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Enhanced Information Output From Shotgun
Proteomics Data by Protein Quantification and
Peptide Quality Control (PQPQ)*s
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AnnSofi Sandberg, and Janne Lehti6

We present a tool to improve quantitative accuracy and
precision in mass spectrometry based on shotgun pro-
teomics: protein quantification by peptide quality control,
PQPQ. The method is based on the assumption that the
quantitative pattern of peptides derived from one protein
will correlate over several samples. Dissonant patterns
arise either from outlier peptides or because of the pres-
ence of different protein species. By correlation analysis,
protein quantification by peptide quality control identifies
and excludes outliers and detects the existence of differ-
ent protein species. Alternative protein species are then
quantified separately. By validating the algorithm on
seven data sets related to different cancer studies we
show that data processing by protein quantification by
peptide quality control improves the information output
from shotgun proteomics. Data from two labeling proce-
dures and three different instrumental platforms was in-
cluded in the evaluation. With this unique method using
both peptide sequence data and quantitative data we
can improve the quantitative accuracy and precision
on the protein level and detect different protein
species. Molecular & Cellular Proteomics 10: 10.1074/
mcp.M111.010264, 1-9, 2011.

One reason for the low success of clinical biomarker dis-
covery by proteomics is the difficulty of extracting information
that will give answers to clinical biological questions. A major
cause of this restraint is that quantitative data analysis
methodologies in proteomics are immature (1-9). The large
amount of data from mass spectrometry (MS) based protein
profiling (10) include a lot of noise and biases arising from
biological and chemical variation, sample preparation, in-
strumental analysis, and data analysis (9). This can lead to
over interpretation and misleading conclusions from the
data. The present work contributes with a novel algorithm
for quantitative analysis of MS/MS proteomics data: Protein
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Quantification by Peptide Quality control (PQPQ)'. PQPQ
improves the quantitative accuracy and precision and hence
increases the chances to find clinical biomarkers and reveal
biologically relevant information by proteomics research.
Shotgun Proteomics—The identification of the protein com-
ponents of a biological sample is a complex, multistep pro-
cedure. In so called shotgun proteomics, protein samples are
digested to peptides by enzymatic cleavage, then typically
separated and analyzed in a liquid chromatography-mass
spectrometry (LC-MS) system. From the full scan MS spec-
trum, precursor peptide ions are selected and fragmented for
tandem MS analysis (MS/MS). The fragment ion spectra are
interpreted to peptide sequences via a database search and
the proteins are inferred from the identified peptides. Although
today’s shotgun proteomics techniques are capable of
identifying thousands of proteins from biological samples (11)
there are several limitations, especially in terms of protein
quantification. The protein data output from shotgun pro-
teomics rely on several assumptions: perfect tryptic cleavage,
that a protein can be identified by only a few peptides, that the
peptide-matching algorithms works perfect, and that the pro-
tein databases are populated with all proteins and their vari-
ants (9). However, this is not true for all proteins in a complex
sample. Further, the protein inference problem; that a set of
peptides may be shared by multiple proteins, puts doubt into
the identification and quantification (12). A substantial prob-
lem is also that low intensity signals dominates the data set in
a typical shotgun proteomics experiment. Furthermore, many
protein identifications are based on only a few peptides, lim-
iting the statistical security in the quantitative results (13). All
these confounding issues have to be considered when inter-
preting shotgun proteomics data. The presented algorithm
PQPQ is a tool that addresses some of these issues.
Quantitative Accuracy and Precision—Until recently, mass
spectrometry based proteomics has mostly focused on as-
suring the protein identifications; the quantitative accuracy
and precision has been less discussed. Nevertheless, the aim
of proteomics studies in e.g. biomarker discovery is to find

" The abbreviations used are: PQPQ, Protein Quantification by
Peptide Quality control; FDR, False Discovery Rate.
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proteins with quantitative differences. Subtle changes in pro-
tein levels can have major effect on the underlying biology.
Currently, many analyses fail at the point of biological inter-
pretation because of a large quantitative variance and inac-
curacy. One part of this problem is that current proteomics
data analysis methods are unable to resolve different protein
species, such as splice variants or modified subsets of pro-
teins. Because different protein species have different biolog-
ical functions, it is however essential to be able to detect and
quantify those species separately. Today’s data analysis out-
put often reports a mean value of different species (14).

Protein Species and Alternative Splicing— Alternative splic-
ing, alternative transcription start sites, post-translational
modifications, protein cleavage etc. generate an enormous
diversity of protein species. Many of these species are difficult
to separate in the protein identification because either the
species are not known and mapped, or they are not possible
to discriminate because of similar protein sequences or lack
of sequence coverage in the experiment. Yet, several dis-
eases have known modifications and predisposition mediated
by aberrant splicing. Changes in splicing have for example
been shown to contribute in cancer progression (15). Several
findings show that different splice variants have different bi-
ological functions, and may be useful diagnostic or prognostic
tools (15, 16). Methods that detect isoform-specific mRNA
changes have been developed for splicing microarrays, but
are reported to be incomplete and noisy (14, 17). These meth-
ods also miss the protein level generated species (8, 9, 12,
18).

The Scope of This Work—Obtaining an accurate and pre-
cise estimate of the protein ratio from peptide intensities can
be done in various ways and no standard methodology is yet
defined (13, 19-21). Several open source/academic and com-
mercial software for quantitative analysis of proteomics
MS/MS data are available supporting different MS instru-
ments and labeling methods (20, 22-25).

This work takes the quantitative protein analysis further. We
here present a method for increasing the quantitative accu-
racy and precision in the protein output from shotgun pro-
teomics data by quality control of the peptide data. The
novelty of this algorithm is that it uses quantitative data of
each peptide cross multiple samples to find outliers and to
detect different protein species. By finding a correlating pep-
tide pattern over several samples, outlier peptides can be
detected and excluded. Further, a cluster analysis among
the peptides associated to the same protein suggests if there
exist several protein species. Different protein species are
then accurately quantified separately. The method presented
here is unique by using the combination of peptide sequence
data and quantitative data to improve the quantitative accu-
racy and precision of the proteins and detect different protein
species in proteomics data.
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Fic. 1. The scheme shows the data analysis workflow of the
algorithm PQPQ. Data from replicate samples (marked - - -) are
concatenated for the quality assessment of the peptides. The detailed
peptide quality control scheme is found in Supplementary
file S1, Fig. S1.

EXPERIMENTAL PROCEDURES

PQPQ: A New Algorithm for Protein Quantification by Peptide
Quality Control—The algorithm PQPQ improves the accuracy in pro-
tein ratios calculation by selecting peptides correlating over samples
for quantification. The peptides for quantification are selected by
analyzing the pattern over several samples to define if the peptides
come from the same protein. Pearson’s correlation coefficient is used
for measuring the similarity of the pattern between peptides:

cov(ps,
(Pearsons) correlation coefficient = M

Sp, X Sp, (Equation [1])

where p; is an array containing the intensities of peptide i for the
different samples, cov denotes covariance, and s, is the standard
deviation. The correlation is calculated for all the peptides associated
to the same protein as illustrated in Fig. 3. The entire workflow is
schematically described in Fig. 1, and in detail below.

Experimental Design—To prove the significance and robustness of
the developed algorithm PQPQ, complex biological samples, both
cell line and clinical sample sets were analyzed, as summarized in
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Table I. The samples have been analyzed using different experimental
setups, sample labeling methods (iTRAQ and TMT), and several MS
instruments such as LC-matrix-assisted laser desorption ionization/
time of flight (MALDI-TOF)/TOF (4800, Applied Biosystems), High
accuracy nanoChipLC-NSI-Q-TOF (Agilent), and LC-NSI-LTQ Or-
bitrap Velos (high resolution FT instrument, Thermo Scientific). De-
tailed experimental information is available in Supplementary file S1
online.

Data Preprocessing—PQPQ is designed to handle output data
from ProteinPilot™ (26), Spectrum Mill, Proteome Discoverer, and
can also load manually annotated peptide data as .txt, .csv, .xls, or
Xlsx files. The data preprocessing is hence done in the software
coupled to the instruments. The following information was extracted
from the individual software programs: the protein accession num-
ber(s) associated with the peptides, a value of the peptide confidence,
the peptide sequence, the area (or intensity) of the peptide peak (or
reporter ion), one column for each sample, and the corresponding
gene name(s) (can be empty). The input data to PQPQ preferably
includes quantitative data from all peptides identified in the samples
(not filtered). The data can either be from labeled or label-free
experiments.

Read and Sort Peptide Data—The extracted peptide data are im-
ported into the PQPQ where the subsequent data processing is done.
At first the data is normalized (optional) so that the medians of the
peptide intensities are equal across all samples. By this normalization,
we are assuming that the samples included are of similar character
and the median of peptide content can thus be expected to be equal.
It should be noted that in all the experiments, the total protein con-
centration was measured and adjusted to be equal between samples
prior to labeling and the MS runs. In the case of sample replicates, the
data were concatenated at this step, and the protein ID overlaps
between replicates were calculated. From this step, the data were
studied protein by protein. In the case where we had biological
replicates, peptides from the same proteins and different replicate
samples were collectively treated. To keep information about repeat-
ability, the variation between replicates was calculated after the pep-
tide quality assessment. Further, only proteins supported by at least
two peptides were included. Fig. 1 shows the workflow schematically.

Peptide Quality Control—The peptide quality control procedure is
described in detail in supplementary Fig. S1. We first select all high
confident peptides from the list of peptides defining the actual pro-
tein. These have a confidence exceeding the high confidence limit,
defined by the user. We identify which of the high confident peptides
that correlate positively, with a defined risk of selecting a random
correlation, a p value defined by user. From those, a model peptide is
chosen. The model peptide is defined as the one with the highest
intensity of the ones that correlates with most of the high confident
peptides. If the high confident peptides do not correlate at the defined
p value, the peptide with the highest intensity of the high confidence
ones is selected as the model peptide. If no peptide has a confidence
level above the limit, the protein identity and quantity is regarded as
unconfident. The quantity is then not calculated and “peptide confi-
dence too low to support protein ID” is noted in the protein output file.

Clusters of High Confident Peptides—To seek for clustering among
the high confident peptides a distance between the peptides are
calculated. The distance is calculated as 1 — correlation, between all
peptides, over samples (Equation [1]). Based on those distances, a
hierarchical cluster tree is computed, where the peptides with the
shortest distance are linked together. Clusters of peptides are then
formed when a node and all of its subnodes have an inconsistent
value less than 1. That is, if the node height related to the average
height of other nodes at the same level of hierarchy is less than one,
those objects are clustered together. If there are several clusters
among the high confidence peptides, these probably arise from sev-

eral protein species. In those cases, a model peptide is defined for
each cluster. The clusters are ranked so that the cluster including the
most peptides will be noted as protein specie 1, “var 1” in the protein
output file.

Include More Peptides—In the next step all peptides associated to
the protein (no matter what peptide confidence level they have) that
are correlating with the model peptide (at the defined p value for the
correlation) are selected as belonging to that protein. Hence, only
peptides correlating with a highly confident peptide will be included
in the protein quantification. If several clusters were discovered in
the previous step, the correlation analysis is done for each model
peptide.

Input Parameters—The high confidence limit denotes the peptide
confidence above which peptides are defined as high confident. The
peptide confidence is the quality measure of the peptide identifica-
tion, defined by the software used for peptide identification and
quantification. In the examples in this paper we have used Spectrum
Mill, Protein Pilot, and Proteome Discoverer. A more detailed descrip-
tion of the peptide confidence measures is given in the Supplemen-
tary file S1 online. For PQPQ, any definition can be used. The high
confidence limit is defined outside the PQPQ algorithm. One way is to
define the limit from MAYU (27), where the protein false discovery rate
(FDR) is determined. From there the peptide confidence limit can be
determined. This was done for data set IV and VIl in the present work.
Another way of defining the high confidence limit is to estimate the
FDR of the peptide identification using a decoy database. This is done
by identifying the peptide data from the MS run in a forward and
reverse database. Because the reverse hits are known to be false
discoveries, the FDR of the database search can be calculated (28).
This was done similarly for Spectrum Mill and Protein Pilot for dataset
II, ll, and VI. In addition, the software connected to the instruments
has their own definition of FDR, which was used for the data sets | and
.

The p value defines the probability of getting a correlation as large
as the observed value by random chance, when the true correlation is
zero. So, if the p value limit is set to 0.4, the risk of defining a
correlation although there is none, is 40%. The p values: 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, and 0.7 was tried out to determine a default value for the
PQPQ algorithm. The results from this study are presented in the
supplementary Fig. S2-S3. Based on this study, the default value for
the algorithm was set to 0.4.

Algorithm Availability and Requirements—PQPQ is written in
MATLAB (29) and requires also the MATLAB statistics toolbox. A
graphical user interface makes it easy to use and a standard PC is
powerful enough for the calculations. The algorithm is divided into
three processes; Peptide selection, Protein ratio calculation, and
Peptide quantity visualization, all or one can be chosen. A detailed
manual for the input parameters is found in Supplementary Manual
online. The program is free of use and available from the first author
at the www.forshed.se/jenny.

PQPQ Data Output—PQPQ creates one Excel file and one
MATLAB output file with the cured peptide data. This file includes all
the information that was originally in the peptide input file plus infor-
mation of which peptides to include for protein ratio calculation, noted
as valid peptides. Also, the results from the cluster analysis are found
in this file. The model peptide of each cluster is also noted. Further,
the output file includes a note if the peptide confidence of the ingoing
peptides is too low to support the protein quantification. If the protein
has support from less than two peptides, this is also noted. If the
protein is determined from more than 300 peptides, the 300 most
confident peptides are selected, and this is noted in the peptide data
output. Those notations are also transferred to the protein data output
file.
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The protein data output file (Microsoft Excel format) includes the
protein ratios; quantitative data and statistics for all proteins with
support from assessed peptide data. This file also includes the num-
ber of peptides that the quantitative calculations are based on, the
standard deviation, and the p value for the probability of the ratio to
be equal to 1 (student’s t test). In case of replicated sample runs,
reproducibility (standard deviation between replicates), and number
of replicates are reported. If several variants of one protein were
detected these are noted as protein name_var1 etc. The different
variants have unique quantitative outputs. Protein name_var1 is re-
garded as the highest ranked variant/specie because it had most high
confident peptides in its cluster. Protein name_var2 had second most
high confident peptides etc.

In both the protein and the peptide output files, a sheet with the
PQPQ settings is included. This file includes also the normalization
factors. Further, one sheet with the following summary of the proteins
is included; the number of proteins that were imported, the number of
proteins that were left after eliminating redundant peptides, after
multiple protein entries were separated, after eliminating proteins with
too low intensity (sum of peptide intensity), and finally the number of
proteins left after PQPQ selection. See Supplementary file S2 online
for further details.

Sample Labeling—To find a correlation pattern between peptides,
at least four samples (e.g. patients) are recommended. The samples
are preferably from the same study, and must be run with equal
instrumental setup to be comparable. An ideal experimental setup
to meet those conditions is the iTRAQ or TMT labeling used in this
work. Four, six, or eight samples are labeled after digestion, mixed
and analyzed together in the mass spectrometer. Technical and
laboratory biases after the mixing are consequently “cancelled out.”
The samples are then compared by quantification of the different
reporter ions (each reporter corresponding to a particular sample) in
the MS/MS spectra, where the labels diverge in m/z-position (30,
31). Notably, the PQPQ algorithm can handle other types of labeled
data than iTRAQ and TMT, as well as unlabeled data.

Exon Array Analysis—The exon array data we have used for inde-
pendent detection of splice variants in study I is generated using the
244K array from Agilent, with a custom design of 195,000 probes (60
mers) of exons of around 19,500 genes (hgdownload.cse.ucsc.edu/
goldenPath/hg18/database/refGene.txt.gz). The array contains also
the probes for the 44 K commercial array 014850 (http://www.
chem.agilent.com/cag/bsp/oligoGL/014850_D_GeneList_20070207.
txt.zip, and http://www.chem.agilent.com/cag/bsp/oligoGL/014850_
D_AA_20070207.txt.zip).

RESULTS

Improved Accuracy and Precision of the Protein Quantifica-
tion by PQPQ— Precision defines how reproducible measure-
ments can be, and accuracy is used to denote how close
measured values are to the true ones (32). The first reason
why PQPQ improves the accuracy and precision of protein
quantification is the outlier exclusion. Second, peptides with a
low confidence in the identification, but still correlating with a
high confident peptide (the model peptide) can be included to
improve the quantitative precision by increasing the number
of included data measurements. Thirdly, different protein spe-
cies that are not possible to separate based on identified
peptides can be identified, as opposed to today’s standard
methodology. Today’s standard methods show the quantita-
tive output as a mean of different species where biological
differences between samples can be cancelled out. The pos-

sibilities to, by PQPQ detect and quantify different protein
species separately will hence increase both the quantitative
accuracy and precision.

By reduction of biases (improved accuracy) and variations
(improved precision), PQPQ will increase the information out-
put from shotgun proteomics data. This is here proved by
processing data from seven proteomics studies (Table I). Be-
low we show examples that provide evidence for the impor-
tance of PQPQ.

Improved Precision

Outlier Exclusion Reduces the Variability—To prove the in-
creased quantitative precision by PQPQ, data set IV was
generated. Data set IV is an 8-plex iTRAQ mix of human
proteome from cell line lysate (A549) in the ratios 2:2:1:1:2:2:
1:1. The samples were run on three MS platforms (Table I). We
analyzed the precision of the quantitative ratio between the
two first samples (ratio 2:2) by the standard deviation of each
protein ratio in the sample. PQPQ set with a strict correlation
p value was compared with accepting all peptides associated
to the protein (if not excluded based on the other control
mechanisms in PQPQ: redundancy, to few peptides, etc.).
The correlation p value defines the probability of getting a
correlation as large as the observed value by random chance,
when the true correlation is zero. The standard deviation for
the proteins were on average improved by 72%, 39%, and
19% when applying PQPQ with a correlation p = 0.01 for the
three instrumental setups MALDI, Q-TOF, and Orbitrap re-
spectively. The improvement for correlation p = 0.1 com-
pared with including all peptides, was 68, 13, and 11% for the
respective instruments. This proves the general enhancement
by peptide outlier elimination by PQPQ. Graphs of the data
distribution is found in supplementary Fig. S4 online.

The outlier detection is also illustrated by an example from
data set Il where isoform A1-B of the heterogeneous nuclear
ribonucleoprotein A1 was identified. Ninety-four peptides
were uniquely associated to the protein, and were analyzed
by PQPQ. Out of the 94 peptides, 52 peptides were selected
by PQPQ to be included in the quantitative calculations be-
cause of a good correlation with the model peptide. This is
illustrated by Fig. 2. Removing the outliers in this case im-
proved the quantitative precision (standard deviation) of the
protein ratio by 88% (from 0.87 to 0.097) and 84% (0.90 to
0.14) for the respective ratios shown in Fig. 2.

Inclusion Based on Correlation Improves the Precision—
Pearson’s correlation coefficient calculated between all pep-
tides, over samples, is illustrated by a correlation map in Fig.
3. In study I, sample pool 2, 118 peptides detected by MALDI
TOF/TOF were associated to the protein beta actin. Of those,
52 were uniquely associated to beta actin and showed no
overlap with any other proteins, Fig. 3A. These 52 peptides
were further analyzed by PQPQ. Twenty-eight of the 52 pep-
tides had a peptide confidence exceeding the determined
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TABLE |
The six cancer related studies that were analysed by PQPQ. Sample pools denotes iTRAQ/TMT sets in this table
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Fic. 2. Outlier detection for quantification of isoform A1-B of
the heterogeneous nuclear ribonucleoprotein A1. Each spot rep-
resents one peptide of the protein from data set Il (colon cell line
samples) quantified by 8-plex iTRAQ. Each graph shows one sample
related to the mean of the control samples represented by iTRAQ
reporter ions 113, 114, 115, and 116. The ratios (x axis) are plotted
against the sum of the ingoing peptide intensities (y axis) from MALDI
MS data, extracted from Protein Pilot. The filled circles are the ratios
accepted as quantitative accurate by PQPQ. The outlier peptides are
marked as empty circles. The “model peptide” is black. In this specific
case the precision (standard deviation) of the protein ratio were im-
proved from 0.87 to 0.097 and 0.90 to 0.14 for the respective ratios by
outlier exclusion.

limit for a high confident peptide, Fig. 3B. The peptides in Fig.
3A and 3B are sorted on similarity (hierarchical clustering)
based on Pearson correlation. It can be seen from the figures
that several peptides are not correlating with the others (gray
and black fields). However, groups of peptides correlating
with each other are forming two clusters of peptides (Fig. 3A
and 3B). Also, a few outlier peptides which do not correlate
with any of the clusters of peptides are seen in Fig. 3A,
these were discarded as outliers in the PQPQ analysis.
Further evidence on the correct, biologically relevant clus-
tering, is shown on this example by comparison with exon
mRNA array data on same samples (Fig. 3C). This is dis-
cussed later in section “Splice variants verified by exon
array data.”

Fig. 3A and 3B, show that several of the low confident
peptides (not included in Fig 3B, but seen in Fig 3A) correlate
with the high confident ones. The quantitative accuracy and
precision of the protein quantity will improve by including
these in the calculations as it is done in PQPQ. This is shown
by comparing the standard deviations from the current exam-
ple. As indicated in Fig. 3, beta actin was separated into two
variants by PQPQ. For each variant we have compared the
standard deviation from calculating ratios by using only high
confident peptides (as is the standard procedure) with using
the peptides selected by PQPQ, where also low confident
peptides can be included. For variant 1, the standard devia-
tion decreased by 13-50% for different sample ratios, for
variant 2 the standard deviation decreased by 0-22%. This is
illustrated in supplementary Fig. S5 online.
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Fic. 3. Correlation maps of the peptides and exon arrays associated to beta actin. The presented data are from data set I, sample pool
2. White means positive correlation, Pearsons correlation R? > 0.33. Black is negative correlation, R? < -0.33. Gray means 0.33 > R? > -0.33.
A-B, The peptides are identified by Protein Pilot from MALDI TOF/TOF MS data of 8-plex iTRAQ labeled lung cancer tumor samples and
associated to beta actin by the Paragon algorithm. A, All peptides associated uniquely to the protein beta actin (52 peptides). B, Only the high
confident peptides (28 peptides). C, The six exon mRNA arrays analyzed for beta actin and how the quantities are correlating over the samples.

Improved Accuracy

Detection of the Existence of Different Protein Species—
The quantitative clustering of peptides by the algorithm pre-
sented here, PQPQ, enables detection of protein species, e.g.
spliced variants or different post-translation modified species.
The existence of different protein species is indicated by
peptide clusters in the peptide quality control in PQPQ. The
ability to detect different protein species makes it possible to
quantify those separately. This will improve the protein quan-
tification accuracy as is illustrated by the following examples.
The putative protein species are flagged in the PQPQ output
file. This allows further analyses of subsets of proteins, for
example splice variant detection.

Spike in Samples—The spike in data set V consisted of a
complex proteome (human cell line MCF7) in each sample as
a background sample matrix and different spiked in proteins
in dilution series. To illustrate the possibility of detecting
different protein species by PQPQ we have chosen the
protein hemoglobin subunit alpha. PQPQ detected two vari-
ants of the protein, of which one followed the dilution pat-
tern of the added protein. Although the second variant was
identified based on high confident peptides, it did not follow
the spike in pattern, see Fig. 4. The peptides from variant 2
are likely detected remnants of cell culture media hemoglo-
bin. PQPQ will quantify the two species separately. This
demonstrates further the accurate quantification of proteins
species and clustering of data for downstream protein spe-
cies analysis.

Splice Variants Detection—Both Fig. 3 and 4 shows exam-
ples of how peptides associated to the same protein can be
divided into different clusters. Fig. 5 shows an additional
example of this phenomenon from a clinical study analyzing
human breast cancer samples (data set Ill). It is seen from Fig.

P69905

6 T T T T

all peptides, intensity /10e5

o
T
L

ratio

T
i-_

1
!
1
i

!
i

=

5 _

(1)26 127 128 129 130 131
TMT label

Fic. 4. Peptide intensities and ratios from hemoglobin subunit
alpha showing two different patterns. The upper graph shows the
nine peptides that were detected from hemoglobin subunit alpha in
the Orbitrap-MS analysis of the spike in samples in data set V. One
color for each sample and one group of bars for each peptide. The *
and " denotes which peptides that belong to the different variants
that PQPQ detected. Two distinct patterns are seen. The bottom
graph shows the same data related to the mean of all sample inten-
sities (the ratio). The solid lines (—) represents variant 1 (*) which is the
spiked in variant. The dashed lines (- - -) represents variant 2 (),
interpreted as coming from the background cell line. The dotted lines
(- - ) represent peptides excluded as outliers in the present PQPQ
data analysis. The p value for detecting a correlation was set to 0.1 in
this calculation.

5 that the peptides associated to Ceruloplasmin showed two
clusters. Peptides 1-12 had a peptide confidence above the
high confidence limit. These peptides were analyzed for clus-
ters, represented in Fig. 5 as a dendogram. Peptides 13-16
represent low confident peptides in this example. Peptides
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Fic. 5. lllustration of clustering of peptides associated to Ceruloplasmin. The 16 peptides detected by LC-LTQ Orbitrap MS and
associated to Ceruloplasmin in human breast cancer samples, data set lll, sample pool 4. The peak areas are in relation to the internal standard
peak iTRAQ 113. One color for each sample/iTRAQ label and one group of bars for each peptide. Above is a dendogram showing the clustering
of peptides 1-12, which had a peptide confidence above the high confidence limit at 30. Peptides 13-16 had confidence score below the limit.
The two clusters with the symbols * and " includes peptides correlating with each other over samples. Below the peptide ratio bars are the

sequences and the peptide confidences noted.

13-14 correlate with the left cluster (*) and peptides 15-16
with the right (V). As the low confident peptides are not
outliers and clearly correlates with high confident peptides
cross samples, including these peptides in the calculations
will improve the protein quantitative statistics and hence the
accuracy and precision.

The peptides associated to Ceruloplasmin were also ana-
lyzed by SpliceCenter (33). SpliceCenter is a tool identifying
possible splice variants that could potentially be detected by
the given peptides. The SpliceCenter analysis confirmed that
two different splice variants of Ceruloplasmin were possible to
distinguish based on the detected peptides. The results can
be found in supplementary Fig. S6 online.

Improved Quantitative Accuracy by Detecting Protein Spe-
cies—An additional example, which illustrates improved pro-
tein quantification accuracy by sorting out different protein
species is taken from the MALDI data set 1 (human lung
cancer samples). The Paragon algorithm (34) (Protein Pilot)
identified 11 peptides associated to peroxiredoxin 1. It was
not possible to distinguish the isoform CRA_b of the same
protein based on the identified peptide sequences. The rela-
tive quantification was hence reported as a mean quantity
from all of the associated peptides from Protein Pilot, as is the
standard methodology. However, by PQPQ we were able to
separate two species of the protein and quantify them sepa-
rately. All but one of the peptides had a high peptide confi-
dence. From the PQPQ protein data we identified 4 and 5
patients for the two protein species respectively that were
shown to differ from the patient mean. The Protein Pilot pro-
tein data showed only two patient samples that were signifi-
cantly different from the patient mean. This protein species

quantification illustrates the obvious benefit of analyzing the
data by means of PQPQ when aiming for quantitative analysis
of clinical samples, as in biomarker discovery. The result is
shown in supplementary Table S1 online.

That several protein identities cannot be distinguished from
each other by the detected peptides is common in shotgun
proteomics data. A common way of solving this problem is to
discard all of the proteins that do not have one unique protein
identity connected to the peptides. However, the risk is then
to miss several “true protein hits.” In the above example with
MALDI data, 443 out of 661 proteins would then have been
discarded, i.e. 67% (!). Looking at high resolution data (Or-
bitrap) of the same sample, 554 out of 2926 proteins (19%)
would have been discarded.

Splice Variants Verified by Exon Array Data—To verify that
PQPQ can detect splice variants on protein level, the samples
from data set | (human lung cancer samples) were analyzed
further by exon array data on mRNA level. Beta actin here
figures as an example. The PQPQ analysis of the proteomics
data showed two possible species of the protein (Fig. 3B). The
exon array data for the corresponding protein (six probes) also
shows two clusters (Fig 3C). This indicates that the sample
contains two splice variants of beta actin. To confirm this
hypothesis, we studied which spliced variants that are known
for beta actin. Based on the here detected peptides, five
different splice variants of the protein beta actin were regis-
tered by SpliceCenter. The analysis shows that only protein
variant 1 (defined by PQPQ) includes peptides translated from
exon 2. This agrees with the cluster analysis of the exon array
data, where exon 2 forms one cluster together with exon 1
(noncoding). This strongly indicates that we detect the same
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two splice variants in both the proteomics and the exon array
data. Supplementary Fig. S7 online shows screenshots from
the SpliceCenter analysis of the peptides forming the two
variants detected by PQPQ.

DISCUSSION

The incomplete tryptic digestion, the few peptides per pro-
tein, not perfect peptide matching algorithms, incomplete data-
bases, the protein inference problem (9), and low intensity sig-
nals are all confounding issues that have to be handled when
quantifying proteomics data. The presented algorithm PQPQ is
a tool for that. By PQPQ the proteomics data is analyzed protein
by protein, and by combining peptide sequencing data and
quantitative data from several samples we are able to improve
the quantitative accuracy and precision of the proteins and
detect different protein species. By means of PQPQ we can
discover if the detected peptides show different patterns over
samples. In that case, PQPQ can distinguish different proteins
species and quantify them separately. This has so far been
impossible by current state of the art methodology.

One of the most crucial steps when generating, using and
interpreting proteome specific information is to be able to
analyze information on protein species. We show that PQPQ
can decipher and accurately quantify protein subspecies. This
is illustrated by the examples beta-actin, hemoglobin, cerulo-
plasmin, and peroxiredoxin 1 where PQPQ quantified the
protein species from these proteins separately. The protein
lists from PQPQ include separate protein entries for the dif-
ferent protein variants if any. In a subsequent statistical
analysis for e.g. biomarker discovery, the found protein
species will be treated as separate entries. The outcome of
the statistical analysis will show if any of the species have
an effect in the clinical and biological question. These pro-
tein species can then be focus of further analyses by plot-
ting the selected protein and its peptides in PQPQ. The
PQPQ algorithm hence serves as a tool to direct biomarker
analysis and biological interpretation of proteomics data to
include protein species.

There might be several reasons for detecting different
protein species from the same protein identification. The
protein species might for example originate from different
post translational modifications or different splice variants
of the protein. If splice variants for a specific protein is
included in the protein database used for the protein iden-
tification, and the variants cannot be separated based on
the detected peptides, it will be noted as multiple identities.
However, if the different variants have different patterns
over samples, PQPQ will be able to separate them. As
shown in supplementary Fig. S6-S7 such a case can be
investigated further by analyzing output data from PQPQ by
for example SpliceCenter.

It should be noted that peptides shared between different
protein species will have a quantitative pattern over samples
that is a mix of the two proteins. A mixed quantitative pattern

can also be seen if the MS precursor includes several pep-
tides (35). These mixed peptide peaks will be discarded as
outliers if they are extreme and single occurrences. If several
peptides are quantified from the same protein species mix,
these peptides will be distinguished as a separate protein
species. If one of the protein species are dominant, these
peptides will be associated with the most dominating pattern.
This phenomenon is the reason for the very tolerant default
correlation p value of 0.4 (40% risk of having no correlation
although a correlation is detected).

We have also shown the improved precision of protein
quantification by outlier elimination. A majority of the outli-
ers has a low intensity, illustrated by Fig. 2. Peptides with
high intensity can become outliers if they are erroneously
connected to the protein because of a low quality peptide
MS/MS spectrum leading to false peptide sequence deter-
mination. And, as stated above, if peptides from other spe-
cies of the same protein are present these may be errone-
ously associated to the same protein. By the data set IV,
constructed from cell line samples in known concentration
ratios, we were able to prove the outlier elimination effect of
PQPQ. The largest improvement was on the MALDI data,
followed by the Q-TOF data and the Orbitrap data. This is in
accordance to our expectations because it follows the num-
ber of identified proteins, assuming that the number of
protein identities correlates with the data quality. Further,
we have shown that the peptide quality control in PQPQ
allows us to use low intensity, and low confident peptides in
the quantification to improve the statistics of the protein
quantification.

PQPQ has been validated on two constructed human cell
line proteome samples with proteins of known ratios as well
as five different cancer related proteomics studies on three
different mass spectrometry platforms. Further, two differ-
ent sample labeling methods have been included in the
validation. Notably, PQPQ can also handle data from other
labeling methods as well as label free proteomics data. This
shows the broad use of this algorithm. By using PQPQ for
peptide selection, we are able to improve the quantitative
precision as well as the quantitative accuracy of the protein
output from shotgun proteomics. We are also able to detect
some of the shortcomings in the proteomics analysis work-
flow, and correct for them to some extent. PQPQ can hence
enrich the information of the output from mass spectrometry
based proteomics. This will facilitate to find actual changes
on protein level, which is a well needed development in
clinical biomarker discovery research.
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