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Abstract

We use scaling theory to derive the time dependence of the mean-square displacement 〈Δr2〉 of a 

spherical probe particle of size d experiencing thermal motion in polymer solutions and melts. 

Particles with size smaller than solution correlation length ξ undergo ordinary diffusion (〈Δr2 (t)〉 

~ t) with diffusion coefficient similar to that in pure solvent. The motion of particles of 

intermediate size (ξ < d < a), where a is the tube diameter for entangled polymer liquids, is sub-

diffusive (〈Δr2 (t)〉 ~ t1/2) at short time scales since their motion is affected by sub-sections of 

polymer chains. At long time scales the motion of these particles is diffusive and their diffusion 

coefficient is determined by the effective viscosity of a polymer liquid with chains of size 

comparable to the particle diameter d. The motion of particles larger than the tube diameter a at 

time scales shorter than the relaxation time τe of an entanglement strand is similar to the motion of 

particles of intermediate size. At longer time scales (t > τe) large particles (d > a) are trapped by 

entanglement mesh and to move further they have to wait for the surrounding polymer chains to 

relax at the reptation time scale τrep. At longer times t > τrep, the motion of such large particles (d 
> a) is diffusive with diffusion coefficient determined by the bulk viscosity of the entangled 

polymer liquids. Our predictions are in agreement with the results of experiments and computer 

simulations.

1 Introduction

Microrheology provides an important class of techniques for probing local dynamics of 

complex fluids,1 such as polymer solutions2,3 and melts,4–6 bio-macromolecular 

solutions,7–9 cells,10 and colloid suspensions11 by monitoring the motion of probe particles 

using diffusing wave spectroscopy,12 dynamic light scattering,11 laser deflection particle 

tracking,13 fluorescence correlation spectroscopy,14 or atomic force microscopy.15 These 

techniques are based on monitoring the time dependence of the mean-square displacement 

of probe objects, typically spherical particles, and relating the characteristics of particle 

motion to viscoelastic properties of surrounding environments by using the generalized 

Stokes-Einstein relation.16,17 Depending on the driving force exerted on probe particles, 

microrheology can be broadly classified as active or passive. Probe particles in active 
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microrheology are driven by external forces, typically of magnetic18 or optical origin;19 

while in the case of passive microrheology probe particles are undergoing thermal motion. 

Besides the ability to probe bulk rheological properties, microrheology can also probe local 

inhomogeneities of matrix materials.

In this paper we present a theoretical description of the thermal motion (related to passive 

microrheology) of spherical probe particles of size d in polymer liquids (solutions and 

melts). We assume that there is no adsorption of polymers onto probe particles and no 

interaction between probe particles. Mobility of particles in polymer liquids depends on the 

relative particle size with respect to two important length scales. The first one is the 

correlation length ξ, defined as the average distance from a monomer on one chain to the 

nearest monomer on another chain.20 This length is on the order of polymer size at the 

overlap concentration (ϕ*) and decreases as a power of concentration (volume fraction) ϕ 

(thick line in Figure 1):

(1)

where b is the length of the Kuhn segment and v is the Flory exponent that depends on the 

solvent quality. The correlation length in a theta solvent (with v = 1/2) decreases with 

concentration as ξ ≃ bϕ−1, while in an athermal solvent (v = 0.588) the correlation length 

decreases as ξ ≃ bϕ−0.76. The second important length scale is the entanglement length (tube 

diameter) a,20–22 which is typically a factor of 5 larger than the correlation length ξ and is 

proportional to ξ in athermal solvent (medium line in Figure 1)

(2)

but has a different concentration dependence in a theta solvent20

(3)

Here a(1) is the tube diameter in polymer melt with a typical value a(1) ≃ 5 nm. The size of 

a polymer chain of N Kuhn segments

(4)

is independent of volume fraction ϕ for theta solvent (v = 1/2) and has a very weak 

concentration dependence in athermal (or good) solvent (v = 0.588) (see thin line in Figure 

1): R ≃ bN1/2ϕ−0.12. Here ϕ** is the crossover concentration between semidilute solution 

regime with partially swollen chains and the concentrated solution regime with ideal chain 

statistics.20

Considerable theoretical effort23–33 (see ref. 34 for a summary) has been devoted to describe 

the diffusion of spherical particles in polymer solutions. These works can be divided into 

two broad classes according to the physical concepts applied. The first class of theories is 

based on the hydrodynamic interactions between particles and polymers.23,28 In dilute 

polymer solutions chains with size R smaller than the particle size are considered as “hard 
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spheres” with size equal to their hydrodynamic radii.28 Particles diffusing in dilute polymer 

solutions experience the hydrodynamic interaction with these effective hard spheres. 

Semidilute polymer solutions are modeled as a hydrodynamic medium in which polymers 

are treated as a background of fixed friction centers of monomer beads.23 The hydrodynamic 

drag between moving spherical probe particles and fixed monomer beads is assumed to be 

screened at length scale of solution correlation length.35 The effects of depletion of 

polymers near the surface of spherical particles on particle diffusion are considered in refs. 

25–27. All of these theories23–27 do not take into account the relaxation of polymer matrix 

and predict a stretched exponential dependence of terminal particle diffusion coefficient (at 

long time scales) on particle size and solution concentration (see section 3.2 for the 

discussion). By contrast in the present work we argue that the particle mobility is determined 

by the dynamics of polymers and terminal particle diffusion coefficient scales as a power 

law of the particle size and solution concentration.

The second class of theories is based on the concept of “obstruction effect”,29–33 in which 

the polymer solutions are treated as a “porous” system with “pore size” characterized by the 

distribution of distances from an arbitrary point in the system to the nearest polymer. This 

distribution is obtained from a geometric consideration for a suspension of random rigid 

fibers.29 The diffusion coefficient of particles is assumed to be linearly proportional to the 

fraction of “pores” in the polymer solutions with size larger than that of probe particles. This 

linear assumption fails, however, when polymers overlap at high concentration as the probe 

particles cannot diffuse through “pores” with size smaller than the particle size. An 

important difference between rigid fibers and flexible polymers is that polymers are coil-

like. Therefore, the concentration dependence of “pore” size in coil-like polymer solutions is 

different from that in solution of rigid fibers. Furthermore, polymers are mobile and 

therefore particles with size larger than the spacing between “obstacles” (correlation length 

of polymer solutions) are not permanently hindered by such “obstacles”. The mobility of 

such particles is determined by the polymer dynamics.

The scaling theory for mobility of probe particles of different shapes in polymer melt has 

been developed by Brochard-Wyart and de Gennes.36 We extend the ideas of ref. 36, in 

which only the terminal diffusion coefficient (at long time scales) of probe particles in 

polymer melt is discussed, to describe the mobility of spherical particles in polymer liquids 

over a wide range of concentration and time scales. In section 2 we present our prediction 

for the mean-square displacement of probe particles of various sizes in polymer liquids at 

different time scales. We show that there are three regimes depending on the particle size: 1) 

mobility of small particles (d < ξ) is not much affected by the surrounding polymers, 2) 

motion of intermediate size particles (ξ < d < a) is coupled to segmental motion of the 

polymers, and 3) large particles (d > a) are affected by entanglements. The contribution of 

hopping diffusion to the mobility of large particles (d > a) trapped in entanglement cages is 

not taken into account in this paper and will be discussed in a future publication.37 Section 3 

deals with the dependencies of particle diffusion coefficient on solution concentration, 

particle size, and polymer molecular weight and these predictions are compared with 

existing experimental and simulation data as well as prior theoretical models. Concluding 

remarks and future research directions of investigations are discussed in section 4.
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2 Mean-square Displacement

2.1 Small Particles (d < ξ)

If the diameter d of a probe particle is smaller than the solution correlation length ξ (see 

regime I in Figure 1), the motion of the particle is not much affected by polymers and is very 

similar to particle diffusion in a pure solvent. Mean-square displacement of particles (see 

dash-dotted line in Figure 2) in this regime is

(5)

Here τ0 ≃ ηsb3/(kBT) is the monomer relaxation time, in which kB is Boltzmann constant 

and T is absolute temperature. The particle diffusion coefficient is determined by solvent 

viscosity ηs and is reciprocally proportional to the particle diameter d

(6)

Particle diffusion coefficient decreases by a factor on the order of two with respect to its 

value Ds in pure solvent as the solution concentration crosses from regime I to regime II, in 

which the solution correlation length ξ becomes smaller than the particle size d. Here and 

below we drop all numerical coefficients and keep our analysis at the scaling level.

2.2 Intermediate Size Particles (ξ < d < a)

Motion of particles of size larger than the correlation length ξ (in polymer melt ξ ≃ b) but 

smaller than the tube diameter a (see regime II in Figure 1) is not affected by chain 

entanglements, but is affected by polymer dynamics. There are three regimes for the mean-

square displacement of these intermediate size particles at different time scales. At short 

time scales the motion of such particles is diffusive (see eq. 5 and left part of the dashed line 

in Figure 2) as particles “feel” local solution viscosity comparable to that of solvent. This 

diffusive regime continues up to the time scale

(7)

which corresponds to the relaxation time of a correlation blob with size ξ. At time t longer 

than τξ the motion of intermediate size particles is sub-diffusive as it is coupled to the 

fluctuation modes of the polymer solution. The polymer mode with relaxation time t 
involves the motion of a section of the chain containing (t/τξ)1/2 correlation blobs (see 

Chapter 8 in ref. 20). The effective viscosity “felt” by particles at time scale t is the viscosity 

of a solution with polymers of size equal to the chain section size ξ(t/τξ)1/4. This effective 

viscosity is higher than the solvent viscosity by the factor on the order of the number of 

correlation blobs in the corresponding chain section

(8)

The effective diffusion coefficient of these particles decreases with time as
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(9)

and the mean-square displacement of the particle is proportional to the square root of time

(10)

This sub-diffusive regime (see the middle part of the dashed line in Figure 2) continues until 

the time scale τd at which the size of chain sections controlling viscosity is comparable with 

the particle size ξ(τd/τξ)1/4 ≃ d.

(11)

At longer times (t > τd) the motion of intermadiate size particles is diffusive (〈r2 (t)〉 ≃ Dtt) 
with a terminal diffusion coefficient (see the right part of the dashed line in Figure 2)

(12)

where we used equations 8 and 11 for ηeff and τd. Note that the mean-square displacement 

of particles at the onset of this terminal Brownian diffusion (at time τd) is ξd (dashed line in 

Figure 2), and the diffusion coefficient is proportional to the square of the correlation length 

and inversely proportional to the cube of the particle size (see eq. 12). The reason for this 

extra factor of (ξ/d)2 in the diffusion coefficient (eq. 12) is that the effective viscosity “felt” 

by the particles at long times is proportional to the number of correlation blobs in a chain 

section with size on the order of particle diameter,

(13)

The correlation length in polymer melts is on the order of monomer size (ξ ≃ b) and 

equation 13 becomes ηeff ≃ ηs(d/b)2.36 Note that none of the above results depends on the 

polymer molecular weight as long as the tube diameter a and/or polymer size R is larger than 

the particle size d.

2.3 Large Particles (d > a)

Particles larger than the size of entanglement mesh (d > a, where a is entanglement tube 

diameter20–22) are trapped by the entanglements. The arrest of particle motion occurs on 

time scale on the order of the relaxation time of an entanglement strand:

(14)

At short time scales t < τe the motion of large particles follows the same time dependence as 

that of intermediate ones for the first two regimes (see section 2.2). The mean-square 

displacement of these large particles at time scale τe
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(15)

depends on all three important length scales: the tube diameter a, the correlation length ξ , 

and the particle size d. The plateau modulus of the semidilute solution can be obtained from 

this mean-square displacement (eq. 9.37 in ref. 20)

(16)

Note that if we consider the polymer solution as a “melt” of correlation blobs, the volume 

occupied by an entanglement strand is ξ3(a/ξ)2 ≃ a2ξ, and eq. 16 is consistent with plateau 

modulus corresponding to thermal energy kBT per entanglement strand. We stress out that 

the relation (eq. 16) between solution plateau modulus and the plateau mean-square 

displacement of a probe particle (eq. 15) is identical (up to numerical factors on the order of 

unity) to the one obtained via the generalized Stokes-Einstein relation that equates the long 

time limit of the mean-square displacement of a particle with the zero-frequency shear 

modulus in an elastic solid.17 This self-consistency between a polymer-dynamics-based 

scaling model and the fluctuation-dissipation theorem, that makes no assumptions about 

microscopic dynamics, further validates the approach relating the particle mean-square 

displacement to rheology.

The motion of large particles at time scales longer than τe can proceed by two mechanisms. 

The first one is the reptation of surrounding polymers leading to the release of topological 

constraints at the reptation time τrep, which is proportional to the cube of the number of 

entanglements (N/Ne) per chain

(17)

Here Ne is the number of monomers per entanglement strand. Tube length fluctuations20 

lead to even stronger dependence of reptation time on the degree of polymerization: τrep ~ 

N3.4. The second mechanism that could lead to the motion of particles is due to fluctuations 

of local entanglement mesh that will allow particles to pass through entanglement gates and 

thus hop between neighboring entanglement cages. The contribution of hopping process will 

be important for diffusion of particles not significantly larger (d ≳ a) than the tube diameter 

of entangled polymer solutions. This hopping mechanism will be discussed in a separate 

publication.37 Below we focus on the motion of large particles due to chain reptation.

At time scales shorter than τrep large particles (d > a) are trapped by entanglements and their 

mean-square displacement is on the order of a2ξ/d (eq. 15)

(18)

The motion of particles resulting from chain reptation at longer times (t > τrep) is Brownian 

with diffusion coefficient determined by the bulk solution viscosity η
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(19)

where the viscosity η ≃ Geτrep increases as high powers of the degree of polymerization N 
and solution concentration.20 Eq. 19 can also be rewritten as

(20)

Diffusion coefficient of large probe particles due to chain reptation is

(21)

2.4 Microrheology

The viscoelastic properties of polymer liquids can be determined from the time dependence 

of the mean-square displacements of probe particles within a wide frequency range by using 

generalized Stokes-Einstein relation,16,17 which relates the viscoelastic spectrum G̃(s) of 

polymer liquids to the Laplace transform 〈Δr2̃ (s)〉 mean-square displacement 〈Δr2 (t)〉:

(22)

where s is the Laplace frequency. According to the Kramers–Kronig relations, storage 

modulus G′ (ω) and loss modulus G″ (ω) correspond to the real and imaginary parts of 

complex modulus G* (ω), which is determined by substituting iω for the Laplace frequency 

s in eq. 22.

Figure 3 shows the viscoelastic properties of polymer liquids predicted from time-dependent 

mean-square displacements of particles with different sizes. Small particles (d < ξ) probe 

solvent-like viscosity within entire frequency range (see thin line in Figure 3). Intermediate 

size particles (ξ < d < a) also experience solvent-like viscosity at high frequencies (1/τξ < ω 

< 1/τ0). However, at frequencies lower than 1/τξ they probe segmental dynamics of polymer 

liquids (see medium lines in Figure 3). Particles with size larger than the tube diameter (d > 

a) are expected to probe full dynamics of the polymer liquids (thick lines in Figure 3). 

Similar to intermediate size particles, large particles probe solvent-like viscosity at high 

frequencies (1/τξ < ω < 1/τ0) and probe the segmental dynamics of polymer liquids at 

frequencies 1/τe < ω < 1/τξ. At intermediate frequencies (1/τrep < ω < 1/τe) the large 

particles are trapped by entanglements and probe the entanglement plateau modulus (see eq. 

16). At very low frequencies (ω < 1/τrep) large particles experience bulk viscosity. It is 

important to point out that the probe particles in microrheology must be non-sticky, so that 

they do not form strong physical or chemical bonds with surrounding materials.
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3 Particle Diffusion Coefficient

3.1 Dependence on Particle Size

In section 2 above we have discussed the time dependence of mean-square displacements of 

probe particles of different sizes in polymer liquids with fixed volume fraction 

(concentration). The mobility of particles in polymer liquids is investigated for three main 

cases depending on the size of probe particles: small particles (d < ξ ) (regime I in Figure 1 

and section 2.1), intermediate particles (ξ < d < a) (regime II in Figure 1 and section 2.2), 

and large particles (d > a) (regime III in Figure 1 and section 2.3). In Figure 4 we sketch the 

dependence of terminal diffusion coefficient Dt on particle size d. For small probe particles 

with size d smaller than the solution correlation length ξ the diffusion coefficient Dt follows 

the classical Stokes-Einstein relation (see eq. 6) and is mainly determined by the solvent 

viscosity ηs, as shown by the first section of the curve in Figure 4. Terminal diffusion 

coefficient Dt of intermediate size particles (ξ < d < a) has a much stronger dependence on 

particle size (see eq. 12) because they “feel” effective viscosity that increases as square of 

the particle size (eq. 13), as shown by the second section of the curve in Figure 4. As long as 

the particle size is smaller than the tube diameter the terminal particle diffusion coefficient is 

independent of polymer molecular weight. The diffusion coefficient of particles with size 

larger than the tube diameter (d > a) (regime III in Figure 1 and section 2.3) is determined by 

chain reptation process and particles “feel” full solution viscosity η (see eq. 21). Note that 

our scaling calculation suggests a sharp drop of the terminal diffusion coefficient of particles 

with size on the order of the tube diameter (d ≃ a) by a large factor (N/Ne)3, as shown in 

Figure 4. This sharp crossover is broadened (see the dotted line in Figure 4) by the 

contribution to particle mobility from the hopping diffusion process.37

As mentioned in section 2.3, the mobility of particles with size d larger than the tube 

diameter a is due to both chain reptation and hopping processes. To hop from one 

entanglement cage to a neighboring one the particle has to overcome an entropic energy 

barrier that increases with the ratio of particle size d to the tube diameter a. Thus, the waiting 

time required for the hopping process increases exponentially with this ratio d/a. This 

waiting time, however, can still be shorter than the relaxation of time of the whole polymer 

system as long as the particle size is not significantly larger than the tube diameter. 

Therefore, the motion of particles with size slightly larger than the tube diameter will be 

dominated by the hopping process with diffusion coefficient decreasing exponentially with 

the ratio of particle size to the tube diameter as D ~ exp(−d/a),37 shown by the dotted line in 

Figure 4; whereas diffusion of very large particles (d ≫ a) is primarily controlled by the 

chain reptation process.

It is important to point out that the hopping-controlled diffusion does not probe the 

macroscopic viscosity of the polymer solutions. In fact this process is possible even in 

entangled polymer networks with infinite zero-shear-rate viscosity. The sharp crossover with 

exponentially strong decrease of the diffusion coefficient of particles with size d increasing 

above the tube diameter a is qualitatively different from the smooth crossover of the 

diffusion coefficient of linear probe chains from below to above the entangled molecular 

weight.39 As the size of the linear probe polymers crosses from below to above the tube 

Cai et al. Page 8

Macromolecules. Author manuscript; available in PMC 2012 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



diameter, the molecular weight dependence of the diffusion coefficient smoothly crosses 

from D ~ 1/N to D ~ 1/N2.3, which is unlike the exponentially sharp decrease expected for 

particles (see Figure 4). In order to understand the reason for this qualitative difference 

between linear chains and particle probes, consider the limiting case with very long matrix 

chains of entangled polymer solutions. The linear probe chains of size larger than the tube 

diameter can reptate out of their original tubes and diffuse without encountering any 

significant entropic energy barrier.40 However, particles with size several times larger than 

the tube diameter (d > a) is exponentially slowed down by the free energy barrier and these 

particles are effectively trapped by entanglement cages.

The diffusion coefficient of intermediate size particles is predicted to be inversely 

proportional to the cube of particle size: Dt (d) ~ d−3 (see eq. 12). This prediction of our 

model and also earlier ref. 36 has been verified by the molecular dynamics (MD) 

simulations of diffusion of particles with different sizes in unentangled polymer melts.46

3.2 Dependence on Solution Concentration

Experimentally it is often easier to systematically vary polymer concentration rather than the 

particle size. Terminal diffusion coefficient of particles of a given size d depends on the 

relative value of this size d with respect to two concentration-dependent length scales: the 

correlation length ξ(ϕ) (thick line in Figure 1) and the tube diameter a(ϕ) (medium line in 

Figure 1).

Mobility of probe particles with the intermediate size d larger than the monomer size b but 

smaller than the tube diameter a(1) of a polymer melt crosses over from regime I to regime 

II (see Figure 1) as solution concentration ϕ increases. The crossover solution concentration 

between these two regimes is

(23)

at which the correlation length ξ(ϕξ
d) is on the order of particle diameter d. In a theta solvent 

(v = 1/2) the crossover volume fraction is ϕξ
d ≃ (d/b)−1 and in an athermal solvent (v = 

0.588) it is ϕξ
d ≃ (d/b)−1.32. Below this volume fraction (for ϕ < ϕξ

d ) the diffusion 

coefficient of particles is determined by the solvent viscosity ηs and is almost concentration 

independent (see eq. 6). At volume fractions above ϕξ
d particles “feel” segmental motions of 

polymers (see eq. 9) and particle diffusion coefficient

(24)

decreases with solution volume fraction as power −2 for theta solvent and −1.52 for athermal 

solvent (see dashed line in Figure 5).

If the particle size d is larger than the tube diameter a(1) in the melt, in addition to the two 

regimes expected for particles smaller than a(1) (see dashed line in Figure 5), there is an 

additional regime in which particle diffusion coefficient is determined by chain reptation. 

This regime begins at a solution concentration ϕa
d, at which the tube diameter a (see eq. 2) is 
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on the order of the particle size d: a (ϕa
d) ≃ d. In a theta solvent a ≃ a(1)ϕ−2/3 (see eq. 3) 

and in an athermal solvent a ≃ a(1)ϕ−0.76 (see eq. 2), therefore the corresponding crossover 

concentrations are

(25)

Large probe particles (d > a(1)) are expected to experience full solution viscosity above the 

crossover concentration ϕa
d. The terminal particle diffusion coefficient in this regime (see 

solid line in Figure 5) Dt (ϕ) ≃ Drep ≃ ξa2 / dτrep is dominated by the contribution from the 

chain reptation process (see eq. 21). Recall the relations τe ≃ τ0 (ξ/b)3 (a/ξ)4 (see eq. 14) τrep 

≃ τe (N/Ne(ϕ))3 (see eq. 17) and using eqs. 1, 2, 14, and the relation

(26)

one can simplify eq. 21 to obtain the concentration dependence of terminal particle diffusion 

coefficient:

(27)

which is the reciprocal of the concentration dependence of solution viscosity η (ϕ) (eq. 9.45 

in ref. 20).

We test our scaling prediction on the concentration dependence of the diffusion coefficient 

of intermediate size particles (eq. 24 and Figure 5) using the data from ref. 3, in which the 

authors measured the diffusion coefficient of gold nanoparticles with diameter d = 5 nm in 

240 kDa polystyrene/toluene (good solvent) solutions at several solution concentrations by 

fluctuation correlation spectroscopy. For all solution concentrations studied in ref. 3 the size 

of nanoparticles is larger than the solution correlation length but smaller than the tube 

diameter (in an entangled polystyrene melt a(1) ≃ 9 nm20), and therefore, the data points are 

in the intermediate particle size regime (ξ < d < a). The particle diffusion coefficients (see 

points in Figure 6) at low concentrations exhibit a power law dependence on concentration: 

Dt (c) ~ c−1.52±0.15, which is in good agreement with our scaling prediction (eq. 24). Note 

that one data point at higher concentration corresponds to lower diffusion coefficient and 

much larger error bar, possibly due to degradation of laser focus at such high solution 

concentration.41 For a good (athermal) solvent eq. 24 can be rewritten as

(28)

where Ds is the particle diffusion coefficient in pure solvent, cξ
d (eq. 23) corresponds to the 

solution concentration at which the particle size d is equal to the solution correlation length 

ξ, and α is the scaling prefactor to be determined by fitting the scaling prediction to 

experimental data. The measured diffusion coefficient Ds of the 5 nm gold nanoparticles in 

pure solvent (toluene) is about 141μm2/s3 and the crossover concentration cξ
d is about 0.08 
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g/ml.43 The coefficient α ≃ 0.53 obtained by fitting the scaling model to the three 

experimental points at lower concentrations is on the order of unity confirming the 

consistency of the scaling estimate (eq. 28 and solid line in Figure 6).

Earlier models23,33 predict stronger than power law concentration dependence of diffusion 

coefficient. The theories based on the concept of hydrodynamic interaction (hydrodynamic 

models)23 predict the exponential dependence of the particle diffusion coefficient on the 

ratio of particle size d and the solution correlation length ξ

(29)

In good solvent (eq. 1 with v = 0.588) this prediction corresponds to the stretched 

exponential concentration dependence of particle diffusion coefficient

(30)

With the values of Ds = 141μm2/s and cξ
d = 0.08 g/ml fixed by separate experiments one can 

adjust parameter khydro to fit this prediction (eq. 30) to experimental data. The best fit of this 

prediction to the three experimental points at lower concentration, shown by the dashed line 

in Figure 6, is qualitatively similar (slightly worse) than that of our scaling prediction.

Terminal particle diffusion coefficient predicted by the theories based on the “obstruction 

effect” (obstruction model)33 has an even stronger dependence on the ratio of particle size d 
and the correlation length ξ: Dt = Ds exp (−π((d + δ) / (ξ + δ))2 /4, where δ corresponds the 

effective cylindrical diameter of a polymer chain considering it as a rigid fiber. The value of 

δ can be estimated by δ ≃ v0/b2, where v0 is the Kuhn monomer volume and can be obtained 

from a polymer handbook.44 Typically the value of δ ~ 0.3 nm is negligible compared with 

both the particle size d and the correlation length ξ. Therefore, the prediction of the 

obstruction model can be rewritten as

(31)

Similar to that in hydrodynamic model the adjustable parameter kobst in the obstruction 

model is determined by fitting this prediction to the three experimental points at lower 

concentrations with the fixed values of Ds = 141μm2/s and cξ
d = 0.08 g/ml. The best fit of 

the data by the obstruction model, shown by the dash-dotted line in Figure 6, is qualitatively 

similar (slightly worse) than that of both hydrodynamic and our scaling models.

In spite of the similarities of the three fits to the experimental data at lower concentrations 

(Figure 6), we claim that our model is the qualitatively correct one, as it properly takes into 

account coupling between polymer dynamics and particle motion, which is the very basis of 

microrheology. Note that both hydrodynamic and obstruction models completely ignore 

polymer dynamics and thus are not applicable to the case of particle diffusion in polymer 

melts. In section Section 3.4 below we demonstrate that our scaling model describes particle 
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diffusion both in polymer melts and polymer solutions in a consistent way by constructing a 

“universal” plot.

3.3 Dependence on Polymer Size

Consider the motion of probe particles of fixed size d in polymer solutions with different 

degrees of polymerization N but with the same concentration ϕ. Terminal diffusion 

coefficient of small particles with the size smaller than the correlation length is almost 

independent of the polymer molecular weight (dashed line in Figure 7) because these 

particles “feel” viscosity close to that of solvent.

As illustrated by the dash-dotted line in Figure 7, intermediate size particles (ξ < d < a) 

“feel” the viscosity close to that of solvent in dilute polymer solutions with degree of 

polymerization lower than Nξ

(32)

The semidilute solution viscosity η increases above the solvent viscosity ηs linearly with 

degree of polymerization N: η ≃ ηs (N/Nξ). Intermediate size particles that are larger than 

polymers “feel” bulk solution viscosity η with terminal particle diffusion coefficient 

inversely proportional to the degree of polymerization N

(33)

where Nd corresponds to the degree of polymerization at which the size of polymers is 

comparable to the particle size d

(34)

Terminal diffusion coefficient of intermediate size particles that are smaller than polymers is 

independent on the degree of polymerization in solutions with N > Nd (see eq. 12)

(35)

The diffusion coefficient of large particles (d > a) is predicted to have similar molecular 

weight dependencies as that of intermediate size particles in dilute and in unentangled 

semidilute (see eq. 33) solutions. In entangled solutions large particles “feel” bulk solution 

viscosity at times longer than solution relaxation time (see solid line in Figure 7). The 

terminal particle diffusion coefficient is reciprocally proportional to the solution viscosity η 

and decreases with increasing degree of polymerization N as

(36)
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The scaling exponent is expected to be even stronger with value of 3.4 if one takes into 

account tube length fluctuation.20,22

We compare our predictions for dependence of intermediate particle diffusion coefficient on 

molecular weight with available molecular dynamics simulation and experimental data. It is 

predicted that the particle diffusion coefficient DL is independent of degree of 

polymerization N in melts and solutions of large (L) polymers with size R larger than 

particles of size d (see eq. 35), whereas particles are expected to “feel” bulk viscosity in 

melts and solutions of short polymers (R < d) (see eq. 33). The ratio between diffusion 

coefficient DS of intermediate particles through the liquid of shorter (S) polymers with size 

RS < d and degree of polymerization NS and diffusion coefficient DL of the same particles 

through the liquid of large polymers of size RL > d is DS/DL ≃ Nd/NS. Here Nd corresponds 

to the degree of polymerization at which the polymer size is on the order of the particle size. 

As shown in Figure 8, this prediction is verified by the simulation data from ref. 46. 

Diffusion coefficient of particles in polymer melts with degree of polymerization below Nd 

is reciprocally proportional to the degree of polymerization (see eq. 33). The diffusion 

coefficient DL of intermediate particles in melts with degree of polymerization N above Nd 

is independent of the degree of polymerization (see eq. 35 and horizontal line in Figure 8).

Authors of ref. 4 measured the diffusion of gold nanoparticles with diameter d ≃ 5 nm in 

two monodisperse poly(n-butyl methacrylate) (PBMA) melts of molecular weight 2.5 kDa 

and 180 kDa. The root-mean-square end-to-end distance R of 2.5 kDa PBMA chain is 

approximately 2.5 nm and the size of 180 kDa PBMA chain is about 21 nm as estimated 

based on data from refs. 4 and 45. The 5 nm gold particles are expected to experience bulk 

viscosity in 2.5 kDa PBMA melt but in 180 kDa melt they only “feel” effective viscosity, 

which is predicted by our model to be the viscosity of the PBMA melt with the chain size on 

the order of the particle size. It was found that the diffusion coefficient of 5 nm gold 

particles in 180 kDa PBMA melt is about 4 times smaller than that in 2.5 kDa PBMA melt at 

the same temperature above glass transition. Therefore, the 5 nm particles in 180 kDa 

PBMA melt probe the viscosity of an effective polymer melt with molecular weight of 10 

kDa, which is 4 times higher than 2.5 kDa but 18 times lower than the actual polymer 

molecular weight. It turns out that the size of a 10 kDa PBMA chain in melt is about 5 nm, 

which is on the order of the particle size and thus verifies our prediction.

3.4 “Universal” Dependence of Diffusion Coefficient of Intermediate Size Particles

All the dependencies of diffusion coefficient of intermediate size particles described above 

can be combined into a single “universal” plot. To do that we define viscosity ηun,

(37)

which is the bulk viscosity η if polymer liquids are unentangled. If polymer liquids are 

entangled, ηun is the extrapolation of bulk viscosity from the unentangled regime, which is 

linearly proportional to the polymer molecular weight ηun = η (Ne)N/Ne. One can define Dun 

as the naively expected particle diffusion coefficient in a polymer liquid with viscosity ηun 

according to classical (Stokes-Einstein) prediction:
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(38)

Dependencies of terminal particle diffusion coefficient Dt on i) particle size d (eq. 12), ii) 

solution concentration c (eq. 24), and iii) degree of polymerization N (eqs. 33 and 35) can be 

rewritten in terms of the dependence of reduced diffusion coefficient Dt/Dun on the ratio d/R 
of particle and polymer sizes:

(39)

If the particle is larger than the polymer (d > R) its diffusion coefficient Dt is on the order of 

the classical prediction (eq. 39) where Dun is the bulk viscosity of unentangled polymer 

liquid. If the particle is smaller than the polymer (d < R), the naively expected diffusion 

coefficient Dun (eq. 38) with ηun—viscosity of unentangled polymer liquids (or 

“unentangled” extrapolation (eq. 37) for entangled polymer liquids)—underestimates the 

diffusion coefficient of intermediate size particles Dt by the factor (d/R)2. Below we first 

outline how the “universal” plot of Dt/Dun as a function of d/R can be constructed using data 

from molecular dynamics simulations and experiments and then compare the resulting 

“universal” function with our prediction (eq. 39).

Authors of ref. 46 reported the terminal diffusion coefficient Dt of particles with size d 
ranging from σ to 9σ in an unentangled polymer melt with degree of polymerization N = 60, 

where σ is Lennard–Jones length.47 In order to construct the “universal” plot one needs to 

know the unentangled viscosity ηun and the polymer size R. For the unentangled polymer 

melt with N = 60 the unentangled viscosity ηun is equal to the bulk viscosity, which is 

reported to be 42.5kBT/σ3τLJ),48 where τLJ is Lennard–Jones time.47 The diffusion 

coefficient Dun is calculated using relation Dun = kBT/(3πdhηun),49 where dh = d + σ 

corresponds to the particle-monomer cross diameter.50 The end-to-end distance R of a linear 

polymer chain of degree of polymerization N > 10 in simulated melts is reported to be R = 

1.22σ N1/2.51 Based on such information one can obtain the values of Dt/Dun and dh/R and 

the results are presented by triangles in Figure 9.

Similarly one can add to the “universal” plot the simulation data for particles of sizes d = 2σ 

(empty circles in Figure 9) and 6σ (empty squares in Figure 9) in melts of polymers with 

degree of polymerization N (from 10 to 200) ranging from unentangled to entangled regime. 

Within the range of N 60 the polymers are unentangled and thus the unentangled viscosity 

ηun is equal to the bulk melt viscosity, which is determined to be linearly proportional to 

degree of polymerization.48 For N > 60 the extrapolated value of ηun from the unentangled 

regime (eq. 38) is used to calculate Dun. The values of Dt/Dun and dh/R for these particles of 

two different sizes are calculated following the same procedure as described above.

The diffusion coefficient of 5 nm gold nanoparticles in solutions of 240 kDa polystyrene in 

toluene at different concentrations is reported in ref. 3. In order to add these data to the 

“universal” plot one can rewrite the unentangled extrapolation particle diffusion coefficient 

as Dun = Ds (ξ/Rg)2, where Ds (see eq. 6) corresponds to the diffusion coefficient of a probe 
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particle in a pure solvent. Following the procedure described in ref. 52, the concentration-

dependent particle diffusion coefficients are presented by solid circles in the “universal” plot 

(see Figure 9). Note that all points group together because Rg is a weak function of the 

solution concentration.

As shown in Figure 9, all the data points for diffusion of intermediate size spherical probes 

in polymer liquids collapse onto a “universal” curve reasonably well. Note that the 

experimental point at the highest concentration (the largest value of d/R) deviates from the 

trend of other data points, possibly due to the error of measurements because of the 

degradation of laser focus at such high solution concentration.41 The “universal” curve 

suggests two regimes as predicted by our scaling model (eq. 39): 1) probe particles “feel” 

bulk viscosity if their size is larger than the polymer size, 2) particles experience local 

viscosity of polymer liquids, which is smaller than the unentangled viscosity ηun by a factor 

of (d/R)2, if their size is smaller than the polymer size and the tube diameter.

We conclude that our predictions for the mobility of intermediate size particles in polymer 

liquids (melts and solutions) agree with available data, but a systematic study covering a 

wide range of solution concentrations, polymer molecular weight, and particle sizes is 

needed for more systematic tests of our theory. It should be noted that our scaling 

calculations of particle diffusion in polymer liquids (melts and solutions) do not take into 

account hopping,37 the adsorption of polymer chains onto particles, and slippage at the 

particle-polymer interface.53

4 Conclusion

In the present paper we have developed a scaling theory for the mobility of non-sticky 

spherical particles in polymer liquids (solutions and melts). There are three different cases 

for particle diffusion in polymer liquids depending on the relation of particle size d with 

respect to the correlation length ξ and the tube diameter a.

(i) Small particles. Mobility of small particles (b < d < ξ ) is not strongly affected by 

polymers and their diffusion coefficient Ds ≃ kBT/(ηsd) is mainly determined by the solvent 

viscosity ηs.

(ii) Intermediate size particles. Motion of intermediate size particles (ξ < d < a) is not 

affected by entanglements. At time scales shorter than the relaxation time τξ of a correlation 

blob the motion of intermediate size particles is not much affected by polymers and is 

diffusive with diffusion coefficient mainly determined by solvent viscosity. The intermediate 

size particles probe modes of surrounding polymers at intermediate time scales τξ < t < τd, 

where τd is the relaxation time of a polymer segment with size comparable to particle size d, 

and therefore, the particle motion is sub-diffusive with mean-square displacement 〈Δr2〉 ~ 

t1/2 (see eq. 10). At longer time scales (t > τd) the motion of intermediate size particles is 

diffusive but with diffusion coefficient determined by the effective viscosity ηeff ≃ ηs (d/ξ )2 

(see eq. 13), which is the viscosity of a polymer liquid with polymer size on the order of 

particle size. The effective viscosity ηeff is independent of polymer molecular weight for R > 
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d and is only determined by the particle size and the correlation length of the polymer 

solution.

(iii) Large particles. Motion of particles with size larger than the entanglement length (d > a) 

at time scales shorter than the relaxation time τe of an entanglement strand is similar to that 

of intermediate size particles. At time scales longer than τe the large particles are trapped by 

entanglements and in order to move further they have to wait for the polymer liquid to relax 

during reptation time τrep. Terminal diffusion coefficient of very large particles (d ≫ a) is 

determined by bulk viscosity η of polymer liquids, which scales with degree of 

polymerization as η ~ N3.4. Particles slightly larger than the tube diameter (d ≳ a) do not 

have to wait for the whole polymer liquid to relax and can diffuse by hopping between 

neighboring entanglement cages.37

The results of particle mobility in polymer liquids could be applied to test the local structure 

and dynamics of complex fluids such as mucus.54 At the crossovers between different 

scaling regimes of the size-dependent particle diffusion coefficient (see section 3.1), the 

characteristic length scales in polymer liquids, such as correlation length ξ and entanglement 

mesh size a, are on the order of the particle size. It should be noted that predictions 

described in the present work directly apply only to non-adsorbing particles since the 

adsorption of polymers on particles will slow down particle motion.37 For instance, particles 

without proper protection will stick to the biomacromolecules in the mucus and diffuse ~ 

1000 times slower than non-adsorbing particles of the same size.55 Given the time-

dependent mean-square displacement of probe particles, one can describe the viscoelastic 

properties of probed complex environments on the length scale comparable to the particle 

size within a wide frequency range by using the generalized Stokes-Einstein relation.16 The 

probe particles can be prepared with sizes ranging from nanometer to micron scale allowing 

one to probe the dynamics of complex fluids over this wide range of length scales. 

Extensions of this work to particle mobility in reversible polymer solutions,56–58 

semiflexible polymer solutions,9 and active materials like actin filament networks59 will be 

presented in our future publications.
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Figure 1. 
(Color online) Three regimes for mobility of probe particles with size d in polymer solution 

with volume fraction ϕ shown in the (ϕ,d) parameter space: regime I for small particles (b < 

d < ξ), regime II for intermediate particles (ξ < d < a), and regime III for large particles (d > 

a). Solid lines represent the crossover boundaries between different regimes. Thick and 

intermediate lines correspond to the dependences of correlation length ξ and tube diameter a 
in good solvent on volume fraction ϕ, while thin (top) line describes concentration 

dependence of polymer size R(ϕ). RF is the chain size in dilute polymer solution in a good 

solvent and R0 corresponds to the chain size in a polymer melt. Dashed lines represent 

crossovers between regimes of polymer solution at different concentrations: (1) the dilute 

solution regime with 0 < ϕ < ϕ*, where ϕ* is polymer overlap concentration; (2) the 

semidilute unentangled solution regime with ϕ* < ϕ < ϕe, where ϕe is the concentration at 

which polymers start to entangle with each other; (3) the semidilute entangled solution 

regime with ϕe < ϕ < ϕ**; (4) the concentrated entangled solution regime with ϕ** < ϕ < 

1.20 Logarithmic scales.
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Figure 2. 
Time dependence of the product of mean-square displacement 〈Δr2(t)〉 and the particle size d 
for small particles (b < d < ξ , dash-dotted line), intermediate size particles (ξ < d < a, 

dashed line), and large particles (d > a, solid line) in polymer solutions (ξ ≃ b in polymer 

melts). Here τ0 is the relaxation time of a monomer, τξ (eq. 7) is the relaxation time of a 

correlation blob, τd (eq. 11) is the relaxation time of a polymer segment with size 

comparable to particle size d, τe (eq. 14) is the relaxation time of an entanglement strand, 

and τrep (eq. 17) is the relaxation (reptation) time of a whole polymer chain. Logarithmic 

scales.
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Figure 3. 
(Color online) Viscoelastic properties of polymer liquids predicted from time-dependent 

mean-square displacements of small particles (d < ξ, thin line), intermediate size particles (ξ 

< d < a, medium lines), and large particles (d > a, thick lines). Solid lines correspond to 

storage moduli G′ and dashed lines represent loss moduli G″ as functions of frequency ω. 

Logarithmic scales.
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Figure 4. 
Dependence of terminal particle diffusion coefficient Dt on particle size d in entangled 

polymer solutions. Dotted line corresponds to the crossover taking into account the 

contribution of hopping process to the particle mobility. Logarithmic scales.
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Figure 5. 
Concentration dependence of terminal diffusion coefficient Dt of particles in entangled 

athermal polymer solutions normalized by their diffusion coefficient Ds = kBT/(ηsd) in pure 

solvent (see eq. 6). Dashed line is for intermediate size particles (b < d < a(1)) and solid line 

is for large particles (d > a(1)). The crossover concentrations ϕξ
d and ϕa

d, at which the 

correlation length ξ and the tube diameter a are on the order of particle size d, are defined in 

eqs. 23 and 25 respectively. Dotted line corresponds to the crossover taking into account the 

contribution of hopping process to the particle mobility (see discussion in section 3.1). 

Logarithmic scales.
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Figure 6. 
Diffusion coefficient of 5 nm gold nanoparticles in semidilute solutions of polystyrene in 

toluene. Solid circles are data from ref. 3 for Mw = 240 kDa polystyrene/toluene solutions 

above the overlap concentration. Lines are predictions of different models: solid line—our 

scaling model (eqs. 24 and 28 with α = 0.53), dashed line—hydrodynamic model (eq. 30 

with khydro = 0.96), dash-dotted line—obstruction model (eq. 31 with kobst = 0.43).
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Figure 7. 
Dependence of the normalized terminal diffusion coefficient Dt/Ds of particles in solutions 

with fixed concentration on degree of polymerization N, where particle diffusion coefficient 

in pure solvent Ds is defined in eq. 6. Dashed line corresponds to small particles (b < d < ξ), 

dash-dotted line corresponds to intermediate size particles (ξ < d < a), and solid line 

corresponds to large particles (d > a). Here Nξ ≃ (ξ/b)1/v is the number of monomers in a 

correlation volume (see eq. 32), Nd ≃ Nξ (d/ξ)2 is the number of monomers in a chain 

section on the order of intermediate particle size (see eq. 34), and Ne is the number of 

monomers per entanglement strand. Dotted line corresponds to the crossover taking into 

account the contribution of hopping process to the particle mobility (see discussion in 

section 3.1). Logarithmic scales.
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Figure 8. 
Normalized terminal particle diffusion coefficient Dt/Ds in polymer melt. Solid circles are 

data from ref. 46 for diffusion of a particle with diameter d = 6σ in melts of polymers with 

degree of polymerization N ranging from 10 (unentangled) to 200 (entangled). Here σ 

corresponds to Lennard–Jones length.47Nd ≃ 24 represents the crossover degree of 

polymerization, below which the particle diffusion coefficient is reciprocally proportional to 

the degree of polymerization (see eq. 33) and above which it is independent of the degree of 

polymerization (see eq. 35). The root-mean-square end-to-end distance of polymer chains 

with degree of polymerization Nd is R ≃ √6Rg ≃ 6σ, which is equal to the particle size d.
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Figure 9. 
(Color online) Dependence of the ratio of terminal particle diffusion coefficient Dt and 

“unentangled” diffusion coefficient Dun of intermediate size particles (defined by eq. 38) on 

the ratio of particle and polymer sizes d/R in polymer solutions and melts. Empty symbols 

are molecular dynamics simulation data from ref. 46 and filled circles are experimental data 

from ref. 3. Solid line is the prediction of our scaling model (eq. 39).
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