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Abstract
A continuously increasing body of knowledge shows that the brain is an extremely complex neural
network and single neurons possess their own complicated interactive signaling pathways. Such
complexity of the nervous system makes it increasingly difficult to investigate the functions of
specific neural components such as genes, proteins, transcription factors, neurons and nuclei in the
brain. Technically, it has been even more of a significant challenge to identify the molecular and
cellular adaptations that are both sufficient and necessary to underlie behavioral functions in health
and disease states. Defining such neural adaptations is a critical step to identify the potential
therapeutic targets within the complex neural network that are beneficial to treat psychiatric
disorders. Recently, the newly development and extensive application of in vivo viral-mediated
gene transfer (virogenetics) and optical manipulation of specific neurons or selective neural
circuits in freely-moving animals (optogenetics) make it feasible, through loss- and gain-of-
function approaches, to reliably define sufficient and necessary neuroadaptations in the behavioral
models of psychiatric disorders, including drug addiction, depression, anxiety and bipolar
disorders. In this article, we focus on recent studies that successfully employ these advanced
virogenetic and optogenetic techniques as a powerful tool to identify potential targets in the brain,
and to provide highly useful information in the development of novel therapeutic strategies for
psychiatric disorders.

Keywords
Neural target; Target defining; Viral-mediated gene transfer; Virogenetics; Optogenetics;
Depression; Anxiety; Drug addiction; Bipolar disorder; Neurophysiology

1. Introduction
Prolonged environmental stimulation such as chronic stress, a major cause of major
depressive disorder, can induce responsive or adaptive changes in a vast amount of genes
and cellular functions of the brain (Herman et al., 2008; Hyman and Malenka, 2001;
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Krishnan et al., 2007; Nestler, 2001; Tsankova et al., 2007). One major challenge in
neuropsychiatry is to define the molecular and cellular adaptations, among the huge array of
induced changes, that are both sufficient and necessary to underlie the environmental
stimulation-induced behavioral abnormalities (disease conditions). To identify these
neuroadaptations, a suitable research strategy is essential. Here we introduce a “systematic
research strategy”: the research starts with behavioral phenotypes observed in rodent models
of psychiatric disorders, and is followed by the studies of neural circuitry, cellular and even
molecular (channels and receptors) adaptations in the brain; and importantly, to further
define these neural adaptations as therapeutic targets, virogenetics and optogenetics are used
to precisely and reliably imitate these molecular or cellular adaptations, and behavioral
outcomes of these imitations are retested in freely behaving animals (Fig. 1). Virogenetics is
a viral-mediated gene transfer technique, in which modified DNA is packed into a viral
vector, and the vector act as a vehicle to deliver the DNA into cell nucleus and produce a
new protein using the delivered gene (Fig. 2); optogenetics is a technique of delivering light-
sensitive channels such as channelrhodopsin-2 (ChR2), halorhodopsin (NpHR) or other
proteins into neurons and regulating their activity (Fig. 3). In this research strategy model, in
vivo virogenetics is used to virally transfer genes in alive animals through stereotaxic
surgery (Fig. 4); and optogenetic techniques is employed to optically control cell type- or
circuit-specific neurons in freely-moving animals (Fig. 5). These advanced techniques have
a unique ability to probe specific molecules, neurons and circuit pathways with space and
temporal precision in behaving animals. Therefore, virogenetics and optogenetics are
increasingly and extensively used in the neuroscience field and play a crucial role in
defining the molecular and cellular adaptations that underlie behavioral functions. The
rapidly accumulating functional knowledge of specific brain components provided by these
novel techniques has never been achieved with conventional pharmacology (for a technical
comparison, see Table 1). Recent studies have highlighted the importance of virogenetic and
optogenetic approaches in the systematic research strategy for identifying potential
therapeutic targets within the complex brain. In this review, we first explain the importance
of focusing on neuronal electrical activity, and then, describe and discuss the potential
therapeutic targets that are related to neuronal activity and identified through the use of
virogenetic and optogenetic approaches in different models of psychiatric disorders.

There is an accumulating body of evidence supporting the idea that some psychiatric
disorders such as drug addiction, depression and bipolar disorder or different addictive drugs
interact with overlapping brain mechanisms, and even share the same molecular pathways or
neural circuits (Nestler, 2005; Roybal et al., 2007; Saal et al., 2003). Drug addiction is
characterized by an experience-driven strong desire for the use of alcohol or other drugs
despite severe problems related to use of the substance. One of the core symptoms of major
depressive disorder is anhedonia, a phenomenon in which patients are unable to experience
pleasure from activities usually found enjoyable. It is not surprising that these two
conditions are associated to the brain reward neural circuit. Moreover, recent studies
demonstrate that bipolar disorder, which is typified by depressive episodes and manic
episodes, is also linked to the brain reward circuit. Similarly, dysfunctions of medial
prefrontal cortex are sometimes found in both depressed and schizophrenia patients or in
rodent models of these disorders. The shared dysfunction of the same brain region or
mechanism may explain why these patients have a high risk of co-morbidity, a fact that
makes the understanding of these disorders more difficult.

Psychiatric disorders are also a huge burden on worldwide society (Eaton et al., 2008; Insel
and Scolnick, 2006). As the most common mental health problem, major depressive disorder
alone afflicts 5–6% of the United States population, ranking 4th in terms of illness burden;
and, according to the WHO (World Health Organization), these numbers are continuously
increasing. While antidepressants are one of most commonly prescribed medications in the
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United States, less than half of depressed patients achieve full remission and many are not
responsive, with currently available monoamine-based antidepressants, most of which were
discovered by serendipity over 50 years ago (Berton and Nestler, 2006; Nestler et al.,
2002b). Surprisingly, despite tremendous efforts in the psychiatric field, there have been
only one new class of antidepressant medications developed for depression treatments and
none for schizophrenia over the past 50 years (NAMHCW-Report, 2010). This is in stark
contrast to other diseases, such as heart disease, where 13 mechanistically novel drug classes
were developed during the same period (NAMHCW-Report, 2010). Thus, there is a clearly
urgent need to develop mechanistically novel therapeutic drugs based on the understanding
of the fundamental nature of these disorders. Recent years, utilizing virogenetic and
optogenetic techniques, studies have dramatically improved our understanding of the
molecular and cellular mechanisms of psychiatric disorders, and an increasing number of
potential therapeutic targets have been reliably defined in the brain. In this article, we review
these studies, in which the sophisticated virogenetic and optogenetic techniques are
effectively used as a mining tool to identify the molecular and cellular adaptations that have
effects on both neuronal activity and behavioral functions. These studies have provided
novel, conceptually innovative therapeutic targets for the treatment of psychiatric disorders.

2. Neuronal activity-associated mechanisms as potential therapeutic
targets

The biological brain and artificial electronic systems, such as a computer, both use
surprisingly simple codes to encode complicated higher functions. A computer system, like
the highly intelligent IBM chess computer Deep Blue, is composed of very basic elements;
namely, simple functional units such as resistors (strength of connection), transistors
(electric switch), diodes (signal rectification) and capacitors (signal filter), which construct
higher functional units for the system. The system’s ultimate function is supported by these
higher functional units such as a logic gate (implementing logical operations, e.g., logic
“and” and “or”), arithmetic unit (performing addition, subtraction, and multiplication etc)
and control unit (performing the duty to direct its operations). Surprisingly, a computer
system’s ability to perform complex functions, such as the artificial intelligence of Deep
Blue, is simply encoded by two electric states – low voltage state (logic 0) and high voltage
state (logic 1) or Boolean logic conditions.

In the biological brain, a typical neuron has dendritic branches and a long axon, which is
structurally different from other types of cells in the biological system. This highly
differentiated morphology of neurons are precisely formed for collecting and transmitting
signals, and are ideally shaped to make connections and communicate with each other.
There are about 100 billion neurons in the human brain and each neuron receives on average
7,000 synaptic inputs from other neurons, which forms an extremely complicated neural
network and is the physical basis for the brain’s primitive functions such as sensation (e.g.,
vision, hearing) and motor function (e.g., strength, coordination), and higher brain functions
such as memory, language skills, and perception of time and space. Compared to a computer
system, the biological brain is much more complicated. However, the brain functions of
such complicated neural networks seem to be encoded by traveling action potentials
(spikes), which are generated by neurons with a restrict rule called “none” or “all”, similar to
logic 0 and logic 1 in a computer system, respectively. This means that neuronal spikes are
one of key elements for the brain to encode its functions.

A neuronal spike is an integrated signal generated by the cell body of a neuron, and the
integrative function of a neuron is determined by the extrinsic synaptic inputs received from
other neurons and the neuron’s intrinsic excitability (the neuron’s ability to fire spikes in
response to synaptic inputs). In contrast to stable, artificial electric circuits, the brain’s
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neural network is a dynamic, plastic system: the strength of synaptic connections and the
excitability of a neuron are all subject to adaptive change by an individual’s activity or
experience in both physiological and disease conditions. The neural factors that can
adaptively regulate the integrative function of a neuron include synaptic plasticity (e.g.,
long-term synaptic potentiation, long-term synaptic depression, and homeostatic synaptic
scaling) and neuronal excitability (e.g., homeostatic intrinsic plasticity). These
neuroadaptations determine the firing frequency of spikes and the firing patterns of a
neuron, which has been demonstrated to encode various brain functions (see below).

As mentioned above, strong environmental stimulations such as prolonged life stress and
drugs of abuse can induce a vast amount of changes in the genes, proteins, transcription
factors, channels and receptors. However, it is not necessary that all the induced changes
regulate the neuronal activity. In this review, the potential therapeutic targets are those
neuroadaptations that (1) are associated with the neuronal activity, and (2) are both sufficient
and necessary to underlie the behavioral or brain functions. Due to the complexity of the
brain, it has been beyond our technical capabilities to easily identify the specific molecular
and cellular adaptations that are both sufficient and necessary to underlie psychiatric
malfunctions. With the development and extensive application of virogenetic and
optogenetic techniques, an increasing number of potential therapeutic targets were found in
the brain through loss- and gain-of-function approaches.

3. Synaptic plasticity
We have known since the nineteenth century that neuroadaptations can occur at synaptic
levels in response to synaptic stimulation (Bliss and Gardner-Medwin, 1973; Bliss and
Lomo, 1973; Neves et al., 2008). High frequency stimulation for a few seconds or low
frequency stimulation for minutes can respectively induce long-term potentiation (LTP) and
long-term depression (LTD) in the strength of synaptic connection. This type of short-time
stimulation-induced LTP and LTD has been primarily used as a model of learning and
memory (Collingridge et al., 2010; Neves et al., 2008). Interestingly, a similar type of
synaptic plasticity has been found to be induced by drugs of abuse – relatively long-term
stimulations (Kauer and Malenka, 2007; Liu et al., 2005; Saal et al., 2003). In vivo
administration of different addictive drugs, including cocaine, amphetamine, morphine,
nicotine and ethanol, induced an increase of AMPA (a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid)/NMDA (N-menthyl-D-aspartic acid) ratio in excitatory synaptic
inputs onto ventral tegmental area (VTA) dopamine neurons in the brain reward circuit (Saal
et al., 2003; Ungless et al., 2001). Moreover, stress, a well-known factor that can induce
drug or alcohol relapse, has similar effects on AMPA/NMDA ratio on these synaptic
connections. Emerging evidence has showed that the adaptations in AMPA/NMDA ratio are
highly associated with LTP (Bellone and Luscher, 2006; Hawasli et al., 2007; Marie et al.,
2005). Using viral-mediated gene transfer (virogenetic approach), it was demonstrated that
in vivo expression of constitutively active calcium/calmodulin-dependent protein kinase IV
(CaMK IV) and cAMP response element binding protein (CREB) in the hippocampus
induced both LTP and synaptic adaptation in AMPA/NMDA ratio by enhancing NMDA
receptor-mediated responses (Marie et al., 2005). The same signal pathway may also play a
role in mediating anxiety-like behavior (Schneider et al., 2007).

Consistent with these studies, viral-mediated activation of the active form of CREB was
found to increase the surface expression of NMDA receptors in nucleus accumbens (NAc)
medium spiny neurons. Functionally, this increase of surface level NMDA receptors
maintains these neurons in an upstate for a longer duration and produces additional spikes in
each upstate, an active functional state for this type of highly hyperpolarized neuron (Huang
et al., 2008). Moreover, overexpression of constitutively active CREB upregulates the level
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of NR2B, a NMDA receptor subunit, in the NAc, which links to the increase of silent
synapses, a phenomenon that is induced by cocaine (Brown et al., 2011; Huang et al., 2009).
Additionally, CREB in the NAc exerts its effects on synaptic transmission not only through
the regulation of NMDA receptor-mediated synaptic transmission, but also through the
regulation of intrinsic excitability of these neurons (see below Neuronal excitability).

In another study, utilizing the social defeat stress model of depression and anxiety, viral-
mediated induction of transcription factor ΔFosB in the NAc was found to be both necessary
and sufficient for resilience to social defeat stress, an ability of some mice to escape the
deleterious effects of chronic stress (Vialou et al., 2010). Interestingly, these effects of
ΔFosB are produced through the induction of GluR2 AMPA glutamate receptor, an
important receptor subunit that regulates the rectification of AMPA receptor-mediated
excitatory postsynaptic currents (EPSCs). More recently, a study shows that the AMPA
receptor rectification is increased in VTA dopamine neurons when GluR1 is overexpressed
in brain slice cultures (Choi et al., 2011), a system that has been successfully used to virally
infect neurons (Cao et al., 2010b; Choi et al., 2011; Coque et al., 2011; Han et al., 2006;
Huang et al., 2008; Iniguez et al., 2010; Krishnan et al., 2007). Importantly, in vivo
overexpression of GluR1 in the VTA potentiates locomotor responses to cocaine and
increases the motivation for cocaine in cocaine self-administrating animals (Choi et al.,
2011). Interestingly, virally expressed GluR1 and GluR2 in the shell component of NAc
showed opposing effects on the regulation of motivation evidenced by measurements of
intracranial self-stimulation (Todtenkopf et al., 2006). Consistent with these findings,
chronic morphine selectively increases expression of GluR1 in the VTA, and virally
mimicking this change in GluR1 expression enhances morphine reward (Carlezon et al.,
1997). Surprisingly, morphine is both rewarding and aversive when GluR1 is virally
expressed in the rostral and caudal VTA, respectively (Carlezon et al., 2000a). Virally
elevated expression of 5-HT1B receptors in NAc shell increases cocaine-induced locomotor
sensitization and rewarding functions (Neumaier et al., 2002). Similar overexpression of 5-
HT1B receptors in the NAc, pairing with repeated mild stress, increases sensitivity to
psychostimulant amphetamine (Ferguson et al., 2009), implicating the role of 5-HT1B
receptors in the interaction between stress and psychostimulants. Consistent with these
observations, viral overexpression of 5-HT1B receptors in the NAc increases alcohol
consumption (Hoplight et al., 2006). NAc 5-HT1B receptors play an important role in
depression, aggressive behavior and drug abuse, and neurophysiologically, these receptors
may mediate their effects by regulating presynaptic function of NAc medium spiny neurons
(Neumaier et al., 2002; Sari, 2004).

Studies of viral-mediated Homer gene transfer demonstrate that this family of post synaptic
density proteins is also involved in mediating drug- and alcohol-induced plasticity
(Klugmann and Szumlinski, 2008; Knackstedt et al., 2010). Physiologically, glutamate
receptors are associatively regulated with Homer2 in the NAc (Szumlinski et al., 2007;
Szumlinski et al., 2005). Homer2 knockout mice do not exhibit glutamate sensitization in
the NAc, which is rescued by Homer2b expression in the NAc. Interestingly, NR2B stays
close to the upregulation of Homer2 during ethanol withdrawal, although it does not last as
long as Homer2 (Szumlinski et al., 2008).

Together, these studies mentioned above suggest that the synaptic transmissions onto
hippocampal neurons, NAc medium spiny neurons and VTA dopamine neurons play
important roles in mediating the behavioral responses to drugs of abuse and stress, in which
glutamate receptors, serotonin receptors, Homer, transcription factors CREB and ΔFosB are
important mediators. Thus, serotonin, NMDA and AMPA receptors, CREB, ΔFosB and
their associated signaling pathways are potential targets for the treatment of drug addiction
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and stress-induced relapse, although the exact interactions between these receptors and
proteins remain to be elucidated.

An increasing body of evidence shows that synaptic adaptations also present as structural
plasticity such as adaptive changes in spine density and cell size of neurons (Russo et al.,
2007; Russo et al., 2010; Sklair-Tavron et al., 1996). Changes in dendritic spine density can
induce alterations in synaptic transmission, which can be directly measured by studying
inhibitory postsynaptic currents (IPSCs) or EPSCs. Repeated exposure to cocaine induces a
significant long-lasting increase in dendritic spine density in the NAc (Martin et al., 2011;
Robinson and Kolb, 1999), a phenomenon that is mediated by myocyte enhancer factor 2
(MEF2) transcription factor (Pulipparacharuvil et al., 2008). Moreover, utilizing control
adeno-associated virus (AAV)-short hair RNA (shRNA) against MEF2A/2D, control AAV-
MEF2-VP16 and AAV-MEF2-VP16, a study demonstrated that the transcription factor
MEF2 is sufficient and necessary to underlie both dentritic spine density plasticity and
cocaine-induced behavioral plasticity, including locomotor sensitization and cocaine
conditioned place preference (CPP). Furthermore, MEF2 is known as one of cyclin-
dependent kinase 5 (Cdk5) substrates, a signal pathway that is also regulated by repeated
exposure of cocaine (Bibb et al., 2001). Both MEF2 and Cdk5 play important roles in the
regulation of synaptic transmission in hippocampal neurons. A conditional knockout of
Cdk5 enhances LTP and AMPA/NMDA ratio in the hippocampal Schaffer collaterals-CA1
pathway (Hawasli et al., 2007). Specifically, the viral-mediated reduction of MEF2
increased the number of synapses and miniature EPSC frequency (Flavell et al., 2006),
whereas the activation of MEF2 induces synapse elimination and consistently decreases
miniature EPSC frequency (Pfeiffer et al., 2010).

Similar structural plasticity is seen in the models of depression and anxiety. In the prefrontal
cortex, the number and function of new spine synapses are found to be increased by NMDA
receptor antagonist ketamine, a rapidly acting antidepressant when the dosage is
significantly below that used as a stimulant (Li et al., 2010). The mammalian target of
rapamycin (mTOR) is involved in mediating these adaptive changes, and blockade of mTOR
signaling abolishes ketamine-induced synaptogenesis and depression-like behaviors. In the
social defeat stress model, chronic defeat significantly increases the stubby spine density of
NAc medium spiny neurons, and consequently increases the frequency of miniature EPSCs
in these neurons (Christoffel et al., 2011). Furthermore, these structural effects of social
defeat were found to be mediated by IkB kinase through viral regulation of this kinase,
which was shown to be sufficient and necessary to underlie both chronic defeat-induced
spine plasticity and social avoidance, a profound depression-like behavior in this model.
Interestingly, IkB kinase also mediates cocaine-induced structural and behavioral plasticity
in these NAc medium spiny neurons of the brain reward circuit (Russo et al., 2009). It is
notable, as mentioned above in Section 2, that depression and drug addiction share the same
neural circuit, and even the same signaling pathway. These studies implicate that the
structural plasticity is one of the important factors that can adaptively alter synaptic
transmission by regulating the synapse number. As compared to LTP and LTD, relatively
less is known about the molecular mechanisms of structural plasticity. Further studies in this
field, utilizing advanced viral and optical regulation, may improve the understanding of how
this form of adaptation exerts its effects on synaptic transmission and on behavioral
functions, and provide valuable targets for disease treatments.

4. Neuronal excitability
The ability of a neuron to fire spikes (neuronal excitability) is intrinsically determined by the
neuron’s molecular and structural composition. Thus, different types of neurons exhibit
intrinsically distinct excitability in the brain. For instance, norepinephrinergic neurons in the
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locus coeruleus (LC) and dopaminergic neurons in the VTA have relatively depolarized
resting membrane potential (approximately −55 mV) and exhibit spontaneous firing during
functional states (Cao et al., 2010b; Han et al., 2006; van den Pol et al., 2002), whereas
GABAergic medium spiny neurons in the NAc have a very negative resting membrane
potential (about −80 mV) and need to be driven to an upstate to fire spikes as mentioned
above (Dong et al., 2006; Huang et al., 2008). An increasing body of evidence reveals that
neuronal excitability is a key mechanism that underlies certain forms of long-lasting,
experience-dependent plasticity (Rabinak et al., 2008; Saar and Barkai, 2009; Zhang and
Linden, 2003). Evidence also shows that intrinsic neuronal excitability is linked to disease
conditions such as Alzheimer disease and drug addiction (Santos et al., 2010; Wolf, 2010),
indicating that the molecular and ionic mechanisms of neuronal excitability are potential
therapeutic targets.

Studies demonstrate that the adaptive changes in intrinsic neuronal excitability occur in the
spontaneously firing neurons such as VTA and LC neurons and the neurons that have
negative resting membrane potential, such as NAc medium spiny neurons (Cao et al., 2010a;
Cao et al., 2010b; Coque et al., 2011; Han et al., 2006; Krishnan et al., 2007; Lobo et al.,
2010; Renthal et al., 2009; Wallace et al., 2009). Indeed, repeated exposure to cocaine
induces a decrease in the excitability of NAc neurons (Dong et al., 2006). Viral-mediated
overexpression of dominant negative CREB in these neurons mimics the effect of cocaine,
while overexpression of constitutively active CREB increases the excitability (Dong et al.,
2006). Further work demonstrates that the expression of active CREB prolongs the upstate
of these neurons and increases the spike number in each upstate, while dominant negative
CREB expression conversely decreases the spike number (Huang et al., 2008). Importantly,
decreasing NAc neuronal excitability via the in vivo overexpression of a voltage-gated
potassium channel Kir2.1, which mimics dominant negative CREB effects, facilitates
cocaine-induced locomotor sensitization (Dong et al., 2006). These results demonstrate that
the intrinsic excitability of NAc neurons plays a critical role in mediating cocaine actions via
the CREB signaling pathway.

Consistent with these studies, brain-derived neurotrophic factor (BDNF), one of downstream
substrates of CREB, is found to play interesting roles in mediating the stress responses and
cocaine actions in NAc neurons (Berton and Nestler, 2006; Krishnan et al., 2007; Lobo et
al., 2010). In the social defeat model, chronic defeat increases the level of BDNF in the
NAc. Utilizing floxed BDNF mice and AAV-Cre, local knockdown of BDNF gene in the
VTA blocks the BDNF increase in the NAc and reverses the social avoidance behavior
demonstrated following social defeat (Berton et al., 2006). These results demonstrate that
the increased BDNF in the NAc is released from the terminals of VTA dopamine neurons,
and plays an essential role in mediating social avoidance behavior (Berton et al., 2006).
Highly consistent with these findings, a further study shows that a similar increase in the
level of BDNF of the NAc occurs in susceptible mice, but not in the resilient subgroup
(Krishnan et al., 2007). These data suggest that the local BDNF in NAc is involved in
determining the vulnerability to social defeat. Deficits found in activity-dependent BDNF
release in Met/Met mice, a common single-nucleotide polymorphism in the BDNF gene,
(Chen et al., 2004) promote a resilient phenotype (Krishnan et al., 2007). In addition, by
combined use of Cre viral vector and floxed BDNF and TrkB mice, the same BDNF/TrkB
signal mechanisms in the VTA-NAc pathway is evidenced to play a key role in mediating
cocaine self-administration and condition place preference behavior (Graham et al., 2007;
Graham et al., 2009). The detailed ionic mechanisms that underlie these effects of BDNF/
TrkB signal pathway remain to be elucidated.

Interestingly, BDNF has opposing effects in different types of NAc neurons (Lobo et al.,
2010). Utilizing AAV-Cre and floxed TrkB mice, selective deletion of TrkB, a BDNF
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receptor, in dopamine receptor 2-containing (D2+) neurons increases the excitability of these
neurons and suppresses cocaine reward (evidenced by decreased cocaine CPP). In contrast,
an opposite effect was induced by the selective loss of TrkB in D1+ neurons. Importantly,
utilizing optogenetic approaches, selective in vivo light activation of ChR2 in D2+ neurons,
mimicking the loss of TrkB, decreases cocaine reward, while selective light activation of
D1+ neurons in the NAc induces an opposite effect. In another study, the enkephalin- and
dynorphin-containing medium spiny neurons in the NAc are selectively targeted through
virally engineered G-protein coupled muscarinic M4 receptors under control of either
enkephalin or dynorphin promoter (Ferguson et al., 2011). Pharmacological activation of
these engineered receptors decreases the excitability of both types of neurons. Decreasing
the activity of enkephalin neurons facilitates amphetamine-induced behavioral sensitization,
while the activation of dynorphin neurons impairs its persistence. These studies demonstrate
that different cell types of NAc neurons play distinct, even opposing roles in the
development of drug dependence, and highlight that without the use of advanced virogenetic
and optogenetic approaches, it has not been possible for investigators to explore the roles of
cell type-specific or circuit specific signaling pathways in mediating behavioral functions in
freely-moving animals. Recently, cell type-specific (circuit-specific) manipulation has been
successfully used in amygdala circuitry and reveals that different circuit pathways have
clearly specific functions in drug seeking behavior, anxiety and conditioned fear (Ciocchi et
al., 2011; Stuber et al., 2011; Tye et al., 2011).

Another family of CREB target genes, sirtuins, which are NAD+-dependent enzymes that
regulate cellular functions through deacetylation of various proteins, are regulated in the
NAc by in vivo cocaine administration (Renthal et al., 2009). In detail, SIRT1 and SIRT2
catalytic activity in the NAc are increased by chronic cocaine treatment. Importantly, these
enzymes exhibit an ability to regulate the excitability of NAc neurons in brain slice
preparations: a pharmacological activator of sirtuins, resveratrol, increases the excitability of
NAc neurons, whereas an inhibitor, sirtinol, induces a decrease in their excitability. Thus, it
would be of therapeutic interest to test if the local infusion of these inhibitors and activators
of sirtuins or viral regulation of these enzymes have effects on cocaine sensitization and
cocaine CPP. Together, these studies suggest that the genetic or pharmacologic regulations
of CREB, BDNF, SIRT1, SIRT2 and their related signaling pathways may have therapeutic
effects on cocaine addiction and stress-induced disorders such as depression. Very recent
studies found that a non-peptide antagonist of BDNF, receptor tropomyosin-related kinase B
(TrkB), which intervenes in the ligand-receptor interaction and reduces anxiety- and
depression-related behaviors in mouse models (Cazorla et al., 2011; Harrison, 2011).

Emerging evidence reveals that ion channels, such as K+ channels and Ih (hyperpolarization-
activated cation channels), play an important role as intrinsic factors in the regulation of
neuronal excitability. Recent study shows that Ba2+-sensitive K+ channel function is
significantly increased in the NAc by chronic social isolation stress, a model of depression
and anxiety. And this increase in K+ channel function leads to a down-regulation of the
intrinsic excitability of NAc medium spiny neurons (Wallace et al., 2009). Mimicking this
effect by viral-mediated expression of Kir2.1 in the NAc shell causes an anxiety-like
phenotype. Further intriguing evidence comes from the firing regulation of VTA dopamine
neurons in the social defeat model. Chronic social defeat increases Ih channels, a driving
force that intrinsically up-regulates the firing rate of these neurons in susceptible mice,
whereas this channel is up-regulated to a greater extent in resilient mice. Thus, the firing rate
of VTA dopamine neurons in resilient mice ought to fire higher than that in susceptible
mice, but the bigger Ih driving force is blocked by the increased K+ channel function
selectively in resilient mice, which normalizes the firing rate in resilient mice (Friedman et
al., 2011; Krishnan et al., 2007). Moreover, microarray studies show that four different types
of K+ channel subunits, including Kcnf1, Kcnh3, Kcnk4 and kcnq3, are increased
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selectively in resilient mice (Krishnan et al., 2007). These studies suggest that K+ channels
gate the neuronal excitability as an intrinsic factor, even when the ionic mechanisms are
primed to up-regulate the activity of neurons.

One intriguing question is whether other types of K+ channels serve similar functions to
regulate neuronal activity. It is believed that GIRK channels may conceptually function as a
gatekeeper of neuronal excitability (Balana et al., 2011). GIRK channels are also a new
target of ethanol actions in the brain, an exciting finding in the field of alcohol addiction
studies (Aryal et al., 2009; Kobayashi et al., 1999; Lewohl et al., 1999). Currently, there is
accumulating evidence showing that this type of K+ channel is involved in mediating the
regulation of neuronal excitability (see review,(Luscher and Slesinger, 2010)).

Further evidence that implicates the roles of neuronal excitability in the regulation of
emotional processing is from a genetic model of bipolar disorder. In this model, the Clock
mutation mice exhibit mania-like behaviors, one of the two opposing episodes seen in
bipolar disorder patients (Coque et al., 2011; Roybal et al., 2007). These mice show a
significantly higher firing rate of VTA dopamine neurons compared to wildtype mice, an
effect that is completely normalized by lithium – a commonly used mood stabilizer for
bipolar disorder patients. Consistently, knockdown of Clock expression with AAV-Clock
shRNA increases the excitability of VTA dopamine neurons obtained from naïve mice
(Mukherjee et al., 2010), whereas viral-mediated expression of Kir2.1 effectively decreases
the firing rate of VTA neurons in the Clock mutation mice, and also decreases “risk taking”
behaviors as measured in dark light and elevated plus maze tests (Coque et al., 2011; Roybal
et al., 2007).

Together, these studies strongly support the notion that the intrinsic excitability of neurons is
an important neural mechanism that underlies the neuroadaptations involved in psychiatric
disorders. Further investigations on the detailed molecular and ionic mechanisms have
enormous potential to provide valuable therapeutic targets for the treatment of these
diseases. Very recent studies reveal that K+ and Ih channels as the intrinsic regulators of
VTA dopamine neuronal activity and therefore as promising targets for depression treatment
(Friedman et al., 2011; Krishnan et al., 2007) (see below).

5. Homeostatic plasticity
In artificial electronic systems, feedback circuits are commonly used to realize certain
functions of signal processing or to stabilize the circuitry functions. A decade ago,
investigators in the field of synaptic plasticity started to understand the similar
compensatory feedback mechanisms in the brain circuitry (LeMasson et al., 1993;
Turrigiano et al., 1994). Recent findings reveal that the neurons in primary or slice cultures
exhibit an ability to develop compensatory homeostatic adaptations in intrinsic excitability
or strength of synaptic connections in response to excessive inhibition and excitation
(LeMasson et al., 1993; Turrigiano et al., 1994; Turrigiano, 2008; Zhang and Linden, 2003).
Homeostatic intrinsic plasticity is a neuronal feedback mechanism by which neurons
compensate for a strong stimulus by re-stabilizing the activity of neurons within a
physiologically normal range, while homeostatic synaptic scaling is a circuitry mechanism
by which neurons re-balance the inhibitory and excitatory functions of the neural network.
For instance, blockade of the firing of cortical pyramidal neurons in primary cell cultures by
TTX (tetrodotoxin) or by AMPA receptor blocker CNQX (6-cyano-7-nitroquinoxaline-2,3-
dione) induces an increase in the amplitude of miniature EPSCs. Conversely, an increase in
the firing by blockade of GABA (γ-aminobutyric acid)-mediated inhibition with bicuculline
significantly decreases miniature EPSC amplitude (Turrigiano et al., 1998). Since this new
form of homeostatic plasticity was reported (LeMasson et al., 1993; Turrigiano et al., 1994),
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investigators have begun to understand the molecular mechanisms of homeostatic plasticity,
but relatively less is known about the functional roles of homeostatic plasticity at the
behavioral level (Turrigiano, 2011; Turrigiano, 2008).

Impressive progress in this research area is from monocular deprivation studies, a classic
paradigm for experience-dependent cortical plasticity (Desai et al., 2002; Maffei et al.,
2004). Evidence shows that neurons receiving synaptic inputs from the deprived eye exhibit
an increased sensitivity to visual stimulation, which is functionally mediated by a
compensatory increase in synaptic strength and/or intrinsic excitability (Turrigiano, 2008;
Turrigiano and Nelson, 2004). Recently, utilizing optogenetic tools, homeostatic adaptations
in glutamate receptors are successfully induced in organotypic rodent hippocampal slices
(Goold and Nicoll, 2010). Cell-autonomous increases in excitation of CA1 pyramidal
neurons induces a compensatory postsynaptic depression of AMPA and NMDA receptor
functions via a pathway involving CaM kinase kinase and CaM kinase 4. This is exciting
news for the future of the homeostatic plasticity field because with the combined use of
optogenetic techniques and behavioral models of learning and memory there is the potential
to reveal the detailed functions of homeostatic plasticity in behaving animals.

It is well known that prolonged neuronal perturbations such as chronic stress and repeated
exposure to drugs of abuse induce long-lasting or even life time long changes in the brain
(Hyman et al., 2006; Luscher and Malenka, 2011; Nestler, 2001; Nestler et al., 2002a).
Recent research has revealed the role of homeostatic plasticity in these conditions. Chronic
administration of morphine or morphine pellets develop morphine dependence in animal
models, which is evidenced by the development of deleterious physical signs and symptoms
of morphine withdrawal (Han et al., 2006; Lane-Ladd et al., 1997; Nestler and Aghajanian,
1997). Accumulated evidence has showed that the norepinephrinergic neurons of LC are
involved in mediating the physical withdrawal. Acute in vivo morphine administration
decreases the firing rate of LC neurons (Wang and Aghajanian, 1990). During chronic
morphine exposure, LC firing rates return to normal levels (tolerance) and, on antagonist
precipitation of withdrawal, increase dramatically above normal levels (Aghajanian, 1978;
Rasmussen et al., 1990). This chronic morphine-induced homeostatic plasticity is induced
by both synaptic homeostatic plasticity and adaptive changes in the intrinsic excitability of
LC neurons (Cao et al., 2010b; Han et al., 2006; Ivanov and Aston-Jones, 2001; Nestler and
Aghajanian, 1997; Rasmussen, 1995). Chronic morphine significantly increases the level of
CREB in the LC and viral-mediated expression of the active form of CREB increases the
firing rate of LC neurons, whereas overexpression of dominant negative CREB has an
opposite effect on the firing rate. Importantly, local infusion of CREB into the LC
aggravates certain signs of withdrawal, while these withdrawal behaviors show significant
attenuation by the expression of dominant negative CREB (Han et al., 2006). These results
provide direct evidence that the LC neuronal homeostatic plasticity plays an important role
in mediating the development of morphine dependence and withdrawal behaviors, indicating
that these neuroadaptative changes may be valuable targets for therapeutic treatment.

Similar intrinsic homeostatic plasticity is found in VTA dopamine neurons. As mentioned
above, in a social defeat stress model, chronic defeat increases the firing rate and bursting
properties of VTA dopamine neurons in susceptible mice, but not in the resilient subgroup.
Further research demonstrates that Ih is significantly up-regulated in susceptible mice,
suggesting that this channel is a pathogenic ion mechanism that underlies the susceptible
phenotype. Surprisingly, this pathogenic mechanism persists in resilient mice in conjunction
with the selective increase in K+ channel function, which drives the pathophysiological
hyperactivity back to normal levels (Friedman et al., 2011). These results strongly support
the notion that the homeostatic, compensational plasticity in K+ channels is the critical
mechanism of resilience to social defeat. Thus, the balance between Ih and K+ channels is a
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key determinant for susceptibility versus resilience to social defeat. Importantly, decreased
firing through viral-mediated expression of Kir2.1 in the VTA in vivo promotes a resilient
phenotype, whereas increased firing oppositely promotes susceptibility (Krishnan et al.,
2007). Accordingly, in continuing studies, a K+ channel activator is used to mimic the
compensational, active ionic mechanism of naturally occurring resilience, and found to
normalize the social defeat-induced avoidance behavior (Friedman et al., 2011). This
research, based on the understanding of detailed stress responses in the brain, provides novel
targets, which are conceptually distinct from traditional monoamine-based antidepressants.

6. Adaptive changes in the firing rate and firing pattern
In a computer system, certain-length binary digits encode an instruction, which presents a
processing step such as addition. For instance, a binary code of addition is sent to a control
unit, which fetches the binary code and directs the addition operation of arithmetic unit.
Comparatively, how do neuronal spikes encode brain functions? Does a certain number of
spikes from different parallel neurons or a certain number of spikes from the same neuron
encode neural functions? Studies have showed that the nervous system uses multiple ways,
including the frequency of neuronal spikes (firing rate), the firing patterns (tonic or phasic
firing), spike timing-dependent plasticity and spike synchronization of neuronal population,
to encode a multitude of brain functions (Caporale and Dan, 2008; Ermentrout et al., 2008;
Grace et al., 2007; Lestienne, 2001). Recent optogenetic studies show that highly
synchronized activation of specific neurons in certain brain nuclei or specific pathways
reliably regulates behavioral functions. For instance, it was demonstrated that the light
stimulation of ChR2 in the motor cortex induces instant locomotor behavior: light on, mouse
quickly moves around (unilateral stimulation), while light off, mouse moves only randomly
(see the video at Karl Deisseroth Laboratory website:
http://www.stanford.edu/group/dlab/optogenetics/hardware.html). In addition, optogenetic
research also demonstrates that the firing patterns of neurons also carry functional signals
(see below).

The amygdala, an important brain region for emotional processing, is involved in the
development and expression of Pavlovian conditioned fear responses (LeDoux, 2000; Maren
and Quirk, 2004). Recent research has defined the detailed inhibitory microcircuits for the
fear conditioning through combined use of in vivo eletrophysiological, optogenetic and
pharmacological approaches (Ciocchi et al., 2010; Haubensak et al., 2010). A further study
demonstrates that the neuronal projection from the basolateral amygdala (Lewis et al., 2011)
to the central nucleus of the amygdala (CeA) is a critical circuit pathway that controls acute
anxiety (Tye et al., 2011). High frequency (20 Hz) optical stimulation of ChR2 expressed at
the CeA terminals of BLA neurons induces an acute, reversible anxiolytic effect, whereas
inhibition of the same projection pathway by light activation of halorhodopsin (eNpHR3.0)
increases anxiety-like behaviors.

It has been known for a long time that the VTA dopamine neurons in the brain reward
circuit exhibit two different in vivo firing patterns: low-frequency tonic and high-frequency
phasic firing (Grace et al., 2007). The phasic firing of these neurons releases more dopamine
in their target area and encode reward signals. Therefore, the phasic firing is functionally
more important, a notion that is further supported by a recent study. In this study, the high-
frequency light stimulation of ChR2, specifically in VTA dopamine neurons, is used to
mimic the in vivo phasic firing, and is delivered when the mice approach a conditioning
chamber during a conditioned place preference test. The phasic activation of ChR2 in VTA
dopamine neurons results in mice exhibiting a place preference by spending more time in
the conditioning chamber, an effect that could not be induced by the tonic activation of
ChR2 in the same group of neurons (Tsai et al., 2009). This research provides the first direct
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evidence that the phasic firing pattern of VTA neurons encodes conditioned place preference
behavior.

Another interesting finding obtained from the social defeat mouse model, demonstrates that
in vivo phasic firing of VTA dopamine neurons is significantly increased in susceptible
mice, but not in the resilient subgroup. As mentioned above, resilient mice are a subgroup of
mice that undergo the social defeat paradigm, but exhibit no depression-like behavioral
abnormalities such as social avoidance and anhedonia (lower sucrose preference) (Cao et al.,
2010a; Krishnan et al., 2007; Vialou et al., 2010; Wilkinson et al., 2009). Moreover, phasic
optogenetic activation of VTA DA neurons induces avoidance behavior in resilient mice, as
well as in mice that undergo a sub-threshold social defeat paradigm, a procedure that is used
to measure sensitivity to further stress (Chaudhury et al., 2011). These data provide direct
evidence that the phasic firing of VTA dopamine neurons in the brain reward circuit encodes
a signal of susceptibility to social defeat stress. Intensive investigation of the ionic
mechanisms that underlie the phasic firing have the potential to reveal novel drug targets for
the treatment of major depressive disorder. As mentioned above, one possible target is the Ih
channel, not only because it is a featured pacemaker channel in VTA dopamine neurons, but
because this channel is known to play an important role in the transition between tonic and
phasic firing patterns (Arencibia-Albite et al., 2007; Inyushin et al., 2010; Neuhoff et al.,
2002). As expected, local infusion of Ih inhibitors ZD7288 and DK-AH269 shows
antidepressant effects: Ih inhibitors completely reverse depression-like avoidance behaviors
(Cao et al., 2010a). Importantly, systematic administration of DK-AH269 has similar
antidepressant effects in susceptible mice (Friedman et al., 2011). Surprisingly, Ih inhibitors
showed antidepressant effect within a few hours, and the antidepressant effects induced by a
single-dose local infusion into the VTA or systematic administration of DK-AH269 lasted at
least two weeks, which is very different from traditional antidepressant medications that take
weeks to reach clinical efficacy (Friedman et al., 2011). Consistent with these exciting
findings, the deletion of Ih channel auxiliary subunit TRIP8b impairs Ih function in the
hippocampus, and interestingly, shows an antidepressant effect in mice (Lewis et al., 2011).

In the same stress model, the phosphorylation of extracellular signal-regulated kinase-2
(ERK2) in the VTA is found to be increased by chronic unpredictable stress. Overexpression
of dominant negative ERK2 decreases the firing rate of VTA dopamine neurons and
promotes resilience to social defeat stress, whereas expressing ERK2 promotes susceptibility
(Iniguez et al., 2010). In addition, the phosphorylation of AKT in the VTA is decreased in
susceptible mice. Decreasing the AKT activity through a dominant negative AKT promotes
the susceptibility to social defeat, whereas increasing the AKT activity by constitutively
active AKT reverses the susceptible mice phenotype (Krishnan et al., 2008). The deleterious
effects of AKT on the social behavior may be mediated by increasing the firing rate of VTA
dopamine neurons since the firing rate of these neurons is increased by an inhibitor of AKT
signaling. Together, these investigations suggest that the firing activity of VTA dopamine
neurons in the reward system is important in encoding the brain’s response to stress and may
provide an ideal neuroadaptation to target for beneficial therapeutic treatments.

7. Conclusion
Virogenetics and optogenetics are newly developed and highly effective techniques to
intensively understand the in vivo functional roles of specific molecular components in the
brain and specific types of neurons in a complex neural network. These advanced techniques
are to date, the most powerful tools that can be used to precisely and reliably imitate the
molecular and cellular neuroadaptations seen in rodent models of psychiatric disorders, and
to further and directly link these adaptive changes in the brain to behavioral dysfunctions in
freely moving animals. After over 50 years of studies of psychiatric medications found by
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serendipity, these new molecular mechanisms provide highly useful information for the
development of biological mechanism-based therapeutics. And importantly, the circuit
understanding of psychiatric disorders provides precise information for the development of
more targeted and effective treatments for severe forms of psychiatric disorders with deep
brain stimulation. Given the emerging view of addiction and depression as a “neural circuit
disorder”, which in part arouse from the rapid treatment efficacy of deep brain stimulation,
the goal of understanding these psychiatric disorders on the circuit level has become even
more therapeutically important. As still developing techniques, virogenetics and
optogenetics have their limitation (see Table 1 for their advantages and disadvantages) in
research aspects, and will require significant advancement before they are reliably used to
assist in treatment for severe forms of currently treatment-resistant psychiatric patients.

Through the effective use of virogenetic and optogenetic approaches as a powerful tool, the
studies mentioned above have made strides to isolate the molecular and cellular adaptations
that are sufficient and necessary to underlie various behavioral abnormities in rodent models
of psychiatric disorders. One consistent finding across different types of neurons in the NAc
and LC is that transcription factor CREB increases the firing rate of LC neurons and the
excitability of NAc medium spiny neurons, a net effect that enhances the neuronal activity.
Similar effects have been reported in the neurons of hippocampus and amygdala (Benito and
Barco, 2010). As emphasized in this review, neuronal activity is a crucial component that
encodes neural functions and reliably links to behavioral outputs. Importantly, the findings
about BDNF, TrkB, CaMKII, ERK, Cdk5, and Sirtuins are not separated single items; rather
they are closely related each other in several signal pathways such as TrkB-CaMKII-CREB,
TrkB-ERK-CREB, and TrkB-AKT-CREB pathways. There may also have local feedback
regulations because BDNF is a downstream product of CREB. Therefore, CREB and
CREB-related signaling pathways, including BDNF, ΔFosB, Cdk5 and Sirtuins, are
potentially valuable targets to regulate the neuronal activity and further to treat behavioral
dysfunctions in these psychiatric conditions. In addition, structural plasticity is a fast
growing research area that may provide opportunities to understand the underlying
molecular mechanisms of mood disorders, and reveal useful targets for the development of
mechanistically new antidepressants such as NMDA receptor antagonist ketamine, a rapidly
acting antidepressant. A glutamate theory of depression has also attracted increasing
attention and provides promising potential to identify new therapies for major depression.
Glutamate receptor-mediated synaptic and structural plasticity can contribute directly to the
neuronal activity and exert its effects on behavioral functions as mentioned above in
cocaine-related studies. Another chance to identify mechanistically novel classes of
antidepressant medications is to effectively regulate the firing rate, especially phasic firing
pattern, of VTA dopamine neurons in the brain reward circuitry. The impressive rapid and
long-lasting antidepressant effects of Ih inhibitors open a new avenue to develop therapeutic
medications that are conceptually different from traditional monoamine-based
antidepressants. Finally, the accumulating body of consistent evidence supports the
important role of K+ channels in gating neuronal excitability. K+ channel-based
antidepressant medications would be conceptually innovative therapy for stress-induced
mood disorders. Together, utilizing virogenetic and optogenetic approaches, these studies
reveal highly specific neuronal and molecular neuroadaptations underlying different
psychiatric disorders that ultimately may lead to a number of potential new therapeutic
targets.
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Highlights

• A systematic research strategy with a target defining loop is introduced.

• Virogenetic and optogenetic approaches are used as an effective defining tool.

• Focusing on the neuronal activity during the target defining is highly important.

• The identified potential therapeutic targets and related studies are reviewed.
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Fig. 1. Systematic research strategy for defining potential therapeutic targets
Strong environmental stimulation such as chronic stress and addictive drugs can induce
behavioral dysfunctions, which can be mediated by neuroadaptations at the levels of neural
circuitry and neuronal plasticity. The underlying molecular mechanisms such as ionic,
receptor and genetic basis for the neuroadaptations are potential therapeutic targets. An up-
down-up research strategy model can be used to define these potential targets from a vast
amount of prolonged stimulation-induced adaptive changes. A key component to this
strategy is the Target Defining Loop, which links various neuroadaptations at different
levels back to behavioral endpoints by utilizing in vivo viral-mediated gene transfer
(virogenetics) and optical manipulations of specific neurons or neural circuits in freely
moving animals (optogenetics). Through the gain- or loss-of-function, the sufficient and
necessary molecular and cellular adaptations for the behavioral abnormalities are defined as
potential therapeutic targets.
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Fig. 2. Viral-mediated gene transfer
1. Cloning and isolating gene of interest. 2. Viral transfection with the ideal viral vector
based on genome size, infection/tropism, host genome interaction, transgene expression and
packaging capacity. Viral vector options include adenovirus, adeno-associated virus,
retrovirus, herpes simplex viruses, vaccinia virus and lentivirus vehicles. Each differs on
how well they transfer genes to the cells they recognize and are able to infect, and whether
they alter the cell’s DNA permanently or temporarily. 3. Binding of virus with cell surface
receptors. Cell-bound virions are internalized via clathrin-dependent endocytotic pathway
and imported to the nucleus, where transcription and replication of the vRNA/DNA
molecules occur. 4. Translation of viral mRNA molecules takes place in the cytoplasm.
Produced proteins and complexes are finally assembled at the plasma membrane.
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Fig. 3. Light sensitive channels and their functions
Fast light activated channels and enzymes allow for temporally precise manipulation of
electrical and biochemical events and are used as tools to investigate the function of multiple
neural systems. Specifically, 1. Channelrhodopsin (ChR2), a light activated proton channel
(as well as ChR1, VChR1, and SFOs), excites neurons to investigate gain of function by
depolarizing the membrane and eliciting firing activity. 2. Halorhodopsin, a chloride ion
pump (NpHR, eNpHR2.0 and eNpHR3.0), inhibits neurons to investigate loss of function by
hyperpolarizing the membrane and inhibiting firing activity. Alternatively, specific G-
protein coupled receptors can be fused with opsins to manipulate cAMP, GTPases and IP3
optically.
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Fig. 4. In vivo viral-mediated gene transfer – virogenetics
A number of viruses such as adeno-associated virus (AAV) and herpes simplex virus (HSV)
are used to carry genes of interest, including transcription factors, ion channels and
receptors, and successfully express them in the brain in vivo. In this sense, the virus is acting
as a “gene delivery vehicle” (viral vector), by which desired genes are delivered into the
neurons of specific brain regions through standard laboratory stereotaxic surgery. Thus, the
gene expression is locally regulated in the brain region or nucleus of interest, and ready for
specific behavioral tests to investigate the contribution of these local genes to the tested
behaviors. By expressing wildtype genes, constitutively active genes, or dominant negative
genes in the restricted brain region, the gain- and loss-of-function is realized with this
virogenetic approach, which is a key tool to mine the genes that are not only induced by
stimuli in a behavioral model, but primarily contribute to the behavioral phenotypes seen in
this model. For more information about virogenetics, see reviews (Carlezon et al., 2000b;
Neve et al., 2005).
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Fig. 5. In vivo optical manipulations of specific neurons or neural circuits – optogenetics
1. Cell type-specific neuronal control. The targeted neurons are engineered to express Cre in
Cre line mice. Therefore, there are Cre positive (Cre+) and Cre negative (Cre-) neurons in
the brain region of interest. When Cre-identifying (conditional) ChR2 viral vectors are
injected into the brain region, they selectively infect Cre-containing neurons. Behavioral test
can be carried out during the blue light activation of infected neurons in freely-moving
animals. For instance, conditional AAV-ChR2 is locally injected into the ventral tegmental
area (VTA) of tyrosine hydroxylase (TH)-Cre mice so that ChR2 is only expressed in VTA
dopamine neurons, but not GABA interneurons in this brain region. Then, the optical fiber
reaches to the VTA through a guide cannula that fixes to scull. Through the optical fiber,
blue light is delivered to the VTA and selectively activates the dopamine neurons during
behavioral tests such as a social interaction measurement. 2. Pathway specific circuit
manipulation. There are two ways to realize the circuit-specific control. (A) Conditional
ChR2 is injected to one brain nucleus and then light activation of infected neuronal
terminals in its target area. For example, conditional AAV-ChR2 is injected into the VTA of
TH-Cre mice and an optical fiber is implanted into the nucleus accumbens (NAc), a target
brain region of the VTA dopamine neurons. The VTA-NAc pathway can be selectively
activated through the light stimulation of ChR2-expressing dopamine neuron’s terminals in
the NAc when the behaving animals are tested. (B) Retrograde Cre virus is injected to a
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target area so that Cre is retrograded to the cell body from the target area, and then
conditional AAV-ChR2 is delivered into the cell body brain region to infect Cre-containing
neurons. Therefore, the light activation of cell body region selectively stimulates the specific
circuit pathway (Gradinaru et al., 2010). For more detailed information, see reviews
(Deisseroth et al., 2006; Gradinaru et al., 2007; Zhang et al., 2007)
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Table 1

A comparison of conventional pharmacology, virogenetics and optogenetics.

Technique Advantages Disadvantages

Conventional Pharmacology • Large number of available reagents

• High selectivity of channels, receptors
and kinases

• Direct information for drug
development

• Ease to translational use

• Minimal selectivity for cell type or brain
region

• Drug selectivity

• Less temporal precision

Virogenetics • Cell type selective

• Temporal selective in transgenic mice

• Targeted approach

• Length of expression

• Determining synaptic connections

• Testing in behaving animals

• Packaging capacity limited

• Toxicity

• Range of gene delivery

• Virus proteins altering signal pathways

• Some vectors have transient expression

• Immunoresponses towards viral antigens

• Limited translational use

Optogenetics • Temporal precision

• Temporal selective activation and
inhibition

• Cell type- or circuit type-specificity

• Key information for deep brain
stimulation

• Test in behaving animal

• Limited region of stimulation

• Number of activated neurons

• As an emerging technique, more transgenic
mice are needed to express ChR2 or NpHR in
select neuronal types

• Not for translational use so far
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