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Abstract

Ever since Darwin proposed natural selection as the driving force for the origin of species, the role of adaptive processes in
speciation has remained controversial. In particular, a largely unsolved issue is whether key divergent ecological adaptations
are associated with speciation events or evolve secondarily within sister species after the split. The plant Arabidopsis halleri
is one of the few species able to colonize soils highly enriched in zinc and cadmium. Recent advances in the molecular
genetics of adaptation show that the physiology of this derived ecological trait involves copy number expansions of the
AhHMA4 gene, for which orthologs are found in single copy in the closely related A. lyrata and the outgroup A. thaliana. To
gain insight into the speciation process, we ask whether adaptive molecular changes at this candidate gene were
contemporary with important stages of the speciation process. We first inferred the scenario and timescale of speciation by
comparing patterns of variation across the genomic backgrounds of A. halleri and A. lyrata. Then, we estimated the timing
of the first duplication of AhHMA4 in A. halleri. Our analysis suggests that the historical split between the two species closely
coincides with major changes in this molecular target of adaptation in the A. halleri lineage. These results clearly indicate
that these changes evolved in A. halleri well before industrial activities fostered the spread of Zn- and Cd-polluted areas, and
suggest that adaptive processes related to heavy-metal homeostasis played a major role in the speciation process.
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Introduction

Ever since Darwin [1] introduced the idea that natural selection

may be the driving force behind the origin of species, the role

of adaptive processes at play during speciation has remained

controversial. One approach has tried to catch speciation in

flagrante delicto by focusing on partially reproductively isolated

ecotypes, asking how ecology and genetics interact and cause the

evolution of reproductive barriers [2,3]. While this approach is

well suited for investigating the modes of speciation, and in

particular for revealing the ecological speciation process, its

validity has been questioned because there is no guarantee that

the studied ecotypes will ever attain species status. Hence, a

different, ‘‘retrospective’’ approach studies well-established species

among which reproductive isolation is complete. These studies are

able to determine the genetics of extant reproductive barriers, but

the modes of speciation, and in particular the role of divergent

selection in the early phases of the speciation process, are

notoriously difficult to infer a posteriori [3].

Recent developments in population genomic tools have brought

new prospects for the retrospective approach, making it possible

to study the divergence process a posteriori by estimating parame-

ters under simple demographic models of speciation [4,5]. In

particular, the recently developed approximate Bayesian compu-

tation (ABC) approach provides a framework for testing alternative

demographic models of speciation [6,7], and also allows great

flexibility in the type of models that can be compared [8]. In

parallel, the availability of genomic tools in model species along

with population genomic and candidate gene approaches have

resulted in the identification of major genes and molecular

processes that drive ecological specialization within or between

species [9]. Such knowledge may ultimately help understand the

chronology of evolutionary genetic processes underlying the

response of species and organisms to their natural environment.

Strikingly, these two lines of advances have rarely been integrated,

and the demographical and historical contexts of most document-

ed ecological adaptations remain poorly characterized. In

particular, it remains largely unknown whether key divergent

ecological adaptations are indeed associated with speciation events

or evolve secondarily within sister species after the split.

Here, we investigated the ecological speciation process using a

retrospective approach by combining demographic inference on

the timing of speciation with studies on a molecular target of

adaptation. We focused on the pair of plant species Arabidopsis

halleri and A. lyrata (Brassicaceae), two close relatives of the model

species A. thaliana from which they diverged about 5 MY [10], or

PLoS ONE | www.plosone.org 1 November 2011 | Volume 6 | Issue 11 | e26872



earlier [11]. A. halleri is mainly distributed in continental Europe,

although a subspecies (A. halleri ssp. gemmifera) with a disjunct

distribution occurs in Eastern Eurasia [10]. In comparison, A.

lyrata has a circumboreal distribution but also occurs in Western

and Central Europe [10]. The two species differ in an important

ecological trait. A. halleri is a pseudometallophyte species able to

colonize soils highly enriched in zinc and cadmium, and can

accumulate these metals in its aerial parts [12,13]. A. lyrata and

the outgroup A. thaliana are both non-accumulators and sensitive

to zinc and cadmium, strongly suggesting that zinc and cad-

mium tolerance and hyperaccumulation in A. halleri are derived

ecological traits. Moreover, all data available today indicate that

these traits are shared by populations growing on metalliferous as

well as non-metalliferous soils, species-wide [12,14]. This obser-

vation raises the question of the role of human (industrial) activities

on selection of such phenotypes. According to one scenario, recent

heavy metal pollution due to industrial activities could have

been the main selection pressure leading to changes in metal

homeostasis in the A. halleri lineage. Hence, populations presently

growing on non-metalliferous soils would have evolved recently

from metallicolous populations, suggesting the occurrence of a

recent genetic bottleneck in A. halleri. An alternative scenario

would be the early fixation in the A. halleri lineage of mutations

inducing changes in metal homeostasis well before the pollution

induced by human activities.

Recently, one gene has been characterized as a key factor

involved in zinc homeostasis in A. halleri. HMA4 (heavy metal ATPase

4) encodes a metal pump controlling root-to-shoot Zn transport by

loading Zn into xylem vessels [15]. This gene has a strikingly high

transcript level in A. halleri, as the result of cis-regulatory changes

and tandem triplication. RNA silencing of HMA4 in A. halleri

provides strong support that these changes play a major role in Zn

and Cd tolerance and hyperaccumulation in this species [15].

Moreover, independent tandem duplications of HMA4 also

occurred in Noccaea caerulescens, another Zn and Cd hyperaccumu-

lator species [16], reinforcing the role of duplication-mediated

increased expression of this gene in the evolution towards metal

tolerance and hyperaccumulation.

In this paper, we tested whether the adaptive molecular changes

at this gene are contemporary with important stages of the

speciation process. We first compared patterns of genetic variation

across the genomic backgrounds of A. halleri and A. lyrata to test

alternative demographic models of speciation. Then, we estimated

the timing of the first duplication of AhHMA4 in the A. halleri

lineage. Our analysis supports that the evolution of Zn and Cd

tolerance in A. halleri was not followed by a strong bottleneck.

Moreover, the historical split between A. halleri and A. lyrata closely

coincides with the evolution of major changes in metal

homeostasis in the A. halleri lineage. These results clearly indicate

that these changes evolved in A. halleri well before the spread of

Zn-and Cd-polluted areas through industrial activities, and suggest

that adaptive processes related to heavy-metal homeostasis have

occurred during the speciation process.

Results

To evaluate the demographic and historical context of

speciation, we estimated the levels of nucleotide diversity in the

genomic background of A. halleri and A. lyrata. In A. halleri, we

resequenced 29 unlinked nuclear genes (totaling 26 kb of coding

sequence per individual, Table S1) on a geographically broad

sample of 31 individuals from five European populations. In A.

lyrata, we used published sequence data [17] for the orthologs in 48

individuals from four European populations. Over both species,

we observed a total of 850 biallelic polymorphic sites (Table S2).

Levels of synonymous polymorphism estimated at these loci were

very similar in both species based on either the nucleotide diversity

statistic, p [18] (psyn = 0.0206 vs. 0.0240, for A. halleri and A. lyrata

respectively; Fig. 1A, Table S3) or Watterson’s hW statistic [19]

(hW-syn = 0.0174 vs. 0.0190; Fig. 1B, Table S3), and the differences

were not significant (Wilcoxon signed-rank test, W = 383,

P = 0.5650 for psyn; and W = 368, P = 0.4187 for hW-syn). Levels

of synonymous hW per nucleotide and per locus varied slightly

among A. halleri populations, and ranged from 0.0108 (SD = 0.015)

for the CZ population, to 0.0161 (SD = 0.016) for the Slovenian

population (Table S4). The Tajima’s estimator psyn measured per

nucleotide and per locus ranged from 0.0114 (SD = 0.0187) to

0.0176 (SD = 0.0197). The site frequency spectrum, measured by

Tajima’s D [20] shows levels across loci around the neutral

expectation of 0 (mean Dhal = 0.239, mean Dlyr = 0.513, W = 334,

P = 0.3489) (Fig. 1C), suggesting no particular recent changes in

population sizes.

The joint frequency spectra of derived synonymous sites in A.

halleri and A. lyrata (Fig. 2), in reference to the outgroup A. thaliana,

clearly did not support strong differentiation between the two

species since only 7.2% of polymorphic sites were fixed for a

derived allele in either species (Fig. S1). The total amount of

putative ancestral polymorphisms contributed greatly to the

observed level of diversity: 12.8% of all polymorphic sites were

shared between the two species and 14.4% of sites showed

polymorphisms in one species for a derived allele that was fixed in

the other species (Sxhalflyr = 5% and Sxlyrfhal = 9.4%, using the

notation of [21]), giving a total of 27.2% of segregating

polymorphisms being putatively of ancestral origin. Finally, a

Figure 1. Box-plots of diversity and Tajima’s D statistics for A. halleri and A. lyrata. (A) synonymous nucleotide diversity, psyn; (B) Watterson’s
hsyn statistic; (C) Tajima’s D statistic.
doi:10.1371/journal.pone.0026872.g001
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large amount of the observed polymorphism was private to each

species (31.4% and 34.2% of all polymorphic sites in A. halleri and

A. lyrata respectively, Fig. S1). Between-species differentiation

measured by FST (Average = 0.4566, SD = 0.211) ranged across

loci from 0.0688 for At1g59720 to 0.8299 for At1g06520 (Table

S8).

These high levels of putative ancestral polymorphisms in both

species can be due to either incomplete lineage sorting or gene

flow between species, although the almost complete absence of

haplotype sharing among species provides support for the former

hypothesis (data not shown). Using model choice procedures under

an ABC framework, we could clearly reject scenarios with ongoing

migration (Fig. 3, see also Text S1 for an account of the tests on

the robustness of this result). Both models allowing for ongoing

migration (the ‘‘constant migration’’ and the ‘‘secondary contact’’

models) had very low posterior probabilities (P,0.001, Fig. 3,

Table S5). In contrast, the ‘‘strict isolation’’ and ‘‘ancient

migration’’ models in which migration was assumed to have

completely ceased, had high posterior probabilities, the former

being better supported (P = 0.771 and 0.227, respectively). Using

numerical simulations, we tested the robustness of the model

choice procedure and found that a posterior probability of 0.771

for the strict isolation model was highly significant (P = 0.975; Text

S1, Fig. S2). ABC analyses also clearly favored all models with no

temporal variation in effective population size (Fig. 3, Table 1). We

thus rejected the hypothesis that changes in metal homeostasis

occurred only recently during colonization of polluted sites under

strong selection for Zn and Cd tolerance, followed by colonization

of non-metalliferous sites, processes that should have caused a

recent genetic bottleneck in A. halleri. The lack of evidence for a

recent genetic bottleneck in A. halleri was also suggested by

multilocus analyses of nucleotide polymorphism in a single

German population [22].

Parameter estimation under the best supported model (strict

isolation with constant population size –SIC model) pointed to a

more recent divergence <337,000 [272,800–438,200] years ago

(Table 2, Fig. 4, Fig. S3) than the previous estimate of 2 MY old

divergence [23,24]. This discrepancy is due to a large difference

between the time of species separation and the mean divergence

time of A. halleri and A. lyrata gene copies at the 29 loci (Fig. 4),

which is itself due to a large ancestral population size (<533,000

individuals) as compared to that estimated for the current A. halleri

(<82,000) and A. lyrata (<79,200) populations (Table 2).

We then compared the inferred speciation times with the timing

of copy number expansion of AhHMA4, contributing to drastic

changes in metal homeostasis in A. halleri [15,25]. To obtain time

estimates for this event, we compared paralogous nucleotide

sequences in A. halleri with orthologous sequences in A. thaliana and

A. lyrata. Because gene conversion can bias molecular clocks, we

first ensured that it did not occur at AhHMA4 [26]. Then, we

checked that all paralogous sequences of AhHMA4 in A. halleri

clustered together, i.e. that the single copy gene in A. lyrata

appeared as an outgroup sequence (Fig. S4). Finally, we estimated

the time of the first duplication event. Our estimate indicated that

it occurred <357,000 [216,968–1,057,370] years ago, suggesting

that it was contemporary with the speciation between A. halleri and

A. lyrata (Fig. 4). The second AhHMA4 duplication was estimated to

have occurred <100,000 years after the first duplication event, e.g.

<250,000 [5,790–474,510] years ago.

Discussion

Research on the genetics of speciation has mainly focused on

the detection of secondary Dobzhansky-Muller genetic incompat-

ibilities that reduce the probability of gene exchange between

Figure 2. Distributions of derived synonymous SNP frequen-
cies in A. halleri and A. lyrata calculated using A. thaliana as an
outgroup. Exclusive polymorphic sites (bottom row and first column)
are defined as positions where the derived allele frequency is between
.0 and ,1 in one species, but has a frequency of zero in the other
species. Fixed differences are positions where the derived allele
frequency is = 0 in one species and = 1 in the other species. Shared
polymorphic sites are positions where the derived frequencies are .0
and ,1 in both species. Putatively ancestral polymorphic sites are
positions where the derived allele frequency is = 1 in one species and
between zero and unity in the other species.
doi:10.1371/journal.pone.0026872.g002

Figure 3. Alternative scenarios of speciation for A. halleri and
A. lyrata. Four classes of scenarios according to the pattern of
migration: strict isolation (SI), constant migration (CM), ancient
migration (AM) and secondary contact (SC). Three alternative models
within each class of scenarios: constant population size (SIC, CMC, AMC,
SCC), exponential population growth (SIE, CME, AME, SCE) and
bottleneck specific to A. halleri followed by exponential population
growth (SIB, CMB, AMB, SCB). The migration rate M is expressed in 4 Nm
units, where m is the proportion of a population made up of migrants
from the other population per generation. N is the effective population
size expressed in numbers of individuals. A. halleri (Nhal), A. lyrata (Nlyr),
or the ancestor (NA). The posterior probabilities of the best model
selected under each scenario are reported.
doi:10.1371/journal.pone.0026872.g003
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extant species (e.g. [27,28,29,30]). Although equally important, the

initial causes of divergence remain much more poorly documented

at the genetic and molecular level [31]. By combining molecular

genetics of adaptation approaches with population genomic

approaches, we found that a major adaptive change specific to

A. halleri could have been contemporary with the split from the A.

lyrata lineage. This suggests that ecological differentiation may

have occurred at the onset of speciation in this species pair. Similar

approaches in the genus Capsella concluded to the co-occurrence of

speciation in C. rubella with molecular changes at a locus strongly

influencing plant fitness (the self-incompatibility locus, or S-locus,

enforcing outcrossing in hermaphrodites) [32,33]. This also

occurred together with the evolution of a ‘‘selfing syndrome’’ in

flower morphology, annual life cycle, and geographic expansion.

Interestingly, similar features co-evolved very recently in A. thaliana

[34,35,36,37], but in clear disconnection with the time of split

between A. thaliana and the lineage leading to its closely related

species A. halleri and A. lyrata, which diverged much earlier [11,38].

Hence, these contrasting patterns suggest that the shift in mating

system from outcrossing to selfing may have been a key element of

the speciation process in C. rubella, but not in A. thaliana.

The mechanisms by which divergent natural selection on

phenotypic traits associated with ecological differentiation may

promote reproductive isolation between populations are still

largely unknown [39]. A key issue is to determine whether

reproductive isolation associated with ecological speciation occurs

mostly by direct or indirect effects of the adaptive molecular

changes at target genes (2). In A. halleri, while increased expression

of AhHMA4 induced important changes in Zn translocation to

aerial parts, the overall Zn tolerant phenotype results from a

complex genetic architecture involving other genes of smaller

effects [40]. Indeed, expression of AhHMA4 in A. thaliana leads to

elevated, rather than reduced, sensitivity to metals as a result of

enhanced transfer from roots to shoots [15]. This negative effect of

an AhHMA4 transgene in an A. thaliana genomic background

suggests that increased expression of HMA4 in A. halleri

necessitated the prior establishment of an adequate genetic

background involving metal chelators, antioxydants, or metal

transporters. This sequence of events is supported by the

identification of several quantitative trait loci (QTL) regions

involved in the tolerance to Zn and Cd in A. halleri [40]. In

particular, one of these QTLs contains MTP1 (metal tolerance protein

1), a gene involved in metal homeostasis [41] encoding a protein

that mediates Zn transport from the cytoplasm to the vacuole

[42,43]. We propose that molecular changes at HMA4 could have

been favored in some appropriate genetic background character-

ized by preexisting MTP1 mutants enabling plants to cope with

elevated Zn in their aerial parts. Under this scenario, genetic

exchanges between tolerant and non-tolerant populations would

have generated low fitness genotypes, being hyperaccumulating

yet highly sensitive, hence suggesting a direct involvement of the

targets of adaptation in reproductive isolation.

Our suggestion that a major change in metal homeostasis would

have occurred at the onset of A. halleri emergence is in line with the

available data that indicates a species-wide pattern of strong Zn

tolerance in A. halleri including populations from Western and

Central Europe, Eastern Europe, Taiwan, and Japan [14,44,45].

However, the occurrence of species-wide metal tolerance long

before the expansion of anthropogenic environments raises the

issue of the ecological conditions that selected for this physiological

change. An emerging hypothesis is the important role of metal

hyperaccumulation in plant leaves as a defense mechanism against

pathogens or herbivores [46,47,48,49]. Alternatively, the natural

occurrence of soils with high concentrations of Zn has been

reported [50], but their restricted geographic distribution makes it

difficult to understand how they could have played a major role,

considering that the level of polymorphism observed in A. halleri

precludes scenarios with a strong genetic bottleneck at speciation.

Methods

Plant material
For A. halleri, we sampled 31 diploid individuals from six

populations scattered throughout the European distribution of the

species [51]: F1, France (N = 6); I5, Italy (N = 5); D13, Germany

(N = 5); SLO5, Slovenia (N = 5); PL1, Poland (N = 5); and CZ8,

Czech Republic (N = 5). For A. lyrata, we used published sequences

from four populations [17]: the Plech reference population in

Germany (N = 12), which has been identified as part of the center

of diversity of the species [17,52], Sweden (N = 9), Iceland (N = 12)

and Russia (N = 15).

Table 1. For each class of scenarios (see Fig. 3), posterior probabilities of models with constant population size versus alternative
models with exponential population growth or recent bottlenecks in A. halleri.

scenario Posterior probabilities of constant population size models against:

exponential population growth models recent botleneck in A. halleri models

SI 0.623 (0.794) 0.732 (0.950)

CM 0.699 (0.972) 0.831 (0.989)

AM 0.714 (0.951) 0.833 (0.974)

SC 0.652 (0.944) 0.736 (0.584)

Values in brackets represent the probabilities for each class of scenarios that the constant population size model (SIC, CMC, AMC, and SCC, see Fig. 3) is the correct
model, given the observed posterior probabilities (see Text S1).
doi:10.1371/journal.pone.0026872.t001

Table 2. Demographic parameters estimated using ABC
under the SIC (strict isolation model with constant population
size).

Nhal* Nlyr* NA* Tsplit{

82 79.2 532.9 337.4

(65.2–98.9) (65.2–103.9) (440.2–657.7) (272.8–438.2)

*Effective population size (expressed as 103 individuals) for A. halleri (hal),
A. lyrata (lyr), and their ancestor (A).
{Time (ka) of the split between A. halleri and A. lyrata.
The 95% highest posterior density intervals are shown in parentheses.
doi:10.1371/journal.pone.0026872.t002
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DNA sequencing
Large exons at 29 unlinked loci in A. halleri (Table S1) were

amplified [306(300at 95uC, 450 at 55uC, 600 at 70uC)] using PCR

primers defined for studies in A. lyrata [17,53]. Restricting

amplification within coding regions allowed us to perform direct

sequencing, as it excluded the indels polymorphisms accumulating

in intronic regions. PCR products were directly Sanger-sequenced

using BigDye Terminator Kit 3.1 (Applied Biosystems, Foster City,

CA). Chromatograms were checked manually using SeqScape

V2.5. Included data were confirmed on both strands, and have been

submitted to GenBank (accessions XXXXXX–XXXXXX).

Data analysis
We used a routine written in C (MScalc, available upon request

from xavier.vekemans@univ-lille1.fr) to compute diversity es-

timators at biallelic synonymous sites (nucleotide diversity ps;

Watterson’s hW; FST, computed as 12ps/pT where ps is the

average pairwise nucleotide diversity within population and pT is

the total pairwise nucleotide diversity of the pooled sample across

populations). Seven different classes of polymorphic sites defined

by Ramos-Onsins [21] were also computed, using sequences

from the A. thaliana reference genome as outgroup : (1) exclusive

polymorphisms noted Sxhal (or Sxlyr), i.e. polymorphic sites for

which the frequency of the derived allele f(d) is equal to 0 in A.

lyrata (or in A. halleri) but 0,f(d),1 in A. halleri (or A. lyrata); (2) fixed

differences between species, noted Sfhal (or Sflyr), where f(d) = 1 in

A. halleri and f(d) = 0 in A. lyrata (or vice versa); (3) shared

polymorphic sites (noted Ss), i.e. sites where 0,f(d),1 in both

species; and (4) exclusive polymorphisms that are fixed for the

derived allele in the other species, noted Sxhalflyr (or Sxlyrfhal), i.e.

f(d) = 1 in A. lyrata (or in A. halleri) but 0,f(d),1 in A. halleri (or in A.

lyrata). To better understand the demographic history of A. halleri

and A. lyrata, haplotypes were estimated from the unphased data

by use of the PHASE algorithm [54] implemented in DNAsp [55].

From the phased genotypes, we extracted the largest non-

recombining sequences by use of the IMgc program [56]. The

resulting set of non-recombining sequences was only used for the

haplotypes analysis.

Approximate Bayesian computation (ABC) analysis
Coalescent simulations. We generated distributions of 22

summary statistics (Table S6) under different demographic

scenarios of divergence between two populations by coales-

cent-based simulations using the program msnsam [17,57]. For

each locus, coalescent simulations were performed based on

corresponding sample sizes for A. halleri and A. lyrata, and based on

the observed synonymous sequence length L. Mutations rates at

all loci were estimated from the net nucleotide divergence at

synonymous sites between A. halleri or A. lyrata and A. thaliana,

assuming a divergence time of 5 MY [10] and an average

generation time of two years (Table S7). Note that although

the estimate for the divergence time with A. thaliana has been

challenged recently [11,58], our conclusions would not be altered

since speciation times and duplication events were calibrated

similarly. We approximated the recombination rate ri = hi, as this

corresponds to observations in A. lyrata [59,60], as well as our own

observations in A. halleri.

Demographic scenarios. We defined four classes of

demographic scenarios as described in [61] (Fig. 3), classified

according to the chronological patterns of gene exchange between

populations. Within each class of scenarios, three alternative

models were simulated assuming either constant population size,

exponential population growth, or a bottleneck specific to A. halleri

followed by exponential population growth. For each of the 12

resulting models, 56106 multilocus simulations were performed.

We used large uniform prior distributions for all parameters, and

used identical prior distributions for parameters common to all

models. Prior distributions for Nhal and Nlyr were uniform on the

interval 0–300,000, prior distribution for NA was uniform on the

interval 0–1,000,000. Prior distributions for migration rates in

both directions were uniform on the interval 0–20. We sampled

Tsplit from the interval 0–3,200,000 years. The parameters Tiso and

TSC were drawn from a uniform distribution on the interval 0-

Tsplit.

Procedure for model testing. For model testing, we

followed a two-step hierarchical procedure [8]. First, for each

class of scenarios, we evaluated posterior probabilities separately

for the constant population size scenarios compared with either of

the two alternative scenarios. Second, we compared the best

models from the four classes of scenarios. Posterior probabilities

for each candidate model were estimated using a feed-forward

neural network implementing non-linear multivariate regression

by considering the model itself as an additional parameter to be

inferred under the ABC framework using the R package ‘‘abc’’

Figure 4. Coincidence of speciation time of Arabidopsis halleri and A. lyrata and the first duplication of the AhHMA4 gene. Distributions
show the 95% HPD of (1) the average time of divergence (Tdiv) per locus between any A. halleri and A. lyrata lineages estimated as Tdiv = Ksyn/(2.m)
where Ksyn is the observed synonymous divergence per locus and m the synonymous mutation rate- black dots represent the observed values at 29
loci; (2) the divergence time between A. halleri and A. lyrata gene copies at HMA4 locus estimated with BEAST; (3) the time of speciation (Tsplit) under
the best model obtained using our ABC approach; and (4) the time of the first duplication at AhHMA4 estimated with BEAST. Thick horizontal lines
represent the mode of each distribution.
doi:10.1371/journal.pone.0026872.g004
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[62,63,64]. The 0.1% replicate simulations nearest to the observed

values for the summary statistics (Table S6) were selected, and

these were weighted by an Epanechnikov kernel that reaches a

maximum when Sobs = Ssim. Computations were performed by

using 50 trained neural networks and 10 hidden networks in the

regression. We described the test for the power of our model

choice procedure in Text S1.

Procedure for parameter estimation. We estimated the

posterior distributions of the parameters for the best model

using a non-linear regression procedure. Parameters were first

transformed according to a log-tangent transformation [65]. We

considered only the 2,000 replicate simulations with the

smallest associated Euclidean distance d= ISobs2SsimI. The

joint posterior distribution of parameters describing the

best model was obtained by means of weighted non-linear

multivariate regressions of the parameters on the summary-

statistics (Table S6). One hundred feed-forward neural networks

and 15 hidden networks were trained for each regression using

the R package ‘‘abc’’ [62] and results were averaged over the

replicate networks. We performed a goodness of fit test with

additional summary statistics on the results of parameter

estimation to ensure that the estimated model fits the data as

described in Text S1.

Estimation of AhHMA4 duplication times. Complete

coding sequences of the three copies of AhHMA4 found in A.

halleri were obtained from BAC sequences deposited in GenBank

[15,40]. The single copy of AlHMA4 found on linkage group 3 in

A. lyrata was obtained from the JGI database. The single copy

found on chromosome 2 in A. thaliana was obtained from the

TAIR database. The occurrence of gene conversion was assessed

by using the program GENCONV [26]. Maximum-likelihood

phylogenetic analyses were conducted in PhyML [66,67,68] using

the best substitution model determined according to the software

MODELTEST [69]. BEAST (v.1.5.3) [70] was used to date

duplication events. The molecular clock model used was the

relaxed, uncorrelated lognormal clock. The analyses performed on

third codon positions were calibrated by using a normal prior on

the age of the A. thaliana-[A. halleri/A. lyrata] divergence (median 5

MY, with 95% of the distribution lying between 4.5 and 5.5 MY

[10]). A Yule process assuming a constant speciation rate per

lineage was used for the speciation model. Posterior distributions

were obtained by Markov chain Monte Carlo (MCMC) sampling,

with 30,000 samples drawn from a total of 16108 steps, and a

36107 steps long burn-in. Quality of mixing and convergence to

the stationary distribution were assessed from three independent

runs by using Tracer v1.5 [70].

Supporting Information

Text S1 Description of the different sampling strategies used in

ABC analyzes and description of the methods for the model

checking computation and the goodness-of-fit test.

(DOCX)

Figure S1 Composition of synonymous polymorphic sites (A) per

locus and (B) across all loci, when all A. lyrata populations are

pooled.

(TIF)

Figure S2 (A) Empirical distributions of the estimated relative

probabilities of the SIC (black line), CMC (blue), AMC (green) and

SCC (red) models when they are the true models. The area under

each curve to the right of the vertical line represents the fraction of

times that the true model is recovered (relative probability .0.5)

by our estimation procedure, which amounts to 79.5% for the

SIC, 90.8% for the CMC, 89.4% for the AMC, and 84.3% for the

SCC. (B) Empirical distributions of the estimated relative

probabilities of the SIC model when the SIC (black solid line),

CMC (green dashed line), AMC (blue dashed line) or the SCC (red

dashed line) models are the true models. The density estimates of

the four models at the SIC posterior probability = 0.771 (vertical

line) were used to compute the probability that SIC is the correct

model given our observation that PSIC = 0.771. This probability is

equal to 0.975.

(TIF)

Figure S3 Posterior distributions for the parameters of the best

population divergence model (SIC). Dashed curves represent the

Bayesian prior for each parameter.

(TIF)

Figure S4 Phylogram representing preferred trees of ortholo-

gous and paralogous copies of HMA4 in Arabidopsis computed with

PhyML.

(TIF)

Table S1 Description of the loci surveyed giving their identifi-

cation, chromosomal location, and annotation based on the A.

thaliana genome.

(DOCX)

Table S2 Distribution of polymorphic sites into different

categories of polymorphisms based on the pooled sample of all

A. lyrata populations. See the Text S1 for a description of the

categories (Methods: Data analysis).

(DOCX)

Table S3 Statistics of synonymous and non-synonymous diver-

sity within A. halleri and A. lyrata species samples for each locus, and

results from tests of the neutral hypothesis computed on

synonymous sites.

(DOCX)

Table S4 Estimates of population nucleotide variation.

(DOCX)

Table S5 Posterior probabilities of SIC, CMC, AMC and SCC

speciation models in four different analyses according to two

sample schemes and the two sets of loci, either compared to SIE,

CME, AME and SCE models or to SIB, CMB, AMB and SCB

models.

(DOCX)

Table S6 Summary statistics used in the different procedures of

the ABC analysis.

(DOCX)

Table S7 Results (P-values) of the goodness-of-fit tests for the

SIC and AMC models for each of the four datasets.

(DOCX)

Table S8 Levels per locus of synonymous (Ksyn) and non-

synonymous (Kasyn) divergence among Arabidopsis species, esti-

mates of FST per locus and mutation rates per bp per generation

assuming a divergence time of 5 MY with A. thaliana.

(DOCX)
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