at least one group are shown. RS � –0.5 were not observed. Note that levels of CCL5 and ICAM-1 correlate
much stronger in AD than in NDC across the BBB and that ApoH and CCL2 reach RS � 0.5 in AD but not in NDC. B, C, Connectivity diagrams
illustrating correlations between CSF communication factors selected in models C1–C5 and plasma communication factors selected in models
P6–P10. In parentheses are the interaction scores. See legend to Fig. 2 for more details on calculations. Note the considerable lack and difference
in connectivity between communication factors in AD patients (C) compared with NDC (B). See also supplemental Fig. S1. BBB, blood-brain barrier.
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classify AD or model progression (17) all six proteins that were
detectable on the two distinct platforms were selected in at
least one model here (CCL5, CXCL8, GCSF, ICAM-1, IL-3,
MCSF). Likewise, in a recent study that used the multiplex
sandwich immunoassay platform to measure 108 serum pro-
teins (including the ones measured here) (16), several predic-
tors of AD overlapped with the ones identified here (e.g.
CK-MB, G-CSF).

In the future, the analytical methods described here could
be improved by increasing the number of communication
factors measured in the plasma or CSF and modeling not only
pathological CSF markers but clinical or imaging parameters
as well. This could strengthen the value of biological informa-
tion obtained with such an approach. At the same time, the
analytical method used here could go beyond the communi-
come as we know it today by combining it with the analysis of
cellular networks (41) or other “-omic” approaches (42) to
discover associations with disease patterns in tissue. Natu-
rally, these methods are not limited to AD but could be used
for other diseases where direct access to the diseased organ
is difficult. Ultimately, the proteins and biological pathways
identified by analytical approaches need to be validated using
appropriate disease models and ultimately, human studies.

In summary, we used a targeted proteomic multiplex assay
to measure soluble proteins involved in intercellular commu-
nication in CSF and plasma of AD patients and cognitively
normal elderly controls. We found small numbers of systemic
extracellular signaling proteins that were able to model key
pathological markers of Alzheimer’s disease, including levels
of CSF �-amyloid and tau, and classify disease in indepen-
dent samples. We propose that the network-based analytical
approaches employed here can help identify proteins or sig-
naling pathways involved in AD or other chronic neurodegen-
erative disorders with higher confidence than traditional two-
class, disease and control modeling approaches. Future studies
need to replicate our findings in large multi-center cohorts and
test the various proteins for a biological role in AD.
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