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Abstract
Reference-based methods have dominated the approaches to the particle selection problem,
proving fast and accurate on even the most challenging micrographs. A reference volume,
however, is not always available and building a set of reference projections from the data itself
requires significant effort to attain the same level of accuracy. We propose a reference-free
method to quickly extract particles from the micrograph. The method is augmented with a new
semi-supervised machine-learning algorithm to accurately discriminate particles from
contaminants and noise.
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Introduction
1. Importance of automated particle selection

Existing computer algorithms automate nearly every step in single-particle reconstruction of
macromolecules captured by cryo-electron microscopy (cryo-EM). These steps include data
collection, classification and reconstruction; yet, the general problem of selecting particles
from a micrograph in an objective way remains unsolved. A researcher may spend weeks to
months, painstakingly hand-picking low-contrast particles among contaminants, which
include images of ethane/propane bubbles, ice crystals and noise, in order to obtain a single
high-resolution three-dimensional reconstruction. Furthermore, the trend in cryo-EM is
moving away from characterizing a single conformation, toward giving an inventory of
multiple conformational states all coexisting within a heterogeneous sample. This change in
agenda substantially increases the amount of effort going into particle selection and
motivates the current interest in seeking better automation of this important step.
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2. A particle selection framework
Before outlining prior efforts in particle selection, we note the main obstacles to be
overcome by a successful particle selection algorithm. Such an algorithm must (1) precisely
locate the position of particles in the micrograph, (2) accurately discriminate particles from
contaminants and noise while (3) minimizing the amount of manual intervention. As
becomes apparent in the review of prior efforts, the solution to the first problem is
independent of the second and third as long as a reference is available. However, if a
reference is not available, current approaches require a fair amount of intervention just to
locate a particle in the micrograph; e.g., by hand-tuning specific parameters or selecting
initial references from the micrograph itself. The second problem remains unsolved in all
but the easiest cases with high contrast.

3. Prior efforts in automated particle selection
Particle selection techniques can be divided into reference-based and reference-free
methods. A reference can be obtained either from a known three-dimensional structure, if
available, or by selecting example particles in a micrograph. Initial approaches to particle
selection relied on a referenced-based approach called template-matching (see Nicholson
and Glaeser (2001) for an in-depth review). Roseman (2003) improved template matching
by adopting a method to account for changes in local variance efficiently in Fourier space.
Sigworth (2004) and Wong et al. (2004) noted that cross-correlation with a template
assumes Gaussian white noise, and developed new template-matching methods that take
different approaches to incorporate a generic noise model learned from the existing data.
Other approaches have experimented with reduced representations (Volkmann, 2004) and
hierarchical scoring functions (Chen and Grigorieff, 2007).

Another reference-based approach to particle selection utilizes recent advances in machine
learning, namely detection cascades (Viola and Jones, 2001), to discriminate between
particles and contaminants/noise. Sorzano et al. (2009) and Mallick et al. (2004) apply a
classifier cascade to perform cost-sensitive learning, a learning methodology that minimizes
the number of false positives. Ogura and Sato (2004b) developed a pyramidal neural
network algorithm to both characterize and discriminate particles from contaminants/noise.
While these approaches utilize a more general model, they cannot directly incorporate a
reference and thus, require the user to manually pick particles in each micrograph or defocus
group.

Reference-free approaches leverage the observation that images of physical objects, such as
particles in a micrograph, have limited complexity and, from an information-theoretic point
of view, can be described by a compact representation (Wang, 2001). While these
approaches do not require a reference, they are not free of user intervention. Image
segmentation-based approaches either require the user to follow a certain protocol and
modify it to fit the problem at hand (Adiga et al., 2005; Umesh Adiga et al., 2004; Yu and
Bajaj, 2004) or to optimize a set of parameters (Voss et al., 2009; Woolford et al., 2007a;
Woolford et al., 2007b).

Other approaches utilize more generic models at the expense of increasing computational
complexity. Singh et al. (2004) explored a more general approach called hidden Markov
random fields; this is an undirected graphical model that can utilize dependencies between
individual pixels to characterize a particle. Ogura and Sato (2004a) proposed a Monte Carlo
search that moves windows randomly across the micrograph, looking to optimize a score
related to the class average of data within windows distributed across the micrograph.

Finally, there are approaches that combine both reference-based and reference-free methods;
these approaches use a clustering algorithm to deal with the false positives generated by
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template matching. Hall and Patwardhan (2004) utilized a self-organizing map, by
employing an unsupervised neural network, to recognize and remove false positives.
Likewise, Shaikh et al. (2008) performed a 2D alignment to cluster and average a set of
views; one can then traverse a hierarchy of averaged views to annotate particles.

4. Outline of paper
We will introduce a simplified particle extraction tool, which only requires knowledge of the
particle size, or size range. We will then propose a new, more efficient design, which
operates in Fourier space for large images. Since the primary purpose of our proposed
algorithm is to provide extracted data windows to a later algorithm, we will show how the
extracted data windows may serve as references to both the established template-matching
algorithm, SPIDER’s LFCPick (Rath and Frank, 2004), and a new semi-supervised
machine-learning algorithm, proposed in this work, which we call AffinityRank. Finally, we
apply the proposed algorithms on an established benchmark dataset as well as a dataset
related to our own interests, the ribosome.

Method
1. Design of DoGLFC

The proposed reference-free particle selection algorithm builds on the Scripps Institute’s
DoG Picker (Voss et al., 2009), a fast method to segment particles in a micrograph. The
difference of Gaussian (DoG) algorithm creates a peak map similar to template matching
with cross-correlation. However, Spider’s peak selection algorithm (Rath and Frank, 2004)
finds only a subset of the peaks on the DoG map at the center of a particle: see Figure 1 for
several illustrative DoG peaks (center column) with their corresponding particle (left
column). These peaks tend to resemble a uniform disk having a radius proportional to the
corresponding particle. To create peaks compatible with the requirements of a peak selection
algorithm, we cross-correlate the DoG map with a uniform disk (see resulting peaks in the
right column of Figure 1). This simple modification results in a reference-free particle
selection algorithm requiring only the particle size, or size range, which we call DoGLFC.

The DoGLFC algorithm as outlined in Figure 2 requires a single tunable parameter or set of
parameters based on the particle radius or range of expected radii, which can be derived
from prior knowledge or from a small set of reference projections. Execution of the
algorithm returns a list of 3-tuples describing the location of the particle (x and y coordinate)

and the peak height. The algorithm starts by calculating an initial Gaussian blur, , with
sigma parameter:

The difference of Gaussian (DoG) width, k, is set to 1.2 for a single object of radius, r, or to
the start of the radius range (Figure 2). Then, for each object radius, a Gaussian blur of the
previous blur is calculated (scaled by the DoG width), and the difference is taken between
both the current and previous blurs. Next, the current DoG map is correlated with a uniform
disk of radius, r, scaled by the DoG width to give the current object radius. Finally, Spider’s
peak search algorithm is applied to the peak map, Πx, and the resulting peaks are merged
with the previous peak list, Pi-1. The motivation and derivation for the DoG width and sigma
parameters are described in (Voss et al., 2009).
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2. Implementation for Large images
While the real-space implementation of the Gaussian filter can be faster in practice, it only
holds up to a certain particle size (Voss et al., 2009). We present a theoretical extension to
this algorithm that allows for a single Fourier transform of the original input image and a set
of inverse Fourier transforms, one for each radius, to create the real-space peak map for peak
picking. The two convolutions, Gaussian blur and uniform disk, will be multiplications in
Fourier space by means of the convolution theorem. The difference of Gaussian blur is also
a difference in Fourier space since the Fourier transformation is linear. The following
equation provides the Fourier transform of a uniform disk of radius, r:

where J1 is the Bessel function.

3. Improved ranking of extracted particles
The DoGLFC algorithm captures potential particles (or objects) of a specific size and, thus
has less discriminative power than a reference-based technique such as template matching
(Rath and Frank, 2004), which can make use of more detailed information – when a good
reference is available. We propose a new semi-supervised machine-learning algorithm,
AffinityRank, to improve the ranking of particle windows as illustrated in Figure 3. The
AffinityRank algorithm is given three inputs:

1. A matrix of image windows, Wi,t, where each row is an image (i=1…n) of size d by
d and each column is a pixel (t=1…d2).

2. Maximum size for the reduced image, m, which is much smaller than d2.

3. Two reference sets of image windows chosen from the data (subsets of Wi,t); the
positive set, containing the putative particle (P), and negative set, not containing
the putative particle (N).

The output of the algorithm is a ranking score, Ri, for each of the n given image windows.

The AffinityRank algorithm starts in Figure 3 Step 1 by compressing the image windows,
Wi,t, containing candidate particles to a small set of eigenvectors in matrix, Mi,k, with a non-
linear dimensionality reduction technique called diffusion maps (Coifman et al., 2005;
Zelnik-manor and Perona, 2004). The diffusion maps algorithm is similar to multi-
dimensional scaling (MDS) in that it performs eigendecomposition on the pairwise distances
between images, rather than on the images themselves. Unlike MDS, the diffusion maps
algorithm applies a non-linear mapping, Ai,j=exp(Di,j/σ), to the pairwise distances, Di,j,
where σ is a scaling parameter, and subsequently performs PCA on the graph Laplacian of
the row-normalized affinity matrix, Ai,j. This non-linear mapping of the pairwise distances is
known as a kernel, and thus, the diffusion maps algorithm is a member of the kernel-PCA
family. This step both implicitly denoises the image windows and increases the efficiency of
the later steps.

In steps 2–5 of Figure 3, the AffinityRank algorithm pre-calculates the affinity matrix, Ai,j
while selecting the optimal number of eigenvectors. It starts by calculating the pairwise
distances among image windows embedded in this new space (Step 2, Figure 3), and
converts the distance matrix, Di,j, to a Gaussian affinity matrix, Ai,j, using the same
normalization as the diffusion maps algorithm (Step 3, Figure 3), as suggested by Zelnik-
manor and Perona (2004). These steps are repeated to determine (Step 5, Figure 3) the

Langlois et al. Page 4

J Struct Biol. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



optimal number of dimensions in the diffusion space, which is measured by the separation
between the positive and negative sets as defined by the score in Step 4, Figure 3, which
estimates the average maximum affinity between positive examples and subtracts this values
from the mean affinity between negative examples. In practice, we start with a single
dimension and terminate when the separation started to decrease, which occurred in less
than five iterations.

In steps 6–10 of Figure 3, the AffinityRank algorithm performs iterative re-ranking of each
window with respect to the positive and negative sets, which grow with each successive
iteration. The re-ranking starts at Step 6 in Figure 3 by calculating a ranking score for each
window, the affinity rank, which measures the maximum affinity to a window in the positive
set, P, minus the mean affinity to all windows in the negative set, N. Then, the top- or
bottom-ranked windows not already in the positive and negative sets are added to those sets,
respectively (Steps 7–10 in Figure 3). This procedure is repeated until every window
belongs to either the positive or negative set. This is the most time-consuming step in the re-
ranking procedure; it scales with O(n3) where n is the number of images.

The AffinityRank algorithm is versatile in that it does not require an explicit set of
references. Since the DoGLFC algorithm provides an initial ranking for the extracted
windows as measured by the cross-correlation peak, this algorithm can utilize a subset of
windows taken from both the top and bottom of the initial ranking. It can then iteratively
improve this ranking. As described in the results section, we apply two variations of the
AffinityRank algorithm: one with manually selected references for the KLH dataset and one
with references derived from the initial DoGLFC ranking.

4. Experiment and Performance
We will benchmark the DoGLFC and AffinityRank algorithms on a dataset available from
Scripps Institute (http://ami.scripps.edu/prtl_data) (Zhu et al., 2003), the KLH I (Zhu et al.,
2004) dataset, as well as a ribosome dataset related to our own work. Each dataset poses a
unique challenge to the DoGLFC algorithm and allows a consistent comparison between
past and future algorithms.

We use manually annotated particles as ground truth in both datasets; for KLH I, we use a
set of side view coordinates picked by Mouche (Zhu et al., 2004), and for the ribosome, we
use a set of coordinates picked by Pallesen with the aid of SPIDER’s LFCPick (Rath and
Frank, 2004). Both sets of manually selected particle images resulted in publication-quality
three-dimensional reconstructions. Since our algorithm will not produce precisely the same
coordinates as Mouche’s or Pallesen‘s manually chosen particles, we allow the comparison
to vary by no more than 15% of the window size. Note that the use of LFCPick to aid in
Pallesen’s particle picking biases the resulting score pessimistically; this problem will be
treated in the Discussion section.

We will use the following three criteria to assess the performance of DoGLFC:

1. 1-Precision (previously called the false positive rate) and FNR (1-recall)

2. Area under the precision recall curve (APR); see supplemental material Figures 1
and 2 for the corresponding plots of the precision recall curve.

3. Three-dimensional reconstruction (along with Fourier Shell Correlation)

In previously published works (Hall and Patwardhan, 2004; Huang and Penczek, 2004;
Mallick et al., 2004; Ogura and Sato, 2004b; Rath and Frank, 2004; Roseman, 2004;
Sigworth, 2004; Singh et al., 2004; Umesh Adiga et al., 2004; Volkmann, 2004; Wong et al.,
2004), the 1-recall was correctly referred to as the false negative rate (FNR), FN/(TP+FN),
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yet the 1-precision, (FP/(FP+TP), was incorrectly referred to as the false positive rate, which
measures FP/(FP+TN). We calculate the same metrics (as near as we can tell) as the
previous papers, yet refer to them by their proper names and further define them to avoid
ambiguity. More details covering the pervasiveness and implications stemming from this
incorrect use of terminology is covered in (Langlois and Frank, 2011).

The precision and recall measure the consistency between the algorithm and the picker (or
truth) in terms of the positive (particle-containing) windows only. One minus the precision
(or 1-recall) simply measures the mistakes rather than the successes. Most particle-picking
algorithms find more windows than there are particles, and to limit the number of false
positives (at the expense of true positives) a cutoff is used, e.g. minimum cross-correlation
coefficient or maximum number of windows. The APR measures the overall trade-off
between the precision and recall over the effective range of a cutoff. The three-dimensional
reconstruction and corresponding FSC is performed in the case where results of DoGLFC
deviate significantly from benchmark results to examine whether the discrepancy between
algorithm and benchmark is significant and, thus, pernicious.

Results and discussion
We demonstrate the effectiveness of the proposed DoGLFC algorithm augmented with
AffinityRank on two very different datasets: the keyhole limpet hemocyanin (Mouche et al.,
2003) and the ribosome dataset. Figure 1 (first column) and Figure 4a illustrate the
differences between the two datasets with example images, which result from different
experimental conditions, imaging conditions and samples. While both datasets pose unique
challenges, it is clear from the example micrographs that picking experimental ribosome
projections, due to their lack of distinct geometrical features, presents a more difficult
problem for both human and machine.

1. Keyhole limpet hemocyanin benchmark
The Keyhole Limpet Hemocyanin (KLH) dataset was established as a benchmark by the
2004 particle selection bakeoff (Zhu et al., 2004), and has been used in testing algorithms
developed since (Chen and Grigorieff, 2007; Woolford et al., 2007a; Woolford et al.,
2007b). This dataset provides an extensive comparison with twelve other particle-picking
algorithms as summarized in Table 1.

The difference-of-Gaussian map of a KLH micrograph (Figure 4b) has peaks around the
boundary of a particle rather than the center as in the ribosome micrographs, Figure 1. This
seems to be unique to the KLH particles and seems to be related to the intensity variation of
the particle, which is highest around the boundary of the particle. The subsequent disk cross-
correlation on the DoG map improves this centering; however, a subset of the resulting
windows of the DoGLFC algorithm will still center at a corner of a subset of particles,
resulting in a particle that is partially cut off. This problem can be corrected with iterative
center refinement. Nevertheless, some particles are still missed because the iterative center
refinement fails to center the particle on a small subset of the data. To overcome this
problem, we took the top 30 windows from DoGLFC and created rotational averages
(similar to EMAN Boxer (Ludtke et al., 1999)) and used these templates for fast locally
normalized cross-correlation. Finally, to reduce the number of false positives, we applied the
AffinityRank algorithm with particle views found by DoGLFC, which overlap coordinates
picked by Mouche from the first micrograph only: this results in 15 windows with particles
in side-views and ~100 windows that do not contain particle side-views. Note that in this
task it is necessary to use manual selections in order to avoid selecting the overrepresented
top views, which were ignored by Mouche for the bakeoff.
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Table 1 reports the performance of each algorithm, both those compared in the bakeoff and
those developed since bakeoff, according to the corresponding publication, and compares
the algorithms in terms of the false positive rate (1-precision) and the false negative rate
(FNR). Table 2 presents a new metric to compare particle picking algorithms, the area under
the precision/recall curve (APR). The precision/recall curve plots the algorithm performance
over all cutoffs, comparing algorithms without regard to how the final cutoff was chosen. In
other words, the APR compares the ability of the particle picker to rank particles over
contaminants and noise.

The 1-precision measures the proportion of non-particle windows falsely labeled as
particles; the results in Table 1 demonstrate that DoGLFC + AffinityRank performs
competitively to previously published techniques even with minimal supervision using only
particles picked from a single micrograph. From the bakeoff only Roseman’s, Mallik’s and
Zhu’s techniques perform substantially better whereas from later techniques only Signature
performs better. To attain the results in Table 1, the classification cascades, Naïve Bayes
Boosting (Sorzano et al., 2009) and Mallick (2004), as well as the template-based methods,
Signature (Chen and Grigorieff, 2007) and Roseman’s (2004) method, require at least 3–5
micrographs to properly train their methods. In contrast, DoGLFC + AffinityRank only
requires a single micrograph.

Table 1 also compares DoGLFC to DoGLFC + AffinityRank. The DoGLFC algorithm was
run with no supervision, returning the maximum number of windows for each micrograph. It
missed about 3% of the particles and included a substantial number of false positives.
AffinityRank reduces the number of false positives to nearly the same level as many of the
bakeoff algorithms. It misses an additional 11% of the particles. Table 2 further shows that
the improvement of AffinityRank results from a general improvement (by more than 4
times) in ranking particles over contaminants and noise. AffinityRank does not require any
parameter tuning or threshold selection; these results reflect only the first 13 particles picked
from the first micrograph.

Of the methods in the bakeoff, Roseman’s method is the most similar to DoGLFC, it is also
one of the best performing methods in the bakeoff, and it is the standard particle selection
method in SPIDER. For these reasons, a further experiment was performed comparing both
methods with a minimal amount of user intervention.

Roseman’s protocol was followed strictly except for the final hand tuning, which is
unnecessary for this comparison and was skipped. Table 2 compares both methods using the
area under the precision/recall curve (APR). The original DoGLFC algorithm performs quite
poorly (20.7%): without a reference, the top-views contaminate this result. However, the
performance improves ~4 times when the AffinityRank method is used, and performs
competitively with Roseman’s method (82.0% versus 80.3%). The precision recall curves
(Supplemental Figure 1) further illustrate the superior performance of AffinityRank, which
dominates Spider’s LFCPick over the entire plot.

2. Ribosome dataset
The ribosome dataset presents a more realistic task. It presents a tougher challenge than the
KLH complex dataset because it has a lower contrast as it was collected at 300 KV, whereas
the KLH complex was collected at 120 kV. The ribosome micrographs were collected at
−180°C on SO163 film using a Tecnai F30 Polara electron microscope equipped with a field
emission gun at 300 kV. The objective aperture was 100 µm, and the magnification was
59,000. Micrographs were digitized with a step size of 7 µm on a ZI Imaging Scanner, for
more details see (J. Pallesen and J. Frank, Structure of the Ribosome with Factors RF1/RF3,
2011, In preparation).
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Unlike the KLH complex, the peaks in the difference-of-Gaussian map correspond better to
the centers of the ribosomes (see Figure 1). This greatly simplifies the particle-picking
protocol since neither iterative centering nor re-extracting windows with fast local cross-
correlation are required. Thus, we ran the difference of Gaussian algorithm with a single
particle radius of 110 pixels and an allowed overlap of 20%. We also took the first 1000
windows since we only expected about 100 ribosomes on each micrograph. For
AffinityRank, we divided the micrographs by defocus into 22 groups where each group had
30 micrographs, and ~30,000 windows. We used the top and bottom 10% of each
micrograph (~3000 positive ~3000 negative windows) as the starting positive and negative
windows, respectively. No reference or manual intervention was used to achieve the
reported results in Table 1 and Table 2.

Table 1 compares DoGLFC and its variants to Roseman’s local fast cross-correlation
(LFCPick in SPIDER) using the same criteria as the particle-picking bakeoff. When we use
a 400 window cutoff, the DoGLFC (alone) algorithm performs about 20% worse than
LFCPick in terms of false positives (85.9 versus 66.9) whereas it performs substantially
worse in terms of false negatives (21.8 versus 0.4).

Manual inspection of the micrographs yielded several reasons for this discrepancy in
performance. First, DoGLFC simply found different particles than LFCPick, e.g. when two
particles overlapped, LFCPick chose one and DoGLFC the other. Second, DoGLFC ranked
a substantial number of particles so low they were lost by the 400-window cutoff; this
accounts for 15 percentage points (see Table 1). Third, DoGLFC missed particles in close
proximity to a contaminant. In this case, the peak for the particle became indistinguishable
from the peak for the contaminant.

The AffinityRank algorithm enhances the performance of DoGLFC by improving the
ranking of particles, outside the 3,000-window cutoff, such that far more positive windows
fall in the first 400. As shown in Table 1, AffinityRank decreases the FNR by about 2
percentage points, from 21.8% to 19.1%; it also decreases the 1-precision by nearly 9
percentage points, thus becoming competitive with SPIDER’s LFCPick. In order to get a
similar result with LFCPick, one would have to derive templates from multiple micrographs,
then cluster and average them in some way. This is not only computationally more intensive
but is also potentially less accurate. Thus, DoGLFC + AffinityRank is an excellent
alternative when a reference is not available.

Table 2 compares the ranking performance of DoGLFC (and the AffinityRank variant) with
fast locally normalized cross-correlation in terms of the area under the precision/recall
curve. The DoGLFC algorithm used alone performs about 12% worse than LFCPick
whereas DoGLFC + AffinityRank performs only about 5% worse. The precision recall
curves (Supplemental Figure 2) illustrate that AffinityRank has higher precision at lower
sensitivity and Spider’s LFCPick at higher sensitivity. This result serves to illustrate that a
good reference improves the accuracy in particle picking.

To investigate whether a loss of 20% of likely good particles is detrimental to the final
reconstruction, we performed a reconstruction with the good windows (the windows that
overlap with Pallesen’s picks with LFCPick) and compared to a reconstruction of the gold
standard, i.e., Pallesen’s picks using LFCPick, see Figure 5. The DoGLFC reconstruction is
shown in Figure 5a, the LFCPick reconstruction in Figure 5b, and their overlay in Figure 5c.
Qualitatively, these reconstructions are essentially the same. The Fourier-shell correlation,
Figure 5d, further confirms this assessment, with less than a half-angstrom difference using
the FSC = 0.5 criterion.
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3. Discussion
In this work, we introduced a new reference-free particle-picker, called DoGLFC, which
requires only knowledge of the particle size or range of sizes. While this algorithm performs
quite well given its reference handicap, it really serves as a stepping-stone to building a
better reference-free algorithm. To this end, we demonstrate how a new template-matching
algorithm, AffinityRank can utilize DoGLFC to create both a reference-based and reference-
free algorithm that achieves competitive results on a standard benchmark and a ribosome
dataset.

Reference-free algorithms such as the DoGLFC algorithm work because physical objects
have limited complexity, and thus can be described by a compact representation.
Specifically, particles on a micrograph have a narrow range of size variation and can be
located by a narrow band of low-frequency components. This feature gives DoGLFC an
advantage over Roseman’s method, in that, it naturally avoids many contaminants based on
size: contaminants make up the highest-ranked windows in a template-based method. A
combination of these methods would produce an algorithm much like Signature (Chen and
Grigorieff, 2007), which eliminates contamination using the spectrum correlation function to
filter particles based on size.

DoGLFC is also more efficient than Roseman’s method, even on large images. This large
image implementation, introduced in Methods, raises an interesting interpretation of the
DoGLFC algorithm. The difference of Gaussian is the difference of two low-pass Gaussian
filters and can be viewed as a band pass filter. Similarly, cross-correlation with a template
can be seen as a special case of the box filter. The DoGLFC algorithm simply stacks a
unique Bessel filter (acting as a box filter) on the difference of Gaussian filter to yield
sharper peaks. This can be viewed as a new type of filter that goes beyond locating the edges
of objects, and instead locates their centers of mass.

The AffinityRank algorithm was introduced to discriminate between views in the KLH
dataset and improve the ranking on the ribosome dataset. It can be thought of as a template-
matching (it even uses a similar measure (Lewis, 1995)) algorithm taking a data-driven
approach rather than the model-based approach taken by other template-matching
algorithms. A standard template-matching algorithm usually starts with a volume (a model),
deriving reference projections for template matching. If no volume exists, then the user must
select a number of particles and average them (essentially yielding the same projections as
the volume); e.g. Roseman (2004) averaged views of the KLH particles, then generated
rotational templates, and Ludtke (1999) created rotational averages of picked particles.
AffinityRank takes a bottom-up approach (more data driven) where examples are simply the
experimental projections without special pre-processing. The denoising effect of embedding
the data into a diffusion map makes this approach feasible and reduces the computational
cost.

The AffinityRank algorithm is a semi-supervised (transductive) classifier (Sindhwani et al.,
2005). Unlike Sorzano et al. (2009) where “semi-supervised” is intended to mean interacting
with the user, “semi-supervised” is used here in the traditional machine learning sense,
where the learning algorithm uses un-picked particles to help improve the final model or
ranking. By utilizing the underlying distribution of the unpicked particles, AffinityRank
requires far fewer training samples than most other proposed algorithms; e.g. the method in
(Sorzano et al., 2009) requires 50 to 100 picked references to achieve the desirable
performance. AffinityRank makes use of the unpicked particles in both the diffusion map
and iterative ranking refinement steps.
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It is important to note that the performance scores obtained for the ribosome dataset are
pessimistic due to the use of Roseman’s method (SPIDER’s LFCPick) to create the
benchmark. This potentially introduces two types of bias: one toward the reference used in
template matching and the second toward the algorithm itself. While the reference bias may
be negligible, the bias toward template matching ensures that any comparison between the
scores will be pessimistic. That is, DoGLFC may find new particles, which have been
missed by template matching, and thus mislabeled by this approach (see Figure 6 for an
illustrative example).

In future work, the DoGLFC algorithm will only be the first stage in a more extensive
machine-learning protocol that will provide intelligent interaction with the user. One step in
this direction will be to explore modifications to the AffinityRank algorithm and alternatives
to better incorporate manual annotation of particles. In this way, a user can more quickly
discover the bulk of the particles within a dataset. We will also explore better ways to
include prior knowledge such as related references as well as models built from previously
picked datasets.

In sum, a new unsupervised particle detection algorithm, DoGLFC, was developed to extract
potential particle windows from a micrograph without the benefit of a reference. This
algorithm is both effective and simple, requiring a single parameter, the particle size or size
range. The windows extracted by the DoGLFC method can then serve as examples to a
subsequent learning algorithm; e.g. the AffinityRank method. AffinityRank is a semi-
supervised learning algorithm that utilizes manifold learning to improve the ranking of
particle windows; it has the advantage that it does not require an explicit reference, i.e. it can
use the initial ranking produced by the DoGLFC algorithm. When combined, the
combination of DoGLFC and AffinityRank performs competitively when compared with
existing template-based methods.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Three example particles (left column) with corresponding 1D difference of Gaussian peaks
(center) column and 1D DoGLFC peaks (right column). Note that the DoG peaks
correspond to the particles selected with the DoGLFC peaks. The x-axis of the peak plots
corresponds to the image pixel position in row-major order and the y-axis is the
corresponding pixel value in either the DoG map (center) or DoGLFC map (right). The
center pixel in the window corresponds to the center of this graph. The graphs represent
roughly 12,000 pixels values that oscillate quickly giving the appearance of an area plot.
The first row shows an example where peak-picking algorithm would have missed the
particle. The second row would have resulted in a poorly centered particle. The third row
shows a good particle found with the DoG map. The ribosomes shown were collected at 300
kV at a defocus of 2 µm to illustrate the difficulty of this dataset.
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Figure 2.
Pseudocode describing the DoGLFC algorithm. The left column states the input and output
of the algorithm; it also defines each symbol in the notation. The right column contains the
Pseudocode describing the algorithm. PeakSearch describes both the peak picking and
merging algorithms found in Spider (Rath and Frank, 2004).
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Figure 3.
Pseudocode of the AffinityRank algorithm. The algorithm takes three inputs: the set of
images, the maximum dimension of each Eigenvector and two sets of indices indicating
which windows should be used as positive or negative references. The output of the
algorithm is a ranking score on each window where the higher the rank the more likely the
window contains a particle.
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Figure 4.
Illustration of a) keyhole limpet hemocyanin (KLH) micrograph and b) corresponding
difference of Gaussian map. Note the DoG peaks occur at the edge of the KLH particle
rather than the center as in the ribosome data.
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Figure 5.
Reconstruction of our ribosomal dataset. (a) refined volume from manually verified particles
selected by DoGLFC; (b) refined volume from manually verified particles selected by
LFCPick; (c) an overlay of both volumes (a and b) illustrating they are identical for all
practical purposes and d) an overlaid plot of the Fourier Shell Correlations for the volumes
shown in a and b. The FSC curves are almost identical.
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Figure 6.
Example illustrating algorithm bias. a) Three good particles on the micrograph; b) Two
particles found by LFCPick and manually verified as correct, giving 100% sensitivity; c)
Two particles found by DoGLFC, which were verified as correct since they overlap with the
windows verified in (b); in other words, not by a separate manual verification. Here
DoGLFC has made two errors, (i) locating an unverified particle and (ii) missing a verified
one. This toy example illustrates why the score of the DoGLFC performance is pessimistic.
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Table 1

Benchmarking DoGLFC over both the Keyhole Limpet Hemocyanin Dataset (top) and Ribosome Dataset
(bottom) with an extensive comparison to previously published works. The first column describes the
algorithm with reference, the second column the year of publication, the third and forth columns the
performance in terms of percent 1-Precision and the false negative rate (FNR). The (400) following Spider
LFCPick and DoG LFC indicates the metrics were calculated over the first 400 windows ranked by highest
cross-correlation.

Year 1-Precision (%) FNR (%)

Keyhole Limpet Hemocyanin Dataset

DogLFC 2010 92.0 3.2

DogLFC + AffinityRank 2010 20.3 14.3

Naïve Bayes Boosting (Sorzano et al., 2009) 2009 10.7 36.6

SwarmPS (Woolford et al., 2007b) 2007 15* 9

Signature (Chen and Grigorieff, 2007) 2007 12.9** 9.8

Sigworth (Sigworth, 2004) 2004 4.5 23.2

Mallick (Mallick et al., 2004) 2004 11.7 14.2

Volkmann (Volkmann, 2004) 2004 12.2 27.4

Wong (Wong et al., 2004) 2004 16.2 23.8

Roseman (Roseman, 2004) 2004 16.6 2.4

Hall and Patwardhan (Hall and Patwardhan, 2004) 2004 22 27.4

Yu and Bajaj (Yu and Bajaj, 2004) 2004 24.7 7.3

Huang and Penczek (Huang and Penczek, 2004) 2004 30.7 46.8

Zhu (Zhu et al.2003) 2003 13.7 9.7

Ludtke (Ludtke et al.1999) 1999 23.7 43.4

Ribosome Dataset

Spider LFCPick (400) 2010 66.9 0.4

DogLFC 2010 85.9 6.0

DogLFC (400) 2010 73.8 21.8

DogLFC + AffinityRank 2010 65.7 19.1

*
It is unclear whether the same dataset was used

**
It is unclear how this metric was calculated but it is most likely 1-Precision
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Table 2

Comparison between DoGLFC, DoGLFC + AffinityRank and Spider’s LFCPick over both the Ribosome
Dataset (top) and Keyhole Limpet Hemocyanin Dataset (bottom) in terms of Ranking Performance measured
by the percent area under the precision-recall curve (%APR).

DoGLFC (Orig.) DoGLFC (AffinityRank) LFCPick

Ribosome dataset 49.2 55.9α 61.2

KLH dataset 20.7β 82.0β 80.3β

α
No manually selected references used

β
Measures the APR based on 1042 total positives, not detected positives
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